
Harnessing Horizontal Parallelism and Vertical Instruction Packing of Programs
to Improve System Overall Efficiency∗

Hai Lin and Yunsi Fei
Dept. of Electrical & Computer Engineering

University of Connecticut
Storrs, CT 06269

E-mail: {hal06002,yfei}@engr.uconn.edu

Abstract
Multi-issue processors can exploit the Instruction Level

Parallelism (ILP) of programs to improve the performance
greatly. How to reduce the energy consumption while main-
taining the high performance of programs running on multi-
issue processors remains a challenging problem. In this
paper, we propose a novel approach to apply the instruc-
tion register file (IRF) technique from single-issue proces-
sor to VLIW architecture. Frequently executed instructions
are selected to be placed in the on-chip IRF for fast access
in program execution. Violation of synchronization among
VLIW instruction slots is avoided by introducing new in-
struction formats and microarchitectural support. The en-
hanced VLIW architecture is thus able to orchestrate the
horizontal instruction parallelism and vertical instruction
packing for programs to improve system overall efficiency.
Our experimental results show that the proposed processor
architecture achieves both the performance advantage pro-
vided by the VLIW architecture and high energy efficiency
provided by the IRF-based instruction packing technique
(e.g., 71.1% reduction in the fetch energy consumption for
a 4-way VLIW architecture with 8-entry IRFs).

1 Introduction
Microprocessor designs, whether for general purpose or

embedded systems, are continuously pushing for optimiza-
tion of performance, power consumption, and cost. Various
hardware and software design technologies often target one
or more design goals at the expense of the others. Horizon-
tal parallelism, i.e., instruction level parallelism (ILP), has
been exploited in both very-long-instruction-word (VLIW)
and superscalar processors for performance improvement,
reducing the pressure on system clock frequency increase.
Superscalar architectures rely on complex instruction de-
coding and dispatching hardware for run-time data depen-
dency detection and parallel instruction identification [9].
VLIW technology, however, groups parallel instructions in
a long word format, and reduces the hardware complexity
by maintaining simple pipeline architectures and allowing
compilers to control the scheduling of independent opera-
tions. Hence, it has large flexibility to optimize the code
sequence and exploit the maximum ILP [12]. This feature
of VLIW architecture makes it a good candidate for high
performance embedded system implementation. Currently,
the research on VLIW mainly focuses on compilation al-
gorithms and hardware enhancement that can fully utilize
the ILP and reduce waste of instruction slots, improving
the performance and reducing the program memory space,
cache space, and bus bandwidth [5] [13]. However, the per-

∗Acknowledgments: This work was supported by a NSF
grant CCF-0541102.

formance improvement is usually achieved at the cost of
power consumption, and techniques for both power con-
sumption reduction and performance improvement are not
fully explored. In this paper, we propose to employ the ver-
tical instruction packing technique in VLIW architectures
to greatly reduce the instruction fetch power consumption,
which occupies a large portion of the overall power con-
sumption of VLIW processors.

Our approach is based on the concept of on-chip in-
struction register file (IRF) [7], where frequently occur-
ring instructions are placed in the IRF and multiple en-
tries in the IRF can be referenced by a single packed in-
struction in ROM or L1 instruction cache. The principle of
“fetch-one-and-execute-multiple” (through vertical instruc-
tion packing and decoding) can greatly reduce power con-
sumption, decrease program code size, reduce cache misses,
and improve performance further. By applying architectural
changes and instruction set architecture (ISA) and program
modifications, our approach manages to bring the advan-
tages of the IRF technique to the VLIW domain, i.e., har-
nessing both horizontal parallelism and vertical instruction
packing of programs for system overall efficiency improve-
ment.

The rest of the paper is organized as follows. First, we
review the related work in Section 2. Then we provide the
motivation for our approach and the detailed problem anal-
ysis in Section 3. We discuss the software enhancement
in Section 4, including the ISA and program modifications
for adapting the IRF technologies to VLIW architecture. In
Section 5, we outline the hardware modifications necessary
for supporting the IRF and new ISA. Section 6 presents our
experimental results. Finally, conclusions are drawn in Sec-
tion 7.

