
Configurable Multiprocessor Platform with RTOS for Distributed Execution of
UML 2.0 Designed Applications

Tero Arpinen, Petri Kukkala, Erno Salminen, Marko Hännikäinen, and Timo D. Hämäläinen
 Tampere University of Technology, Institute of Digital and Computer Systems

Korkeakoulunkatu 1, FI-33720 Tampere, Finland

Abstract
This paper presents the design and full prototype

implementation of a configurable multiprocessor platform
that supports distributed execution of applications
described in UML 2.0. The platform is comprised of
multiple Altera Nios II softcore processors and custom
hardware accelerators connected by the Heterogeneous
IP Block Interconnection (HIBI) communication
architecture. Each processor has a local copy of eCos
real-time operating system for the scheduling of multiple
application threads. The mapping of a UML application
into the proposed platform is presented by distributing a
WLAN medium access control protocol onto multiple
CPUs. The experiments performed on FPGA show that
our approach raises system design to a new level. To our
knowledge, this is the first real implementation combining
a high-level design flow with a synthesizable platform.

1. Introduction
Disciplined approaches are required when designing

increasingly complex digital systems. Design abstraction
using layered system model hides the complexity of
underlying layers and makes design reuse more efficient.

Common abstraction layers of an embedded platform
are presented in Figure 1. A Real-Time Operating System
(RTOS) schedules the execution of application threads,
and offers services to access available platform resources.
Further, a platform Application Programming Interface
(API) is a set of functions accessing hardware resources
on processing elements. Consequently, this hides the
changes in hardware from an application and RTOS. The

communication between processing elements is abstracted
by a Network-on-Chip architecture.

Unified Modeling Language (UML) is an object-
oriented language that is traditionally used to design
software systems. The use of UML in the embedded
system design requires the use of UML profiles to
improve the semantics in this domain. In this work, we
exploit TUT-Profile, which is targeted at real-time
embedded systems [8]. TUT-Profile supports the design
automation from UML to a physical System-on-Chip
(SoC) implementation. Applications modelled in UML
are platform-independent, which enables the separation of
application functionality and hardware. Further, this
enables efficient hardware/software co-design and fast
prototyping on different hardware platforms.

Figure 2 presents an example of a UML-based SoC
design flow with TUT-Profile. Architecture exploration is
used for optimizing component allocation, application
task mapping and scheduling. The SoC implementation is
separated into an application code generation from TUT-
Profile application and mapping models, and platform
synthesis based on an architecture model.

This paper presents a configurable multiprocessor
platform that is designed to support both the execution of
UML applications and the automated architecture
configuration to govern the platform synthesis from
library components. Further, the platform includes a
library of software components supporting the distributed
execution of UML applications on multiple CPUs. The
novel features enable rapid and automated physical
implementation from a UML model, which consequently
enables efficient verification and evaluation on FPGA.

The components and tools used in this work are listed
in Table 1. The hardware platform contains multiple Nios
II softcore processors and hardware accelerators. They are

Platform API

Processing elements

RTOS kernel

Network-on-Chip

Application

Operating system

HW abstraction

Appl.
thread

H
W

pl

at
fo

rm
SW

pl

at
fo

rm

Processing

Communication

Appl.
thread

Appl.
thread

Figure 1. Layered system model.

UML design with TUT-Profile

Architecture exploration

Code generation Platform synthesis

Application code Platform instance

SoC

Hardware
library

Software
library

Figure 2. UML-based SoC design flow.

3-9810801-0-6/DATE06 © 2006 EDAA

connected by the Heterogeneous IP Block Interconnection
(HIBI) [9][11]. The architecture configuration tool
automates the platform hardware generation using a
library of RTL descriptions of hardware components. The
logic synthesis for FPGA is performed using Quartus II
tool from Altera.

The platform software includes eCos RTOS [10],
which is used for the scheduling of multiple application
threads. Inter-Processor Communication (IPC) support
functions are required to perform distributed application
execution. Device drivers for hardware accelerators are
used for accessing common hardware resources. The
application software is automatically generated from
UML 2.0 models by Telelogic Tau G2 UML 2.0 tool and
UML process distributor tool. The latter distributes the
execution of an application onto multiple CPUs.

As a case study, a WLAN Medium Access Control
(MAC) protocol called TUTMAC [5] is mapped to the
multiprocessor platform and prototyped on single FPGA.
The experimental results are measured to evaluate the
scalability and performance of the platform in practice.

