
MCjammer: Adaptive Verification for Multi-core Designs
Ilya Wagner Valeria Bertacco

iwagner@umich.edu valeria@umich.edu

Advanced Computer Architecture Lab
University of Michigan, Ann Arbor, MI 48109

ABSTRACT
The challenge of verification of multi-core and multi-processor
designs grows dramatically with each new generation of sys-
tems produced today. Validation of memory coherence of such
systems, which include multiple levels of cache and complex
protocols, constitutes a major fraction of this task. Unfortu-
nately, current tools are incapable of addressing these chal-
lenges, allowing bugs, which cause unpredictable software be-
havior and wrong computation results, to slip into hardware.

In this work we present a scalable approach to the verifi-
cation of memory coherence protocols in large multi-core and
multi-processor systems. We accomplish this task through
a distributed network of cooperating agents, which feed the
processors with stimuli, each agent attempting to accomplish
its own verification goals and support other agents on theirs
as well. The agents can dynamically change the stimuli based
on coverage and pressure observed during simulation. Since
each agent has a minimal knowledge of the entire system,
their communication and decision process is greatly simpli-
fied. Moreover, since the agents’ view of the system is lin-
ear in the number of nodes in it, our approach can be effi-
ciently scaled to target large multi-core systems. Experimen-
tal results on two common coherence protocols and a range
of multi-core configurations demonstrate that our technique
can reach high levels of coverage of the system-level protocol
much faster than a constrained-random generator.

1. INTRODUCTION
Multi-processor systems have been the foundation of high-

performance computing for several decades. Supercomputers
developed by companies such as Cray, IBM and SGI, featuring
hundreds and thousands of processors, allowed critical scien-
tific problems to be solved in a timely manner and with great
precision. Recently, multi-processor and multi-core systems
started to permeate the consumer market due to the inability
of single-processor systems to support the performance trends
with frequency scaling and microarchitectural improvements.
Processors such as the IBM Cell [10], the Sun T1 (Niagara) [9]
and the Intel 80-core Polaris processor [15] feature multiple
cores of a relatively simple design; nonetheless, the complex-
ity of these systems grows exponentially with the number of
cores, presenting a growing challenge to verification engineers.

Formal verification tools, such as model checkers and the-
orem provers, use mathematical reasoning to check if a de-
sign adheres to the specification. Unfortunately, often the
abilities of formal verification tools fall short of the complex-
ity of today’s high-end single processor systems, let alone
multi-processors. Although these tools can prove fundamen-
tal properties in coherence protocols, such as absence of ille-
gal states, they operate on significantly abstracted designs
and cannot handle actual implementations. On the other
hand, constrained-random simulation-based approaches are
quite scalable, but have a non-exhaustive nature: they can
only guarantee the correct behavior of the scenarios that they
investigate. Often the notion of coverage, or verification thor-
oughness, is used to evaluate the effectiveness of verification
methods and to design new tests targeting uncovered scenar-

ios. Because of the need of ad-hoc tests to boost validation
coverage, human involvement remains a major bottleneck of
the validation process in today’s industry, while insufficiently
tested designs are still being manufactured.

1.1 Contributions of this work
In this work we present MCjammer - an adaptive verifica-

tion tool for Multi-Core designs that uses closed-loop feed-
back to dynamically adjust simulation to effectively test cor-
ner cases of design behavior. MCjammer is a novel scalable
approach to stimulus generation and coverage analysis, which
is specifically designed for the verification of the shared mem-
ory subsystem, namely cache controllers, memory controllers
and interconnect. MCjammer relies upon multiple cooper-
ating agents, each of them containing a simplified model of
the system that is linear in the number of processors/cores in
it. Agents create and correlate with each other sequences of
memory accesses, attempting to maximize coverage of tran-
sitions in their respective simplified system models. The use
of a distributed simplified model allows our approach to be
more scalable, than techniques that are based on the full de-
scription of the system coherency protocol.

In addition, coverage and frequency of conflicting memory
requests are analyzed by the agents, so that they can track
progress on their goals, produce test sequences with large
amount of “stress” on the system, and try to expose design er-
rors. Finally, the data that agents supply to the design under
test is uniquely tagged and can be used to detect a variety
of errors, including violations of memory coherence or even
faults in the interconnect. Both simplicity of the system and
data tagging enables us to easily scale and adapt MCjammer
to large multi-processor designs. In addition, they allow us to
use MCjammer with a variety of coherence/consistency proto-
cols and with different design representations, including RTL
code or high-level C simulators. Since individual agents in
MCjammer do not require information about the entire sys-
tem, we believe that this approach can be also extended to
high-speed post-silicon validation.