2 Related Work
Both performance and energy consumption are impor-

tant to modern embedded processors. There has been some
research work that focuses on balancing energy consump-
tion and performance trade-offs for embedded multi-issue
processors [3] [10]. Various approaches have been taken
to reduce power consumption of hot spots in processors.
In [14] [15], the idea of instruction grouping has been em-
ployed to reduce the energy consumption of superscalar
processors for storing instructions in the instruction queue
and selecting and waking up instructions at the instruction
issue stage. However, these techniques require on-line in-
struction grouping algorithms and result in complex hard-
ware implementation for run-time group detection. They
are not flexible in instruction packing, with limited grouping
patterns. Moreover, they lack the ability to physically pack
instructions to reduce the hardware cost, program code size,

978-3-9810801-3-1/DATE08 © 2008 EDAA

and energy consumption in memory. In [11], the authors
managed to reduce the program code size and the memory
access energy cost in VLIW architectures by applying in-
struction compression/decompression between memory and
cache. However, it also requires complex compression al-
gorithms and hardware implementation, and the power con-
sumption of the processor has not been effectively reduced.

The IRF technique has been introduced in [7, 8], aiming
to design a counterpart of data register file for instructions.
Based on profiling information, frequently occurring in-
structions are placed in the on-chip IRF and multiple entries
in the IRF can be referenced by a single packed memory in-
struction. Both the number of instruction fetches and the
program memory energy consumption are greatly reduced.
With position registers and a table storing frequently used
immediates, this technique applies successfully to single-
issue processors. However, the performance improvement
is trivial.

Observing the limitations of multi-issue processors in
power consumption reduction and the advantages of IRF
techniques, we hypothesize that applying the IRF technique
to multi-issue architectures will both reduce the energy con-
sumption and exploit the ILP for performance improve-
ment simultaneously. We choose the VLIW architecture for
its simple hardware implementation and regular instruction
coding format. Both the hardware and software need to be
modified to adapt the IRF technique to VLIW architecture
so that the advantages from both sides can be maintained.

3 Motivation and Problem Analysis
In single-issue processors with an IRF, the most fre-

quently referenced instructions of an application are loaded
into the on-chip IRF. Corresponding sub-streams of instruc-
tions in the program are grouped and replaced by single
packed instructions, i.e., memory ISA (MISA) instructions.
A compact MISA instruction contains several indexes in
one instruction word for referencing multiple entries in the
IRF, as shown in Figure 1. The indexes are used in the first
half of the decode stage of the pipeline to refer to the real in-
structions in the IRF (denoted as register ISA - RISA). Fig-
ure 2 illustrates the enhanced pipeline stages with an IRF.
By integrating an IRF in the architecture and allowing ar-
bitrary combinations of RISAs in an MISA, not only the
program code size is decreased, but also the number of in-
struction fetches and thus fetching energy consumption is
reduced greatly. There are two ways of integrating an IRF

s

1
inst4

params

5 bits
inst5

params
inst3Inst2inst1opcode

5 bits5 bits5 bits5 bits6 bits

s

1
inst4

params

5 bits
inst5

params
inst3Inst2inst1opcode

5 bits5 bits5 bits5 bits6 bits

Figure 1. Packed instruction format [7]

Instruction
Cache

(L0 or L1)
PC

IF/ID

IRF

IMM

IF stage First Half of ID Stage

Instruction
Cache

(L0 or L1)
PC

IF/ID

IRF

IMM

IF stage First Half of ID Stage

Figure 2. Instruction register file within
single-issue processor pipeline stages [7]

in VLIW architectures. The first is a naive one by utilizing
the horizontal parallelism and vertical packing in an orthog-
onal manner, i.e., VLIW compilation followed by IRF inser-
tion. The RISA instructions put into the IRF are long-word

instructions, and the size of each IRF entry is scaled accord-
ingly. Program profiling for obtaining instruction frequency
information and selecting RISA instructions is based on the
long-word instructions. In this way, although the complex-
ity of hardware and compiler modifications for supporting
the IRF is the same as in single-issue architectures, it loses
much flexibility of instruction packing. Different combina-
tions of the same sub-instructions would be considered as
different long instruction candidates, thus reducing the effi-
ciency of IRF usage greatly.