The paper is organized as follows. First, related work
is presented in Section 2. Section 3 presents the design of
the multiprocessor platform. Mapping a UML application
onto the platform is presented in Section 4. Next, Section
5 shows the platform prototyping on FPGA. In Section 6,
experimental results are presented according to
measurements on FPGA. Finally, Section 7 concludes the
paper.

2. Related work
In this paper, we focus on a combination of a loosely-

coupled Multiprocessor on a Programmable Chip
(MPoPC), RTOS, and distributed UML application
mapping procedure. Related work has several variations,
of which some of the closest are examined below.

Hung et al. present a tightly-coupled MPoPC which
uses softcore processors [4]. In the proposal, Symmetric
Multiprocessing (SMP) with Nios CPUs is enabled by
introducing a custom Cache Coherency Module (CCM).
In SMP processing topology, CPUs share the same
memory and operating system, and application tasks are
assigned between CPUs at run-time. However, this does
not suit well with the platform comprised of

heterogeneous processing elements.
Wang et al. present an application specific MPoPC

implementation performing LU-factorization for linear
equation matrices [13]. The implementation utilizes six
Nios CPUs without an operating system. IPC is
implemented via a shared memory.

Takada et al. present a custom configurable RTOS
implementation for loosely-coupled MPoPC [12]. The
RTOS is executed with multiple MicroBlaze CPUs on
Virtex-II FPGA. The focus in the multiprocessor RTOS
development is in hardware/software co-configuration
techniques in order to create scalable RTOS which is
suitable for variable multiprocessor configurations.

Automatic code generation from UML model for
embedded systems is under active research [2][7].
However, the approaches are targeted for a single
processor implementations, and thus, lack the code
generation for multiprocessor systems.

Drosos et al. present an implementation of an
embedded baseband modem terminal for a wireless LAN
application on a platform with two ARM CPUs and an
FPGA circuit [1]. The system is specified with UML and
software parts are created separately for both CPUs with
UML automatic code generation tool. Approach assumes
fixed platform and mapping. An RTOS is not utilized.

Compared to our approach, the related work lacks the
high-level configurability in UML, and the integration
and automation of design phases to produce a prototype.
Our approach presents a configurable multiprocessor
platform, which is seamlessly integrated with the design
automation. Consequently, this leads to a seamless design
flow from a UML model to a physical implementation.

3. Multiprocessor platform design
The platform is composed of identical Nios II CPU

sub-systems comprised of a CPU and peripherals. Each
sub-system has its own local instruction and data memory
spaces; there is no shared memory. IPC and transactions
with hardware accelerators are performed using HIBI.

HIBI is a communication architecture developed at the
Tampere University of Technology (TUT). IP units
connect to HIBI using a wrapper. HIBI allows using
several segments and clock domains over bridges.
Further, HIBI includes a property to send messages
having a higher priority than normal data. In this
platform, messages are used to inform the receiver about
the size of the transfer prior to the actual transmitted data.

Nios II is a 32-bit RISC softcore processor. There are
three core variants differing on the pipelines, caches, and
arithmetic logic units. Nios II CPU utilizes Avalon switch
fabric to connect with sub-system peripherals. In Avalon,
each connected master-slave pair has dedicated wires with
each other, leading to a point-to-point connected network.

Each Nios II CPU sub-system includes a Nios II CPU,
timer, boot-ROM, dual-port memory, and possibly

Table 1. Categorization of the components and tools
used in the platform development.

Self-made components/tools Off-the-shelf components/tools
TUT-Profile Tau G2 UML 2.0 tool
TUTMAC UML model Quartus II 5.0 suite
UML process distributor tool Nios II GCC toolset
Architecture configuration tool eCos RTOS
IPC support functions State machine scheduler
HIBI API Nios II softcore CPU
HW accelerator device drivers Nios development board
HIBI communication arch.
Nios-to-HIBI DMA
HW accelerators

instruction and data caches, depending on the core used.
In addition, they have a connection to an external
instruction/data memory. The boot-ROM includes a
unique processor ID to identify the sub-system. A dual-
port memory is used to buffer data in HIBI transactions.
A custom Nios-to-HIBI (N2H) DMA controller forwards
data between HIBI wrapper and dual-port memory. The
CPU and N2H are Avalon masters, whereas the timer and
memory components are slaves.