The rest of the paper is organized as follows: First, we
briefly overview the structure of multi-processor / multi-core
systems and the challenges of their verification in Section 2.
Then, Section 3 overviews prior work in multi-core system
validation. We then go over the structure of MCjammer in
Section 4 and present in detail its feedback and error check
mechanisms in Section 5. Section 6 presents the platform
we used for MCjammer evaluation as well as results of our
experiments, and Section 7 concludes the paper.

2. BACKGROUND
In a shared-memory multi-core or multi-processor system

several processors communicate via an interconnect structure
(bus, network, etc.) to the main memory or with each other,
as shown in Figure 1. Unfortunately, the latency of a mem-
ory access in such a system can be significantly higher than
in a single-processor machine, since memory is physically lo-
cated much further away. A processor’s request often must
go through a network interface and make multiple hops to

978-3-9810801-3-1/DATE08 © 2008 EDAA

reach the memory controller and then return back with data.
Therefore, caches, which reside within each core/processor
and amortize the access time, become vital for performance.
This also complicates the interaction between processors since
some of them might have more recent data in their caches than
what main memory has.

�� ���
� � � �

����	

���	�������
�����	�������

�� �� ��

Figure 1: Structure of a multi-core/multi-processor sys-
tem. Multiple cores/processors P1 through Pn have sepa-
rate caches, but communicate with each other and the shared
main memory via interconnect.

To make sure that all processors have a coherent view of
each memory location, and all data changes are propagated
through the entire system with the best possible performance,
a variety of cache coherence protocols have been proposed.
Figure 2 presents a model of the MESI invalidation coherence
protocol (described in [4]), where (from the point of view of
each cache controller) a particular memory location can be
in one of four states: ‘Modified’, ‘Exclusive’, ‘Shared’ or ‘In-
valid’. For example, if processor P2 has a memory location
0x1000 in its cache in state ‘S’, the value in P2’s cache is the
same as in the main memory and the same memory location
is potentially in the shared state in other processors’ caches.

�	
��
��
��
	

��
�

�
	�
�
�
�
�
�
	

�
�

�	������	
��

�	������	���
 !�	���

"
#
$�
$�
�
��
	

!
�
	��
�

 !�	
��

!
�
	

�
�"#

$�
$�
��
�	

!
�	
��
�

"#$�$����	
 !�	���

��%$	��&	������	�'�()$�*�!��'��($��
��+'�()�����+��	�

�	������	
��

�	������	��

�	������	�
����	���

�	������	�
��

� �

��

Figure 2: MESI cache coherence protocol. Each memory
location can be in one of the following states in each cache
controller: ‘Modified’, ‘Exclusive’, ‘Shared’ or ‘Invalid’. ‘I’
when the location is not available in the cache, ‘E’ when only
the corresponding processor can modify the data, and ‘M’
after the value has been updated in the local cache. The
cache line is in state ‘S’ when the data is in the cache, but it
may also be present in caches of other processors.

Note that the finite state machine of the protocol shown in
Figure 2 only reflects the view of a single processor on the
state of the memory location. Therefore, the logic for the full
system protocol for a single memory location is a product of n
finite state machines (FSM), where n is the number of proces-
sor nodes in the system. A product FSM for a MESI-based
system with three nodes is shown in Figure 3. For example, a
scenario where processors P1 and P2 have a particular mem-
ory location in state ‘S’, while P3 does not have it in the cache
(‘Invalid’ state), corresponds to state ‘SSI’.

Verification of the memory coherence in a multi-core/multi-
processor system includes verification of this type of system-
level FSMs, which encode all possible interactions of the nodes
with respect to one memory location. The main aspects to
verify in this case are absence of invalid transitions and invalid
states (for example, states where several processors have the
same memory location marked ‘Modified’ simultaneously).

���

���

���

���

���

���

���

���

���

���

���

���

���

���
���
�����	
�

��������

��������

Figure 3: Finite state machine for the full system cache
coherence protocol for a three processor MESI-based system.
Each processor follows the MESI protocol (Figure 2).