The second way is to couple the horizontal parallelism
and vertical packing in a cooperative manner, i.e., VLIW
compilation and IRF insertion are integrated. An IRF is
built to store the most frequently executed sub-instructions,
and the size of each entry is the same as that for single-issue
processors. The instruction packing is along the instruction
slots. This approach allows higher flexibility in packing the
most efficient RISAs for each instruction slot. Thus, the
IRF resource is better utilized. Figure 3 illustrates an exam-
ple. At the profiling phase, there are three long instructions
executed in a sequence, each with an execution frequency
of 1. If we have an IRF size of four sub-instructions, in the
first way, there is only one-entry in the IRF and one long
instruction can be referenced. In the second way, each long
instructions is broken down to sub-instructions, we choose
4 most frequently executed sub-instructions and put them
into the IRF, e.g., I1, I2, I4, and I5 in Figure 3. A total
number of 9 sub-instructions are referenced from the IRF
instead of the cache. Thus, the second way can potentially
save code size and cache access times. We can either build
a global IRF with multiple ports across the slots, or dedicate
an individual IRF to each slot. A global IRF is more capa-
ble in exploiting the execution frequency of sub-instructions
among the slots when the VLIW pipes are homogeneous.
However, separate IRFs are suitable when each instruction
slot corresponds to certain execution units in the datapath
and is dedicated to a subset of the ISA. In our design, we
adopt the separate IRFs for different slots, as the pipes are
heterogeneous in typical VLIW architectures.

I1I1 I2I2 I3I3 I4I4

I1I1 I3I3 I4I4 I5I5

I1I1 I2I2 I4I4 I5I5

Slot1

I1: 3 times

Slot2

I2: 2 times

I3: 1 times

Slot3

I4: 2 times

I3: 1 times

Slot4

I5: 2 times

I4: 1 times

Figure 3. Analyzing execution frequency of
sub-instructions in long-word instructions

However, it is not feasible to directly pack sub-
instructions of each instruction slot in VLIW architectures
and maintain the horizontal parallelism among the multi-
way execution units. The original VLIW compiler sched-
ules the instruction sequence. With an IRF inserted, the sub-
instructions are packed for each slot. At an execution cycle,
those instruction slots that receive such compact instruc-
tions refer to multiple RISAs in the IRF, and thus it takes
multiple cycles to finish execution. Since the number of
sub-instructions may vary among different slots, the origi-
nal synchronized behavior of the slots may be destroyed and
the parallelism between the independent operations cannot
be guaranteed. Figure 4 demonstrates the code sequence of
an example program for an original 2-way VLIW architec-

ture. Each slot contains its own sub-instruction and they
work in a synchronized manner. Assuming that the sub-
instructions included in the ovals (shown in Figure 4) can be
packed, the directly grouped MISA instruction sequence is
shown in Figure 5. The first instruction word contains two
packed sub-instructions, one refers to three RISA instruc-
tions (I1, I2, and I3) and the other refers to two (I1’ and I2’).
Only when both of the two slots have finished execution,
the subsequent instructions can be executed. Thus, the first
VLIW instruction word takes three cycles to execute, with
the second slot idling in the third cycle. When the second
instruction word is fetched and executed, one slot is execut-
ing two sub-instructions in a sequence (I4 and I5), and the
other only has one (I3’). If there is a data dependency of I4
on I3’, this VLIW instruction has internal RAW (read-after-
write) data hazard and may cause malfunctioning. Although
the code size and the total number of instruction fetches
are reduced, the behavior of the execution units is unsyn-
chronized and may cause extra pipeline stalls. To address
this problem, we propose a novel approach through ISA
and program modifications and architecture enhancements
to regain synchronization among all the slots. Therefore,
both the performance advantage of VLIW architecture and
the code size and energy consumption reduction by apply-
ing the IRF instruction packing technique can be achieved.