Each CPU executes a local copy of eCos RTOS in a
local memory and the application threads are mapped to
the CPUs at compilation time. HIBI is accessed through
the HIBI API defined as a device driver running on a
single eCos thread. All other software drivers accessing
hardware accelerators operate through the HIBI API.

4. Mapping UML application
We use the TUTMAC protocol as an example

application. It is a dynamic reservation Time Division
Multiple Access (TDMA) based MAC protocol that
supports negotiation of Quality of Service (QoS)
parameters for data transfers. Parts of the protocol require
real-time guarantees and are computationally intensive,
such as TDMA scheduling, Advanced Encryption
Standard (AES) function for data encryption, and 32-bit
Cyclic Redundancy Check (CRC) for data error detection.

UML statechart diagrams are used for the behavioral
modeling of applications. The statecharts implement
asynchronously communicating Extended Finite State
Machine (EFSM) models [3], and the formalism allows
automatic code generation. EFSMs are defined as states
and the transitions between them. A state transition is
triggered by a received signal or by an expired timer. This
is followed by actions, such as variable assignments,
operation calls, condition statements, and signal
transmissions.

The communication between state machines is carried
out with signals. Signals are comprised of a header and
payload. The header includes signal ID, sender/receiver
addressing and possibly other parameters, such as signal
priority. The payload includes signal parameters that can
consist of various data types. The signal passing between
different state machines is performed via signal queues.

In TUTMAC, the class hierarchy of the application
model has been designed using class diagrams. Composite
structure diagrams describe the class instances (parts) and
connections between their ports. The behavior of the
protocol has been described using statechart diagrams
combined with the UML textual notation. According to
the TUT-profile, the instances of the state machines are
called application processes. Table 2 presents the key
properties of the TUTMAC application model to illustrate
the complexity of the protocol.

Although Tau G2 supports automatic code generation
from the UML model, it does not support automatic

application mapping nor distributed execution of an
application on multiple CPUs. These features are covered
with our UML process distributor and IPC support
functions, respectively. These tools are governed by TUT-
Profile. Thus, TUTMAC application, architecture and
mapping models are designed according to the profile.

The architecture model is composed by using a library
of parameterized models that are particularly defined for
different hardware components, such as Nios II and HIBI.
An architecture model is presented in Figure 3, in which
the platform instance is comprised of four Nios II CPUs
and three hardware accelerators, including AES, CRC and
radio interface, interconnected by a single HIBI segment.

After the application model and the architecture model
have been described, a mapping model is created. The
mapping model defines the distribution of application
processes between different processing elements. The
mapping is performed in two phases. First, the application
processes are grouped together to form a set of process
groups. Second, the formed groups are mapped to certain
processing elements. Process groups are used to cluster
processes together according to functional relationships
with each other, such as local data dependencies and
heavy interaction. Also, groups are used to define the
threads on RTOS execution. In this, each process group
mapped to a Nios II CPU is implemented as a single eCos
thread. An example of mapping a set of process groups to
the described architecture model is illustrated in Figure 4.

Application process distribution between eCos threads
and CPUs can be performed according to different
criteria, such as system deadlines, work load division,
signal relations between different processes, and the size
of processes. An architecture exploration tool, such as

Table 2. The properties of the TUTMAC UML model.
Property Amount
Class diagrams 18
Composite structure diagrams 5
Statechart diagrams 41
State machines 20
Ports 52
Signal types 40
Signal size (bytes) 0-1550
Generated C code size (lines) 8775

 <<PlatformComponentInstance>>

Processor1 : ComponentLibrary::Nios_II_f
<<PlatformComponentInstance>>

Processor1 : ComponentLibrary::Nios_II_f
HIBI_portHIBI_port

<<PlatformComponentInstance>>

Processor2 : ComponentLibrary::Nios_II_f
<<PlatformComponentInstance>>

Processor2 : ComponentLibrary::Nios_II_f
HIBI_portHIBI_port

<<HIBISegment>>

Segment1 : ComponentLibrary::HIBISegment
<<HIBISegment>>

Segment1 : ComponentLibrary::HIBISegment
Port1Port1

<<PlatformComponentInstance>>

Processor3 : ComponentLibrary::Nios_II_f
<<PlatformComponentInstance>>

Processor3 : ComponentLibrary::Nios_II_fHIBI_portHIBI_port

<<PlatformComponentInstance>>

Processor4 : ComponentLibrary::Nios_II_f
<<PlatformComponentInstance>>

Processor4 : ComponentLibrary::Nios_II_f
HIBI_portHIBI_port

<<PlatformComponentInstance>>

RadioInterface : ComponentLibrary::Intersil_WLAN_radio
<<PlatformComponentInstance>>