3. PRIOR WORK
Verification of multi-processor systems was a strong fo-

cus of academic and industrial communities for a long time.
Since the introduction of massively parallel supercomputers
this effort mostly relied either on direct tests (programs) or
constrained-random simulation-based techniques. Wood et al.
[16] used random test generation to verify cache coherence of
the shared-memory SPUR machine. Compared to this type
of testing, our approach offers the same scalability and im-
proved coverage due to closed loop feedback and cooperations
between stimulus generators for each of the nodes.

Formal techniques are also recognized as a valuable tool at
early stages of multi-core/multi-processor design. For exam-
ple, Murϕ [5] was developed specifically for protocol speci-
fication and formal analysis. Chen et al. [3] use Murϕ de-
scription of the machine to reason about system’s coherence
properties, however their approach still required human as-
sistance for counter-example refinement. Murϕ also was used
in an industrial setting at IBM to verify ASCI Blue memory
protocol [7]. However, due to the large size of the system, the
authors still had to resort to several manual formal proofs. It
is important to note that in this work the authors employed
formal methods at the abstract protocol specification level,
since the tools could not be applied to the logic-level imple-
mentation. Moreover, even with employment of this exten-
sive formal verification flow, there were still escaped errors in
components checked by Murϕ. Similar experiences with the
TLA+ language were reported by Joshi, et al. in [8].

Model checking approaches were also employed in several
academic cache verification projects [14, 6]. The work by
Pnueli, et al. [14] however, concentrates only on the formal de-
scription of the parameterized (in terms of number of nodes)
protocol and may not be scalable to large systems due to us-
age of Binary Decision Diagrams (BDDs).

In [6] the authors conduct model checking on an abstract
history graph, which reflects the state of a single processor
and abstracted state of the rest of the system. An abstract

history graph is somewhat similar to the Dichotomic Finite
State Machine (DFSM) used in this work, however, instead of
formal reasoning, we use DFSMs to postulate coverage goals
and record simulation coverage. Moreover, since we employ
multiple agents, each with its own DFSM, our approach allows
for better coverage of the protocol’s state machine.

Several other notable approaches to multi-processor verifi-
cation investigated in industry include the work done at Cray
Corp. [1] and IBM [12]. In particular, the work of Malik, et
al. [12] used product state machine coverage for autonomous
test generation, however, it is unclear how efficient this sys-
tem would be in a large multi-core design. Another work from
IBM includes the Genesys Pro test generator [2] that can be
used to generate colliding memory accesses based on a set of
templates given by the user. Unlike our solution, this tool
requires significant user input to fine-tune the simulation and
is dependent on the target system configuration.

4. MCJAMMER TOOL
MCjammer is a novel simulation-based verification tool de-

signed specifically to target multi-core and multi-processor
systems. MCjammer requires only high-level knowledge of the
coherence protocol, and it is easily portable to multiple repre-
sentations of the same multi-core design: C model, protocol-
based RTL or full RTL implementation. We also believe that
the distributed nature of our approach can be adapted to
high-speed post-silicon validation, allowing high-quality tests
to be generated by software running on real cores or proces-
sors. Our tool employs multiple agents that generate concur-
rent and colliding memory access patterns, trying to expose
incoherent cache states or errors in data or address manip-
ulation. At the same time the agents support each other in
achieving individual coverage goals, thus attempting to maxi-
mize coverage of the full protocol state machine. This section
gives an overview of the tool.

4.1 Overall Structure
MCjammer instantiates a collection of cooperating adaptive

agents, generating test sequences for each of the processors of
the design (see Figure 4). To allow for scalability and ef-
ficiency of our approach, we designed each agent to have a
novel simplified view of the system under verification, which
we call dichotomic finite-state machine (DFSM). DFSM al-
lows an agent to distinguish only between its own actions and
the actions of the “environment”, i.e. all other agents. The
DFSM in each agent is used for an internal representation of
coverage. Agents keep track of DFSM transitions traversed in
the past and use this information to direct testing towards un-
explored scenarios of execution. At the beginning of each sim-
ulation run, each agent selects an insufficiently verified trans-
action in its DFSM, and generates load/store instructions to
cover it. We also enabled collaboration between agents, al-
lowing them to generate stimuli in a coordinated fashion to
quickly achieve common coverage goals. At the end of the
run, the agent checks the coverage report of the simulation
and adjusts its actions so that i) it increases the likelihood
of observing the desired transition in its DFSM, and ii) it in-
creases the pressure on the memory system to maximize the
number of collisions and expose possible design errors.