It is noteworthy that our code size reduction mechanism
I1’I1 I1’I1

I2’I2 I2’I2

I3’I3 I3’I3

I4’I4 I4’I4

I5’I5 I5’I5

I6’I6 I6’I6

I7’I7 I7’I7

I8’I8 I8’I8

Figure 4. Original VLIW code sequence

I1’-I2’I1-I2-I3 I1’-I2’I1-I2-I3

I3’I4-I5 I3’I4-I5

I4’-I5’-I6’I6 I4’-I5’-I6’I6

I7’I7 I7’I7

I8’I8 I8’I8

Slot 1 Slot 2
of RISAs

in slot 1

1

1

1

2

3

of RISAs
in slot 1

1

1

1

2

3

of RISAs
in slot 2

1

1

3

1

2

of RISAs
in slot 2

1

1

3

1

2

Figure 5. The directly packed instruction se-
quence

through IRF insertion is orthogonal to the traditional VLIW
code compression algorithms. VLIW compiler statically
schedules sub-instructions to exploit the maximum ILP, and
NOP instructions may be inserted in some instruction slots
if the ILP is not wide enough. Since these NOP instructions
introduce large code redundancy, state-of-the-art VLIW im-
plementations usually apply code compression techniques
to eliminate NOPs to reduce the code size in memory [4].
Extra bits, such as head and tail, are inserted to the variable
length instruction words to annotate the beginning and end
of the long instructions in memory [4]. A decompression
logic is needed to retrieve the original fixed-length instruc-
tion words before they are fetched to processor. In contrast,

our instruction packing algorithm is along the vertical di-
mension, and no sub-instructions are eliminated in the long
instruction word. The code is compressed in a way that one
MISA instruction contains indexes for referring to multiple
RISAs in the on-chip IRF. It takes place before the tradi-
tional code compression mechanisms, and thus transparent
to them. To make a fair comparison, we will compare the
program code size with our approach against that after tra-
ditional VLIW code compression techniques.

4 Software Modification
This section describes the software changes necessary

for an ISA to support incorporating and referencing to an
IRF in VLIW architectures.
4.1 ISA Extensions

Simple slot-based sub-instruction packing would intro-
duce violations of original ILP, as illustrated in Figure 5.
To eliminate these violations, an enhanced ISA is proposed
in our approach. All the IRF-related instructions are clas-
sified into four categories spanning two hierarchy levels, as
shown in Figure 6. The first two instruction formats are at
the lower hierarchy level that targets the instruction slots in
a long VLIW instruction. They are similar to those instruc-
tions for single-issue architectures, as listed below.

• RISA instruction represents the primitive sub-
instructions put in the IRF, i.e., basic operations such
as add i.

• MISA instruction is defined as the sub-instruction that
can occupy one VLIW instruction slot. An MISA sub-
instruction can be a regular single sub-instruction, or
in a compact style, referring to number of m RISA
instructions, where m is between 2 and n (n is deter-
mined by the instruction word length and the IRF size,
e.g., n=5 for 32-bit long instructions and an IRF of 32
entries for single-issue MIPS architectures). In [7], the
authors have discussed in detail about how to pack and
decode these RISA instructions. We apply the similar
instruction packing method in our approach.

The other two instruction formats listed below are at the
upper hierarchy level that targets the whole VLIW instruc-
tion word stored in memory. They consist of multiple MISA
sub-instructions.

• PISA instruction is the regular parallel long-word in-
struction. The MISAs that it contains in different in-
struction slots are dispatched to corresponding execu-
tion units (we simply call pipes) simultaneously at run-
time. This kind of instruction is referred to as parallel
ISA - PISA.

• SISA instruction is a special kind of long-word instruc-
tion that we propose to compensate the mismatch of
sub-instruction sequences among slots caused by the
IRF-based instruction packing technique. At run-time,
all the MISA sub-instructions contained in this kind of
instructions are dispatched to one pipe in a sequential
order. This type of instruction is referred to as sequen-
tial ISA - SISA. Several reserved bits in the instruction
word are encoded to indicate the instruction type and
its target pipe (for the SISA type).

RISA instruction

functionshamtrdrsrtopcode functionshamtrdrsrtopcode

MISA instruction
r_in5r_in4r_in3r_in2r_in1opcode r_in5r_in4r_in3r_in2r_in1opcode

PISA instruction
M_instr1 (pipe 1)M_instr1 (pipe 1) M_instr2 (pipe 2)M_instr2 (pipe 2)

SISA instruction

M_instr1 (pipe 1)M_instr1 (pipe 1) M_instr2 (pipe 1)M_instr2 (pipe 1)

Figure 6. Four categories of instructions related to VLIW architectures with an IRF