RadioInterface : ComponentLibrary::Intersil_WLAN_radio
HIBI_portHIBI_port

<<PlatformComponentInstance>>

CRC : ComponentLibrary::CRC32
<<PlatformComponentInstance>>

CRC : ComponentLibrary::CRC32HIBI_portHIBI_port

<<PlatformComponentInstance>>

AES : ComponentLibrary::AES
<<PlatformComponentInstance>>

AES : ComponentLibrary::AES
HIBI_portHIBI_port

Figure 3. Architecture model of a platform instance.

Koski [6], can be used to optimize the mapping.
The code generated by Tau G2 supports POSIX, which

is exploited to integrate the execution of UML
applications with eCos. Based on the created mapping
model, UML process distributor tool creates information
about which threads are activated on a certain CPU, and
attaches this to the generated code. Finally, the codes are
compiled to our platform using Nios II GCC toolset.

Currently, all threads are included in the program code
of each CPU, but only a part of them are activated on a
certain CPU. Memory footprint can be reduced by linking
only active processes into executable code of each CPU.
The hardware platform is generated by the architecture
configuration tool based on the architecture model.

Figure 5 illustrates an example of the application
process distribution and signal passing arrangements
within a platform instance containing two Nios II CPUs.

All processes in the application model are divided into
four groups implemented as eCos threads. CPU 1
executes threads 1 and 4 while threads 2 and 3 are
inactive. Correspondingly, CPU 2 executes only threads 2
and 3. A state machine scheduler performs
synchronization and scheduling of processes within a
single eCos thread. Processes located at different eCos
threads on the same CPU share the local signal queue.

Signal passing between processes located at different
CPUs is carried out as follows. Each CPU has an identical
mapping table that indicates activated processes on each
CPU. According to this table, IPC functions detect signals
that are directed to processes executed on other CPUs.
HIBI Tx function is called to send such a signal over
HIBI to the correct remote CPU. At the remote CPU, the
signal incoming from HIBI is processed and attached to
the local signal queue by the HIBI Rx thread. Finally, the
signal is forwarded to correct recipient process by the
state machine scheduler.

5. Platform implementation on FPGA
The platform prototypes contain 2-6 Nios II CPUs on

Stratix II EP2S60 FPGA. The FPGA has 24,176 Adaptive
Logic Modules (ALMs) and 2,544,192 bits of on-chip
RAM memory. ALMs are the basic building blocks of
logic in the Stratix II device family and the ALM count of
the FPGA corresponds to 60,440 equivalent 4-input look-
up tables. The Nios development board consists of the
FPGA and several peripherals, such as an Ethernet
controller, RAM and ROM memory devices, UARTs, and
prototype expansion headers.

The platform hardware implementation on the
development board with 6 Nios II CPUs is depicted in
Figure 6. For purposes of our application, Intersil
MAC’less Prism HW1151-EVAL WLAN radio is
attached to one of the prototype expansion headers. The
radio is compatible with the IEEE 802.11b radio standard