4.2 Dichotomic Finite-State Machine
As was pointed out in the introduction of this work, the

number of processors and individual cores used in today’s
chips is increasing rapidly every new generation. Therefore,
the number of possible states and state transitions in the

�� ���
� � � �

����	

���	�������
�����	�������

�� �� ��

�������������

�����������

��������

������� ������� ������	 �������
�%�� �%�� �%�� �%��

,
�
#
�
	(
*
�
�(
�
)

��
	�
�
�
�
	�
�

%
�
�
)
-
(
�
�

.�('��$�
�/��� ��
�/��� ��

Figure 4: Structure of MCjammer. Each core in the system
is assigned an agent. Agents formulate their goals in terms of
transitions in the dichotomic finite-state machine (DFSM) of
the memory coherence protocol specified by the user. During
each run, agents choose if they want to attempt to achieve
their own goals, provide support to another agent, or execute
a random transition.

global coherence protocol increases exponentially. As a result,
tools that evaluate coverage on the global system level become
unscalable. In designing MCjammer, we decided to divide the
large problem of validating all possible transitions in the full
system’s coherence protocol (full system FSM) into a set of
smaller problems, each with a simplified FSM. Instead of one
agent formulating test sequences for the multi-processor sys-
tem based on coverage or collision metrics, we chose to create
a set of simpler agents cooperating with each other. However,
for simplicity reasons, agents don’t have an understanding of
the full system FSM and instead use a dichotomic finite-state
machine (DFSM) to represent their perspective of the proto-
col and coverage. States in a dichotomic finite-state machine
are only comprised of the states for the local node and the
state of the “environment”, i.e. all the other nodes.

An example of a DFSM for MESI protocol is shown in Fig-
ure 5. A state in this figure represents the protocol for a
single memory location at the agent’s cache (first letter) and
at some other agent’s cache (second letter). For instance, in
the state ‘SI’ the agent has the cache line marked as ‘Shared’,
while some other agent has it as ‘Invalid’. Transitions between
states correspond to actions of the agent itself (subscript s -
self) or other agents (subscript o - other) and include such
actions as load (LD), store (ST) or cache eviction (E). A
transition between states in DFSM represents a change in
the state of the system, for example, transition from ‘II’ to
‘IM’ to ‘SS’ corresponds to a scenario where first some other
node wrote to the location and then the agent itself loaded
the location in the cache. Moreover, if in a four-node sys-
tem a memory location transitioned from state ‘SSSS’ (all
nodes have location as ‘Shared’) to ‘SSSI’, then in the first
agent’s DFSM both the edge from ‘SS’ to ‘SI’ and a loop
from ‘SS’ to ’SS’ are marked as visited. This is because in
state ‘SSSI’ relative to the first agent there is another node
that has the location as ‘Shared’ (either 2 or 3) and there is
another node that has the location as ‘Invalid’ (node 4). Note
that in a dual-processor/dual-core system, the DFSM corre-
sponds exactly to the full system protocol, since there are
only two nodes present. However, if the number of processors
increases, the full system protocol FSM grows (recall Figure
3), while individual agents retain the same DFSM structure.

�� ����

����

����

��

��	���

��	

��	

��

� �
� �

� �

� �

� �

��

���

���
��
��
�

���
��

� �
� �����

���
��

� �����

���

���

��

� �

� �
� �

���

� �

� �

� �

� �

� �

��

���

���
��

Figure 5: Dichotomic Finite State Machine for MESI pro-
tocol. DFSM represents a simplified view of the global states
that each memory location in the system might have. An
agent using this DFSM only distinguishes between actions of
its own and actions of the “environment” or the rest of the
agents. Transitions in the DFSM are labeled with the corre-
sponding action that the agent (subscript s) or one of other
agents(subscript o) must take. Actions include load (LD),
store (ST), and eviction (E).