4.2 Program Modifications
With these aforementioned four types of instructions

in an ISA, we expect to realize slot-based sub-instruction
packing while maintaining the parallelism of these sub-
instructions. This section provides an overview of program
recompilation and code rescheduling for the new VLIW ar-
chitecture. We revisit the example used in Section 2. For
the original code sequence in Figure 4, at compile-time,
the sub-instructions in each slot are packed to MISA-style
based on the IRF contents (RISAs). Then the MISA sub-
instructions are reorganized within each long word, and
necessary SISA instructions are inserted to reconcile the
pace mismatch among the pipes caused by their different
number of RISAs. In our approach, whenever there is a
mismatch, an SISA instruction is inserted to occupy the
pipe that has the least number of RISA sub-instructions.
For example, Figure 7 shows the reorganized code se-
quence, where SISAn represents the sequential long instruc-
tion word for pipe n. Since there is a mismatch in the num-
ber of RISAs between the two slots of the first PISA instruc-
tion word (v1), i.e, 3 for the first slot and 2 for the second
slot, the whole second instruction word (v2) will go to the
shorter pipe to compensate the pace (SISA2). The third in-
struction word (v3) will go to pipe 1, i.e., SISA1, because
it is shorter after the first two instructions. At the end of
instruction v3, the two pipes are re-synchronized, and the
following instruction (v4) will be a PISA with parallel sub-
instructions.

Figure 8 depicts the detailed cycle-accurate behavior of
the two pipes, assuming all the slots in an instruction word
share the same fetch stage but each has its own decode
stage, and ignoring the non-ideal execution cases like multi-
cycle execution, instruction/data cache miss, etc. We can
see the cycle time when instruction fetches occur, e.g., v1
is fetched in cycle 1, v2 in 3, v3 in 4, etc. The italicized
fetch behavior (e.g., FV 2 in pipe 1) indicates that there is
an instruction fetch occurring in that cycle but no MISA in-
struction is dispatched to the specific pipe for execution, i.e.,
it is a SISA instruction for other pipes. The total execution
time for the instruction sequence is 12 cycles, the same as
that for the original VLIW architecture without IRF. How-
ever, the number of instruction fetches is 5, as compared to
8 for the original architecture.
5 Hardware Enhancements

The hardware architecture has to be enhanced accord-
ingly to support the new features of the ISA. The modified
architecture for a two-way VLIW processor is shown in Fig-
ure 9. All the modifications are made in the first half of
decoding stage, and they are almost identical for different
pipes. The IRF reference logic is the same as in single-
issue processors [7] and is simply duplicated for multi-way
VLIW architecture. It interprets the incoming MISA in-
struction, and issues either a single sub-instruction or refers

I1’-I2’I1-I2-I3 I1’-I2’I1-I2-I3

I4’-I5’-I6’I3’ I4’-I5’-I6’I3’

I6I4-I5 I6I4-I5

I7’I7 I7’I7

I8’I8 I8’I8

Slot 1 Slot 2
of RISAs

in slot 1
Instruction
sequence

1V5:

1V4:

3
V3
(SISA1):

0
V2
(SISA2):

3V1:

of RISAs
in slot 1

Instruction
sequence

1V5:

1V4:

3
V3
(SISA1):

0
V2
(SISA2):

3V1:

of RISAs
in slot 2

1

1

0

4

2

of RISAs
in slot 2

1

1

0

4

2

Figure 7. The re-organized and re-scheduled
instruction sequence for an VLIW architec-
ture with IRF

to multiple RISA instructions in the IRF and issues them
sequentially to the targeted pipe.

Figure 9 also shows that extra PISA/SISA decode logic
is inserted before the IRF reference module, to interpret
the incoming PISA or SISA instructions and control the in-
struction flow in each pipe. When the incoming instruc-
tion is a regular VLIW PISA instruction, signals are gen-
erated by the ISA type/pipe detection logic (put in the IF
stage, ignored in the figure) for multiplexers MUX1,1 and
MUX1,2 to select and pass M instr1 to the IRF reference
logic. Similarly for pipe 2, M instr2 is selected by MUX2,1

and MUX2,2. When a SISA instruction is incoming, e.g.,
SISA2 for pipe 2, MUX2,1 selects M instr1 and the tri-
state gate T2 is enabled to buffer M instr2 for future ex-
ecution. The control signal for MUX2,2 is generated to
feed M instr1 and M instr2 sequentially to the IRF refer-
ence module. In the other pipe (pipe 1), however, none
of the new sub-instructions will be selected and the pipe
is just continuing its pre-scheduled operations from previ-
ous instructions. The extra PISA/SISA decode logic en-
sures that different types of ISA instructions are identified
and the MISA sub-instructions are dispatched to the right
pipes. Note that to successfully fetch SISA instructions to
compensate the vertical execution length mismatch, a new
instruction should be fetched as long as one of the pipe has
finished all its sub-instructions. This can be implemented
by a fetch enable logic generator in the IF stage. A status
signal is generated for each pipe when the pipe is empty. An
OR logic is used to take in the two pipe’s status signals and
output a fetch control signal for the instruction cache in IF
stage.