<<PlatformComponentInstance>>

...::Stratix_platform::Processor1
<<PlatformComponentInstance>>

...::Stratix_platform::Processor1

<<PlatformComponentInstance>>

...::Stratix_platform::Processor2
<<PlatformComponentInstance>>

...::Stratix_platform::Processor2

<<ProcessGroup>>

HighPrio : Group
<<ProcessGroup>>

HighPrio : Group

<<ProcessGroup>>

DataProcessing : Group
<<ProcessGroup>>

DataProcessing : Group

<<PlatformMapping>><<PlatformMapping>>

<<PlatformMapping>><<PlatformMapping>>

<<PlatformComponentInstance>>

...::Stratix_platform::Processor3
<<PlatformComponentInstance>>

...::Stratix_platform::Processor3

<<PlatformComponentInstance>>

...::Stratix_platform::Processor4
<<PlatformComponentInstance>>

...::Stratix_platform::Processor4

<<PlatformComponentInstance>>

...::Stratix_platform::RadioInterface
<<PlatformComponentInstance>>

...::Stratix_platform::RadioInterface

<<ProcessGroup>>

TrafficGenerator : Group
<<ProcessGroup>>

TrafficGenerator : Group

<<ProcessGroup>>

RadioAccess : Group
<<ProcessGroup>>

RadioAccess : Group

<<ProcessGroup>>

CalculateCRC : Group
<<ProcessGroup>>

CalculateCRC : Group

<<ProcessGroup>>

Management : Group
<<ProcessGroup>>

Management : Group

<<PlatformComponentInstance>>

...::Stratix_platform::CRC
<<PlatformComponentInstance>>

...::Stratix_platform::CRC
<<PlatformMapping>><<PlatformMapping>>

<<PlatformMapping>><<PlatformMapping>>

<<PlatformMapping>><<PlatformMapping>>

<<PlatformMapping>><<PlatformMapping>>

<<PlatformComponentInstance>>

...::Stratix_platform::AES
<<PlatformComponentInstance>>

...::Stratix_platform::AES
<<ProcessGroup>>

EncryptDecrypt : Group
<<ProcessGroup>>

EncryptDecrypt : Group
<<PlatformMapping>><<PlatformMapping>>

<<ProcessGroup>>

LowPrio : Group
<<ProcessGroup>>

LowPrio : Group

<<PlatformMapping>><<PlatformMapping>>

<<PlatformMapping>><<PlatformMapping>>

<<ProcessGroup>>

DataProcessing2 : Group
<<ProcessGroup>>

DataProcessing2 : Group
<<PlatformMapping>><<PlatformMapping>>

Figure 4. Mapping process groups to processing

elements.

eCos kerneleCos kernel

HIBI wrapper HIBI wrapper

Nios II CPU (1)

UML application

Device drivers

State
machine
scheduler

Thread 1
[Activated]

Application process (UML state machine)

State
machine
scheduler

Thread 4
[Activated]

HIBI Rx
Thread

State
machine

scheduler

State
machine

scheduler

Thread 2
[Inactive]

Thread 3
[Inactive]

Signal queue

Nios II CPU (2)

UML application

Device drivers

State
machine

scheduler

Thread 1
[Inactive]

State
machine

scheduler

Thread 4
[Inactive]

HIBI Rx
Thread

HIBI Tx
Function

State
machine
scheduler

State
machine
scheduler

Thread 2
[Activated]

Thread 3
[Activated]

Signal queue

HIBI Tx
Function

eCos kerneleCos kernel

HIBI wrapper HIBI wrapper

Nios II CPU (1)

UML application

Device drivers

State
machine
scheduler

Thread 1
[Activated]

Application process (UML state machine)

State
machine
scheduler

Thread 4
[Activated]

HIBI Rx
Thread

State
machine

scheduler

State
machine

scheduler

Thread 2
[Inactive]

Thread 3
[Inactive]

Signal queue

Nios II CPU (2)

UML application

Device drivers

State
machine

scheduler

Thread 1
[Inactive]

State
machine

scheduler

Thread 4
[Inactive]

HIBI Rx
Thread

HIBI Tx
Function

State
machine
scheduler

State
machine
scheduler

Thread 2
[Activated]

Thread 3
[Activated]

Signal queue

HIBI Tx
Function

eCos kerneleCos kernel

HIBI wrapper HIBI wrapper

Nios II CPU (1)

UML application

Device drivers

State
machine
scheduler

Thread 1
[Activated]

Application process (UML state machine)

State
machine
scheduler

Thread 4
[Activated]

HIBI Rx
Thread

State
machine

scheduler

State
machine

scheduler

Thread 2
[Inactive]

Thread 3
[Inactive]

Signal queue

Nios II CPU (2)

UML application

Device drivers

State
machine

scheduler

Thread 1
[Inactive]

State
machine

scheduler

Thread 4
[Inactive]

HIBI Rx
Thread

HIBI Tx
Function

State
machine
scheduler

State
machine
scheduler

Thread 2
[Activated]

Thread 3
[Activated]

Signal queue

HIBI Tx
Function

Figure 5. Application process distribution in eCos threads and signal passing arrangements.

containing only the physical layer of the standard. The
radio is controlled by radio interface logic on FPGA.
Hardware accelerated functions include AES encoder and
32-bit CRC calculation unit.