For more precise feedback and better cooperation between
the agents, we augmented each DFSM with additional infor-
mation: each edge in the Dichotomic Finite State Machine is
associated with a coverage vector of n entries, where n is the
number of cores in the system. An ith element of the vector
is equal to the number of times a given edge was traversed
by cooperation of the current agent and agent i. Therefore,
we preserve pairwise edge coverage of the full system FSM.
The coverage vector allows us to bias the probability distribu-
tion in the agent’s algorithm to make the pairwise coverage of
the DFSMs more even. Notice that although this additional
information makes the size of the DFSM linear, in terms of
the number of nodes in the system, it provides much more
precise coverage information, while retaining the simple goal
and action formulation algorithm of the DFSM.

The division of the complex protocol state machine into
simple DFSMs allows us to retain the simplicity of individ-
ual agents and their interactions regardless of the number of
agents in the system. On the other hand, if a single agent
had precise knowledge of the entire system, i.e. the full sys-
tem FSM, the complexity of its decision and communica-
tion processes would not be scalable beyond just a few cores.
For example, a MESI system containing just four processors
would have 211 edges. If each agent had a full view of the sys-
tem, the collaboration between agents and the decision mak-
ing algorithm would be extremely complicated. In the same
case, MCjammer, on the other hand, has partial but overlap-
ping DFSMs, each with only 37 edges, leading to a total of
148 edges. By dividing the problem into a set of smaller prob-
lems, we create a solution of manageable complexity, while,
hopefully, maintaining high full system FSM coverage.

4.3 Agents’ Goals
Each agent selects its verification goals by indicating which

transition it would like to cover in the node’s DFSM. For ex-
ample, in Figure 4, agent 1 had chosen transition ‘IM’→‘SS’
as its goal. Since transitions in the DFSM are labeled with
actions that the agent and/or other agents need to perform
for the transition to occur, generating actions to test a par-

ticular goal is straightforward. Note, however, that covering
all the transitions of all DFSMs is not equivalent to cover-
ing all the transitions in the full system FSM. To enhance
the coverage in the full FSM (which we do not and cannot
even represent), we force MCjammer to observe each transi-
tion within each DFSM several times, partially compensating
the effect of DFSM’s abstraction of the entire system.

Since each agent relies on a simplified view dictated by
the DFSM, the algorithm governing its activity is also fairly
straightforward. Prior to each simulation run, individual MC-
jammer agents formulate their goals by choosing insufficiently
verified transitions in their DFSM’s. Then all agents exchange
their goals and make a probabilistic decision to either pursue
their own goal, or generate a stream of instructions to allow
another agent to achieve its goal, or execute a random stream
of memory accesses. In our agent algorithm the probability
of a random stream is constant, while probability of help-
ing another agent is inversely proportional to the number of
own goals that an agent had reached. In other words, agents
that reach their own goals early are more likely to help other
agents that have fewer goals covered. Actions of individual
agents are then translated into streams of loads and stores
timed in such a way that those of two or more collaborating
agents have little overlap with other memory accesses. This
is done by partitioning the set of agents into collaboration
groups and allocating a time-frame for each group, so that in-
terference between groups is reduced. After MCjammer sets
up this list of timed loads and stores, the simulation starts
with this distributed “program”.

If, during a particular simulation run, an agent chooses to
work on its own goal, there is no guarantee that another agent
will help, or that a transition of interest will occur. However,
if an agent does not observe the desired transition, it will at-
tempt to change the timing between its load/store instruction
and request any of the helping agents to do the same. The
process of delay reduction is based on the pressure metric
discussed below. If the coverage report indicates that a tran-
sition of interest occurred sufficiently often, the agent chooses
another action based on the list of unreached goals and signals
all helping agents that the goal has been accomplished. After
a preset number of simulation runs, all agents are required
to change their goals and repeat the procedure. In addition
to coverage and pressure analysis, simulation results are an-
alyzed for errors that may be detected with our unique data
tagging technique discussed in Section 5.2.

In designing MCjammer, we decided to avoid strict part-
nership, where agents deterministically choose partners to
test various transitions. This simplifies the complexity of the
agent algorithm. and allows the possibility to generate un-
forseen interactions, which strengthen the verification of the
coherence protocol. Moreover, the implementation of MC-
jammer is simulator-independent and can be easily ported
between simulators of different level (architecture, RTL, and
even gate-level). As we show in Section 6, in our experiments
for this work we used the Wisconsin Multifacet [13] simula-
tor with some minor modifications. Moreover, by partition-
ing and abstracting the full protocol’s FSM into a collection
of DFSMs, we make the agent’s algorithm independent from
any specific protocol, which enables MCjammer to be eas-
ily portable to other cache coherence protocols. In fact, the
portability to other verification environments is executed by
simply modifying the DFSM description, with no other mod-
ification. To test this aspect in our experimental setup, we
seamlessly deployed MCjammer in a range of systems based
on both MESI and MOSI protocols.