There are several non-ideal execution cases, such as
multi-cycle instruction execution, instruction cache miss,
and data cache miss, which need to be handled by the en-
hanced VLIW architecture. On an instruction or data cache
miss, all the pipes will be stalled, just in the same way as the
original VLIW architecture. In addition, the buffers used
in the IRF reference logic stop issuing RISA instructions

W7M7E7D7FV4I7

M8

11

W8E8D8FV5I8

W6M6E6D6

W5M5E5D5

W4M4E4D4FV3I4-I5-I6

W3M3E3D3FV2

W2M2E2D2

W1M1E1D1FV1I1-I2-I3

1210987654321

Cycle

MISA
Instr.

W7M7E7D7FV4I7

M8

11

W8E8D8FV5I8

W6M6E6D6

W5M5E5D5

W4M4E4D4FV3I4-I5-I6

W3M3E3D3FV2

W2M2E2D2

W1M1E1D1FV1I1-I2-I3

1210987654321

Cycle

MISA
Instr.

(a) Pipe 1

W7’M7’E7’D7’FV4I7’

M8’

11

W8’E8’D8’FV5I8’

W6’M6’E6’D6’

W5’M5’E5’D5’

W4’M4’E4’D4’FV3

W3’M3’E3’D3’FV2
I3’-I4’-I5’-
I6’

W2’M2’E2’D2’

W1’M1’E1’D1’FV1I1’-I2’

1210987654321

Cycle

MISA
Instr.

W7’M7’E7’D7’FV4I7’

M8’

11

W8’E8’D8’FV5I8’

W6’M6’E6’D6’

W5’M5’E5’D5’

W4’M4’E4’D4’FV3

W3’M3’E3’D3’FV2
I3’-I4’-I5’-
I6’

W2’M2’E2’D2’

W1’M1’E1’D1’FV1I1’-I2’

1210987654321

Cycle

MISA
Instr.

(b) Pipe 2

Figure 8. The cycle-accurate behavior of the
two pipes in a two-way VLIW architecture with
IRF

to avoid dynamic execution hazards. For multi-cycle exe-
cution, since it occurs in the pipeline stage later than the
decode stage, where our instruction packing and IRF ref-
erencing mechanism take place, the handling mechanisms
are transparent to our packing methods. For example, the
stalls caused by multi-cycle execution can be implemented
by NOP insertion at compile-time [6]. At runtime, the sub-
instructions of each slot are recovered to the original execu-
tion sequence after IRF referencing. Thus, the multi-cycle
handling mechanism for the original VLIW architecture ap-
plies here.
6 Experimental Results

To evaluate our enhanced VLIW architecture, we use
Trimaran [2], an integrated compilation and performance
simulating environment released by HP Labs, as the infras-
tructure for our experimental setup. Table 1 lists the ar-
chitecture configuration for a 4-way VLIW 1. The original
VLIW program code is generated by the compiler, and the
modified simulator is used to profile the program for run-
time information. The profiling data is captured by our anal-
ysis tool, irfgen, to select the best candidate instructions for
the IRF. Then the program code is modified and reorganized
to use the newly developed instructions, including MISA,
PISA, and SISA. Currently, we restrict the instruction pack-
ing within hyper-blocks of VLIW code and do not include
branch instructions. We finally simulate the modified code
and obtain the execution statistics.

A set of benchmarks have been tested to evaluate the ef-
fectiveness of our approach in code size reduction and en-
ergy saving. These benchmarks are provided by Trimaran
and represent typical embedded applications for VLIW ar-
chitectures, such as system commands (strcpy and wc),

1Note that the previous analysis is based on 2-way VLIW architectures
just for the sake of simplicity.