The external memory devices on Nios development
board are used due to limited amount of on-chip memory
on FPGA. The Nios development board includes 1 MB of
SRAM memory and 16 MB of SDRAM memory both
acting as Avalon slaves. Their capacities are divided
between CPUs for local instruction and data memories.
Furthermore, 16 MB of flash memory is used to store the
program images for each CPU. The images are copied to
run-time memory locations at system reset. It should be
noted that each CPU has conceptually a local memory,
although, several memories are implemented on the same
physical memory device for the prototyping purposes.

Boot-ROM, dual-port, and cache memories are
implemented using on-chip memory blocks of the FPGA.
Nios II CPUs share the external memory slaves and are
thus forced to arbitrate with each other. Avalon and HIBI
data buses are implemented as 32-bit wide.

One of the CPUs is assigned as an I/O CPU which
gathers debug data from other CPUs via HIBI bus and
forwards this data through a serial port to a workstation.
This CPU does not participate in the execution of UML
application processes. In Figure 6 this CPU is located

farthest to the left.

6. Experiments on multiprocessor platform
In the experiments, standard Nios II cores were used

with 4 KB of instruction cache. The system resource
usage was measured with 2-6 Nios II CPU sub-systems,
radio interface, AES, and CRC compiled into the FPGA.
Table 3 presents the number of ALMs and on-chip
memory bits used as well as the maximum operating
frequency (Fmax) for different platform instances. The
critical path is originated from the Avalon arbitrator
module of the shared tri-state bus. Moreover, attaching
more CPUs to this bus further decreases the Fmax. 50 MHz
system clock frequency was used in FPGA execution.
6.1. Signal passing delays

Delays in signal passing between two application
processes were measured in three different scenarios. In
the first scenario, the processes resided in the same eCos
thread. In the second scenario, the processes resided in
different eCos threads on the same CPU and the eCos
context switch took place right after the signal output. In
the third scenario, the processes resided in different CPUs
and signal passing was performed via HIBI.

The measurements were repeated with variable amount
of payload lengths attached to the signal. Each signal
includes additional header of constant 32 bytes in length.
Measurements were performed with two Nios II CPUs
both executing UML test application on external SRAM
memory device. Figure 7 outlines the measured delays.

The signal passing delay between the processes on
different threads was approximately 1.4x compared to
intra-thread signal passing. Both were almost constant
with variable payload lengths. In contrast, the delay of
signal passing between CPUs increased in proportion to
the payload size. This is due to data transfers over HIBI.
Further, the delay increases more than linearly, since
currently, IPC data gets fragmented into small separate
transfers. Consequently, this causes frequent interrupt
requests issued by the N2H DMA.
6.2. Distributed TUTMAC application statistics

The correct functionality of the distributed TUTMAC
application was verified on platform instances with 1-4
CPUs (excluding the I/O CPU). The verification was
performed using two development boards as terminal
platforms connected together by a radio link, and sending
data over the wireless network to both directions. The

Nios II Nios II Nios II Nios II Nios II Nios II

DPRAM DPRAM DPRAM DPRAM DPRAM DPRAM

N2H N2H N2H N2H N2H N2H

Boot
ROM

Timer

Boot
ROM

Timer

Boot
ROM

Timer

Boot
ROM

Timer

Boot
ROM

Timer

Boot
ROM

Timer

HIBI
wrapper

HIBI
wrapper

HIBI
wrapper

HIBI
wrapper

HIBI
wrapper

HIBI
wrapper

16 MB SDRAM device

HIBI segment

Stratix II FPGA

Nios development board

CacheCacheCache Cache Cache Cache

Avalon connections

32-bit
CRC

Radio
interface

HIBI
wrapper

HIBI
wrapper

HIBI
wrapper

AES
encoder

Intersil WLAN radio
Prototype expansion header

1 MB SRAM device

RS-232

Uart
Module

16 MB Flash device

Shared tri-state bus

Avalon
arbitration
modules

Nios II Nios II Nios II Nios II Nios II Nios II

DPRAM DPRAM DPRAM DPRAM DPRAM DPRAM

N2H N2H N2H N2H N2H N2H

Boot
ROM

Timer

Boot
ROM

Timer

Boot
ROM

Timer

Boot
ROM

Timer

Boot
ROM

Timer

Boot
ROM

Timer

HIBI
wrapper

HIBI
wrapper

HIBI
wrapper

HIBI
wrapper

HIBI
wrapper

HIBI
wrapper

16 MB SDRAM device

HIBI segment

Stratix II FPGA

Nios development board

CacheCacheCache Cache Cache Cache

Avalon connections

32-bit
CRC

Radio
interface

HIBI
wrapper

HIBI
wrapper

HIBI
wrapper

AES
encoder

Intersil WLAN radio
Prototype expansion header

1 MB SRAM device

RS-232

Uart
Module

16 MB Flash device

Shared tri-state bus

Avalon
arbitration
modules

Figure 6. Platform implementation on FPGA.