5. FEEDBACK AND CORRECTNESS
This section introduces the coverage model and coverage-

directed feedback in MCjammer. We also discuss pressure,
which is a metric of “stressfulness” of a simulation run. Fi-
nally, we show how MCjammer uses pressure as additional
feedback parameter to increase the quality of generated tests.

5.1 Coverage and Pressure
Coverage is the measure of thoroughness of the verification

process and full coverage is an assurance that all monitored
design behaviors have been tested. Often, coverage is only
reported by verification tools to the engineer, who then de-
signs the next test based on unverified regions of operation
of the design. Unfortunately, this human intervention be-
comes a very high-latency and high-cost part of the verifica-
tion process. In MCjammer we chose to automate this process
and close the loop with coverage and pressure feedback.

A natural coverage metric for a cache coherence is the cov-
erage of the states and transitions in the full system state
machine. However, as was shown in Section 2, the number
of states in this FSM grows exponentially when the number
of nodes increases. Therefore, using protocol state machine
coverage to automatically evaluate the test thoroughness is
a prohibitively complex task. To overcome this issue in MC-
jammer, agents evaluate coverage on their individual DFSMs.
After a run, each agent identifies which DFSM transitions
were explored and records the information. As we discussed
above, a single traversal of an edge in the DFSM is gener-
ally insufficient to gain high coverage of all the corresponding
full system. To boost the full system coverage, MCjammer
agents are required to cover each DFSM transition several
times before marking it as verified, so this transition cannot
be chosen as the agent’s goal again. The goals of the agents
in MCjammer are adjusted dynamically with every coverage
report obtained from each simulation run. This fine granu-
larity of feedback allows us to efficiently direct tests towards
insufficiently verified areas of design operation and requires
no human effort or oversight.

In addition to coverage feedback, MCjammer uses a mea-
sure of pressure on the memory system to adjust the gener-
ated tests between consecutive simulation runs. In designing
MCjammer we strove to create “stressful” activity on the sys-
tem by having actions from different nodes interfere with each
other. This allows MCjammer to exercise a rich set of unex-
pected interactions between the nodes for improved coverage.
Moreover, empirical evidence suggests that complex bugs are
often exposed by such situations. With reference to Figure
5, an example of such situation arises when one processor at-
tempts to load a previously un-cached location from the mem-
ory and is in the process of going from ‘Invalid’ to ‘Exclusive’
state, meanwhile another processor tries to store to the same
location at the same time. Pressure in MCjammer is com-
puted as a mean time between colliding events at the caches
and memory controller and it is used to maximize the “stress”
on the system. If the pressure is low, the delay between
actions initiated by the agents is reduced, hence increasing
probability of collision in future simulation runs.As our ex-
periments demonstrate, pressure and coverage feedback help
MCjammer to quickly create high-quality tests and achieve
thorough coverage of complex multi-processor protocols.

5.2 Error Check
To detect bugs in data or address manipulations and check

for potential errors with memory consistency we employ a
data tagging technique. The data for each store in the sys-

tem contains the unique ID of the agent issuing the store, the
unique ID of the store operation at that processor, and a sub-
set of the address bits of the store. Given the result of a load
we can quickly identify which agent issued the last store that
wrote to this location. For example, if the first agent is issuing
a store with unique ID=2 to address 0x00AB3456, the data
written to this location will be 0x01023456. The most signifi-
cant byte in this case carries the ID of the agent, second byte -
store ID and the last two bytes carry lower bits of the address.
Therefore, if this location is accessed later and the two lower
bytes do not have value of 0x3456, it will indicate a problem
with data transmission/manipulation. Unfortunately, agents
do not have access to the current state of the memory loca-
tion in the cache, since this information is not architectural
and not available to the processor core. To check for errors
in cache coherence protocols, MCjammer’s coverage analysis
system tracks the state of each accessed memory location and
reports invalid states, for example, a state where one agent
sees the memory location transition to ‘Modified’ state, while
another still observes it in ‘Shared’ state.