M
_i

ns
tr

1

T1

B
uf

fe
r

M
U

X
1,

1

M
U

X
1,

2

M
U

X
1,

3

IRF

B
uf

fe
r

B
uf

fe
r

M
U

X
2,

1

M
U

X
2,

2

M
U

X
2,

3

IRF

B
uf

fe
r

M
_i

ns
tr

2

Pipe 1

Pipe 2

First half of the decode stage
Fetch
stage IRF reference logicPISA/SISA decode logic

T2

Figure 9. The enhanced pipeline stage for the
VLIW architecture with IRF

Table 1. VLIW processor configuration
Number of slots 4

Integer Units 4
Floating Units 2
Memory Units 2
Branch Units 1

matrix operations (bmm and mm double), arithmetic func-
tions (hyper and eight) and other special test programs
(wave and test install). Results show that the program
memory size is reduced through instruction packing. To
make a fair comparison, we compare our program code size
with that under the traditional VLIW code compression,
where all the NOPs are removed. Figure 10 demonstrates
that over eight benchmarks the average reduction rate of the
static code size is 14.9% for VLIW processors with 4-entry
IRFs, and 20.8% for 8-entry IRFs.

0

20

40

60

80

100

120

bm
m

eig
ht

hy
pe

r

m
m

 do
ub

le

str
cp

y

te
st

in
sta

ll

wav
e wc

N
or

m
al

iz
ed

 S
ta

tic
 C

od
e

S
iz

e
(%

) No IRF
4-entry IRF
8-entry IRF

Figure 10. Static code size reduction for 4-way
VLIW with different IRF sizes
Table 2 shows the instruction fetch numbers under dif-

ferent IRF implementations. The fetch number is reduced
greatly for a 4-way enhanced VLIW processor. The aver-
age reduction rate over the eight benchmark applications is
65.5% for 4-entry IRFs and 71.8% for 8-entry IRFs. Note
that the reduction rate for a 4-way VLIW processors with
4-entry IRFs is larger than that for a single-issue processor
with a 16-entry IRF [7] [8], due to the advantage of select-

ing sub-instructions of different slots separately for IRFs in
our approach.

Table 2. Fetch number reduction rate
Bench- Total fetch number Reduction rate(%)
marks No IRF 4-entry 8-entry 4-entry 8-entry

bmm 74657 24721 18181 66.9 75.6
eight 3488 1343 1177 61.5 66.2
hyper 2477 789 693 68.1 72.0
mm d 67645 22166 17416 67.2 74.3
strcpy 13391 4534 3765 66.1 71.8

test instl 1050070 325030 275030 69.0 73.8
wave 14665 5540 4385 62.2 70.1
wc 1481025 550701 434164 62.8 70.7

Average 65.5 71.8

Previous research [7] has shown that the instruction
fetch energy can reach up to 30% of the total energy con-
sumption for current embedded processors. The large re-
duction in the total fetch number can save a lot of instruction
fetch energy, and thus reduce the total energy consumption
significantly. We adopt a simple energy estimation model
for the fetching energy consumed by both instruction cache
access and IRF referencing based on previous work [1], as
shown below.

Efetch = 100 ∗ NumL1 access + NumIRF access (1)
In the model, the energy cost for accessing L1 cache is

100 times of that for IRF due to the tagging and address-
ing logic. For simplicity, we assume that all the VLIW in-
structions fetches hit in the L1 instruction cache, and ignore
the extra cache miss energy consumption. In reality, with
smaller code size and fewer cache misses, the energy re-
duction of our approach would be larger. Figure 11 demon-
strates the fetch energy reduction for a 4-way VLIW archi-
tecture with the IRF size varying between 4 and 8. The
average reduction rate of the fetch energy consumption for
VLIW architectures with 4-entry IRFs is 64.8%, and 71.1%
for 8-entry.

0

20

40

60

80

100

120

bm
m

eig
ht

hy
pe

r

m
m

 do
ub

le

str
cp

y

te
st

in
sta

ll

wav
e wc

N
or

m
al

iz
ed

 F
et

ch
 E

ne
rg

y
(%

)

No IRF
4-entry IRF
8-entry IRF

Figure 11. Fetch energy reduction for 4-entry
and 8-entry IRF implementations
As our approach recovers the original VLIW sub-

instruction sequence for execution at run-time, the multi-
issue VLIW instruction execution can be preserved with-
out any performance degradation. Our design adds simple
PISA/SISA decoding in the decode stage, which may in-
troduce small delay and negligible energy overhead in the
decoding cycle. However, since normally the critical path
of pipeline is in the execution stage, we can assume that

the clock cycle time is not increased by the extra decod-
ing logic. If for some architecture it is not the case, the
PISA/SISA decoding logic can be moved to the end of fetch
stage to shorten the critical path of decode stage.

In our experiments, we set the maximum number of
RISAs in an MISA instruction as 5, which is used in [7]
for an IRF with 32 entries and the instruction word length
of 32 bits. In our experiments, when IRF entry number is
reduced to 4 or 8, the index bit-length changes to 2 or 3,
and more IRF instructions can be referred by one MISA in-
struction. This should lead to even larger static code size
reduction and higher fetch energy saving.

7 Conclusions
VLIW architecture can exploit the horizontal parallelism

of programs, ILP, to improve the performance greatly, and
has the advantage of simpler hardware implementation than
superscalar architectures.

In this paper, we incorporate IRFs to VLIW architecture
to utilize the execution characteristics of programs for re-
ducing the energy consumption. The ISA is modified to
orchestrate the instruction grouping along the two dimen-
sions, and both the program and microarchitecture are mod-
ified correspondingly. The experimental results show that
our approach can reduce program code size by 20.8% and
save the instruction fetch energy consumption by 71.1% for
4-way VLIW architecture with 8-entry IRFs without any
performance degradation. It offers an effective technique
for improving the overall efficiency of embedded proces-
sors.

References
[1] SIMPLESCALAR-ARM POWER MODELING PROJECT.

[http://www.eecs.umich.edu/ panalyzer/].
[2] Trimaran. [http://www.trimaran.org/].
[3] G. Ascia, V. Catania, M. Palesi, and D. Patti. System-level framework for

evaluating area/performance/power trade-offs of VLIW-based embedded sys-
tems. In Proc. Asia & South-Pacific Design Automation Conf., pages 940–
943, Jan. 2005.

[4] T. M. Conte, S. Banerjia, S. Y. Larin, K. N. Menezes, and S. W. Sathaye.
Instruction fetch mechanisms for VLIW architectures with compressed en-
codings. In Proc. Int. Symp. Microarchitecture, pages 201–211, Dec. 1996.

[5] E. Gibert, J. Sanchez, and A. Gonzalez. Effective instruction scheduling tech-
niques for an interleaved cache clustered VLIW processor. In Proc. Int. Symp.
Microarchitecture, pages 123–133, Nov. 2002.

[6] S. Haga, Y. Zhang, A. Webber, and R. Barua. Reducing code size in VLIW
instruction scheduling. Journal of Embedded Computing, 1(3):415–433, Aug.
2005.

[7] S. Hines, J. Green, G. Tyson, and D. Whalley. Improving program efficiency
by packing instructions into registers. In Proc. Int. Symp. Computer Architec-
ture, pages 260–271, May 2005.

[8] S. Hines, G. Tyson, and D. Whalley. Improving the energy and execution
efficiency of a small instruction cache by using an instruction register file.
In Proc. of Watson Conf. on Interaction between Architecture, Circuits, &
Compilers, pages 160–169, Sept. 2005.

[9] M. Johnson. Superscalar Microprocessor Design. Prentice Hall, 1991.
[10] H. S. Kim, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin. A framework

for energy estimation of VLIW architecture. In Proc. Int. Conf. Computer
Design, pages 40–46, Sept. 2001.

[11] A. Macii, E. Macii, F. Crudo, and R. Zafalon. A new algorithm for energy-
driven data compression in VLIW embedded processors. In Proc. Design
Automation & Test Europe Conf., pages 10024–10030, Oct. 2003.

[12] Philips-Inc. An Introduction to Very-long Instruction Word (VLIW) computer
architecture. Philips Semiconductors, 1997.

[13] Y. Qian, S. Carr, and P. Sweany. Optimizing loop performance for clustered
VLIW architectures. In Proc. of Int. Conf. on Parallel Architectures & Com-
pilation Techniques, pages 271–280, Sept. 2002.

[14] H. Sasaki, M. Kondo, and H. Nakamura. Energy-efficient dynamic instruction
scheduling logic through instruction grouping. In Proc. Int. Symp. Low Power
Electronics & Design, pages 43–48, Oct. 2006.

[15] J. Sharkey, D. Ponomarev, K. Ghose, and O. Ergin. Instruction packing: re-
ducing power and delay of the dynamic scheduling logic. In Proc. Int. Symp.
Low Power Electronics & Design, pages 30–35, Aug. 2005.

	Main
	DATE08
	Front Matter
	Table of Contents
	Author Index