Data tagging can be beneficial for diagnosing memory con-
sistency problems. Memory consistency, which defines the
order of memory accesses that are legal in a particular ma-
chine, is also a crucial aspect of multi-core computing. The
issue of consistency arises from the fact that scalable inter-
connects in multi-processors may re-order request messages,
thus different processors may see the global sequence of loads
and stores in different orders. For example, in a system im-
plementing Sequential Consistency [11], all processors must
see all store operations in the same order. By checking the
tags of the data loaded by each processor, we can quickly es-
tablish if this rule was violated. Therefore, the error checker
does not need a fully-specified memory reference model to es-
tablish that a violation has occurred, and only the axioms of
load/store ordering are required. We believe this is a powerful
technique for multi-core validation, since most of the memory
consistency models are defined in terms of such axioms.

6. EXPERIMENTAL RESULTS
To analyze the performance of MCjammer we conducted

several experiments on two multi-processor protocols using
the Multifacet GEMS architectural simulator [13]. In par-
ticular, we used the Ruby Simulator to model the intercon-
nect, caches and memory and coherence controllers. We aug-
mented the tester program included in Ruby to allow multiple
nodes in the system to initiate overlapping memory opera-
tions. Two protocols that we used in these experiments were
MOSI, (MOSI SMP Bcast 1level in the Ruby model), and
MESI, (MESI SMP LogTM directory). Both systems were
configured to include only two banks of fully-associative L1
caches. Descriptions of the DFSMs for both MESI and MOSI
designs were derived from the protocol FSM specifications.
For performance comparison we created a constrained-ran-
dom (ConstRand) generator that did not feature collaborat-
ing agents and feedback, but, for fairness, produced the same
type of accesses to the same memory locations with timing
comparable to MCjammer.

In our experiments, we compared MCjammer with the con-
strained-random stimulus generator in terms of transition and
state coverage of the full protocol FSM for a single memory
location of a 16-core system. The results of the experiments
are shown in Figures 6.a and 6.b , for MESI and MOSI proto-
col, respectively. The x-axis of the graph shows the number
of instructions executed by MCjammer or ConstRand. The
y-axis (log scale) evaluates the number of covered states or

Table 1: Bug coverage for MCjammer and ConstRand. MC-
jammer is capable of finding more bugs, and finding bugs in
fewer instructions than a constrained-random simulator.

MCjammer ConstRand
Bug name # instructions # instructions

dc write 1248 6235
dc two writes 1 116 3272
dc two writes 2 116 240
dc read write 363 710
dc write read 3134 —
dc two reads 1215 10095
cc data write 116 180

cc data forward 4227 —

transitions of the full system protocol state machine. Note
that in both experiments MCjammer achieves significantly
higher coverage with lower effort than the random generator.

1

10

100

1000

10000

100000

0 50000 100000 150000 200000

Instructions

S
ta

te
s

or
 T

ra
ns

it
io

ns

MCjammer (states)
MCjammer (transitions)
ConstRand (states)
ConstRand (transitions)a) MESI

1

10

100

1000

10000

100000

0 50000 100000 150000 200000S
ta

te
s

or
 T

ra
ns

it
io

ns

MCjammer (states)
MCjammer (transitions)
ConstRand (states)
ConstRand (transitions)b) MOSI

Instructions

InstructionsS
ta

te
s

or
 T

ra
ns

iti
on

s
S

ta
te

s
or

 T
ra

ns
iti

on
s

Figure 6: Comparison of state and transition coverage
vs. effort for MCjammer and constrained-random simulation.
MCjammer can achieve higher state and transition coverage
on the 16-node full system state machine, with less effort.

In our final experiment, we inserted eight bugs of ranging
complexity into a sixty-four-processor MOSI system and in-
vestigated how quickly MCjammer could find these bugs com-
pared to ConstRand. The results of the study are presented
in Table 1. The first six bugs were inserted into the logic of
the directory controller (dc) of the system. The last two bugs,
with prefix cc, were inserted into individual cache controllers.
We ran both systems several times with a range of random
seeds and measured the average number of instructions each
system needed to execute to expose the bugs. For this exper-
iment the ConstRand generator was configured to label the
data similarly to MCjammer and used the same correctness
checker to detect the bugs. As Table 1 shows, ConstRand was
not able to find two of the bugs and required significantly more
instructions than MCjammer to find the others. We believe
this was due to ConstRand’s lack of coverage-based feedback
that directs the test towards unexplored system behaviors,
which is available to MCjammer.

7. CONCLUSIONS AND FUTURE WORK
In this paper we presented MCjammer, a novel scalable tool

designed specifically for verification of memory coherence in

multi-core/multi-processor systems. MCjammer uses multi-
ple adaptive agents that are connected to individual processor
nodes in the system and that work together to generate con-
current, and often conflicting, memory accesses. This coordi-
nation allows MCjammer to thoroughly cover the behavior of
the design under test while also gradually increasing pressure
on it to test “stressful” operations of the design. To set verifi-
cation goals and to evaluate coverage, each agent owns a sim-
plified view of the full system coherence protocol, complexity
of which is linear in the number of processors/cores in the sys-
tem. MCjammer also features unique data tagging that allows
it to quickly detect errors in the design and verify consistency
rules. Our experiments on several MESI and MOSI systems
of varying size indicate that MCjammer achieves higher cov-
erage with lower effort than a constrained-random generator.

In future work we plan to extend our tool to work directly
in RTL implementations. We also plan to work on systems
with a large number of nodes and more complex protocols,
memory hierarchies and interconnect structures.

8. REFERENCES
[1] D. Abts, S. Scott, and D. Lilja. So many states, so little time:

Verifying memory coherence in the Cray X1. In ISPDP, 2003.
[2] A. Adir and G. Shurek. Generating concurrent test-programs

with collisions for multi-processor verification. In HLDVT,
pages 77–82, 2002.

[3] X. Chen, Y. Yang, G. Gopalakrishnan, and C.-T. Chou.
Reducing verification complexity of a multicore coherence
protocol using assume/guarantee. In FMCAD, 2006.

[4] D. Culler, J. P. Singh, and A. Gupta. Parallel Computer
Architecture: A Hardware/Software Approach. Morgan
Kaufmann, Aug. 1998.

[5] D. Dill, A. Drexler, A. Hu, and C. Yang. Protocol verification
as a hardware design aid. In ICCD, pages 522–525, 1992.

[6] E. Emerson and V. Kahlon. Exact and efficient verification of
parameterized cache coherence protocols. In CHARME, 2003.

[7] S. German. Formal design of cache memory protocols in IBM.
Formal Methods in System Design, 22(2):133–141, 2003.

[8] R. Joshi, L. Lamport, J. Matthews, S. Tasiran, M. Tuttle,
and Y. Yu. Checking cache-coherence protocols with TLA+.
Formal Methods in System Design, 22(2):125–131.

[9] K. Olukotun et al. Niagara: a 32-way multithreaded sparc
processor. IEEE Micro, pages 21 – 29, Mar. 2005.

[10] J. Kahle, M. Day, H. Hofstee, C. Johns, T. Maeurer, and
D. Shippy. Introduction to the Cell multiprocessor. IBM
Journal of Research and Develment, pages 589–604, 2005.

[11] L. Lamport. How to make a correct multiprocess program
execute correctly on a multiprocessor. IEEE Transactions on
Computers, 46(7):779–782, 1997.

[12] N. Malik, S. Roberts, A. Pita, and R. Dobson. Automaton:
An autonomous coverage-based multiprocessor system
verification environment. In Workshop on Rapid System
Prototyping, pages 168–172, 1997.

[13] M. Martin, D. Sorin, B. Beckmann, M. Marty, M. Xu,
A. Alameldeen, K. Moore, M. Hill, and D. Wood.
Multifacet’s general execution-driven multiprocessor
simulator (GEMS) toolset. SIGARCH Computer
Architecture News, 33(4):92–99, 2005.

[14] A. Pnueli, S. Ruah, and L. Zuck. Automatic deductive
verification with invisible invariants. Lecture Notes in
Computer Science, 2001.

[15] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson,
J. Tschanz, D. Finan, P. Iyer, A. Singh, T. Jacob, S. Jain,
S. Venkataraman, Y. Hoskote, and N. Borkar. An 80-tile
1.28TFLOPS network-on-chip in 65nm CMOS. In Solid State
Circuit Conference, pages 5–7, 2007.

[16] D. A. Wood, G. A. Gibson, and R. H. Katz. Verifying a
multiprocessor cache controller using random test generation.
IEEE Design and Test, 7(4):13–25, 1990.

	Main
	DATE08
	Front Matter
	Table of Contents
	Author Index