Table 3. Platform resource usage and Fmax.
Nios II
CPUs

Area
[ALM]

Area
[%]

Memory
[bits]

Memory
[%]

Fmax
[MHz]

2 11 680 48 372 828 14 78.90
3 14 769 61 501 904 19 68.05
4 17 728 73 630 980 24 59.34
5 20 495 84 760 056 29 53.25
6 22 758 94 889 132 34 48.95

presented mapping procedure was applied several times
for the TUTMAC model, each time manually modifying
the process grouping and mapping for each platform
instance to optimize the reception delay of the protocol.

The reception delay is one of the key parameters of the
protocol. It depicts the time that is consumed by the
protocol to process a received packet when data passes
through the protocol from radio interface to a user. Based
on the reception delay, the theoretical maximum data
throughput can be calculated. However, it should be noted
that the overall throughput of a wireless network is also
dependent on the physical radio link and channel structure
of TDMA scheduling.

Figure 8 presents the measured average reception delay
and corresponding calculated theoretical maximum
throughput as a function of number of CPUs used. The
results illustrate that the best result was achieved with two
CPUs, leading to 1.44x speed-up over the single-CPU
configuration. No further improvement was achieved with
three or four CPUs due to increased IPC and small
amount of parallel computing in the application.
Furthermore, memories of the additional third and fourth
CPUs were implemented on the slower SDRAM device,
whereas the first two CPUs utilized the faster SRAM
device and thus gained higher execution performance.

The required memory footprints of the object codes are
listed in Table 4. The presented memory requirement
multiplies with the number of CPUs in the platform. eCos
takes approximately half of the total allocated memory.

7. Conclusions
This paper presented the design and implementation of

a configurable multiprocessor platform, which supports
the distributed execution of applications that have been

described in UML 2.0. Further, the scalable platform
supports the automated platform synthesis, which enables
a seamless flow from UML to physical implementation.
Experiments with the TUTMAC UML 2.0 design proved
that the platform is scalable and the distribution of
functionality onto the platform can be managed with the
tools and design methodology presented. Future work
consists of developing tools enabling dynamic re-mapping
of application processes between different threads and
CPUs. In addition, shortening IPC delays by improving
the functionality of the N2H DMA is under work.

References
[1] C. Drosos et al. Hardware-software design and validation

framework for wireless LAN modems. In Proc. Computers
and Digital Techniques, pp. 173-182, Nov. 2004.

[2] M. Edwards and P. Green. UML for real: UML for
Hardware and Software Object Modeling. Kluwer
Academic Publishers, pp. 127-147, May 2003.

[3] S. Gnesi, D. Latella, and M. Massink. Modular semantics
for a UML statechart diagrams kernel and its extension to
multicharts and branching time model-checking. Journal of
Logic and Algebraic Programming. 51(1): 43-75, 2002.

[4] A. Hung, W. Bishop, A. Kennings. Symmetric
Multiprocessing on Programmable Chips Made Easy. In
Proc. DATE’05, pp. 240-245, Mar. 2005.

[5] M. Hännikäinen et al. TUTWLAN - QoS Supporting
Wireless Network. Telecommunication Systems -
Modelling, Analysis, Design and Management,
23(3,4):297-333, 2003.

[6] T. Kangas et al. UML-Based Multi-Processor SoC Design
Framework. Accepted to Proc. Transactions on Embedded
Computing Systems, ACM, Feb. 2006.

[7] P. Kukkala et al. UML 2.0 Implementation of an
Embedded WLAN Protocol. In Proc. PIMRC’04, pp. 1158-
1162, Sept. 2004.

[8] P. Kukkala et al. UML 2.0 Profile for Embedded System
Design. In Proc. DATE’05, pp. 710-715, Mar. 2005.

[9] O. Lehtoranta et al. A Parallel MPEG-4 Encoder for FPGA
Based Multiprocessor SoC. In Proc. FPL’05, pp.1-10, Aug.
2005.

[10] A. J. Massa, Embedded Software Development with eCos,
Prentice Hall PTR, Nov. 2002.

[11] E. Salminen et al. HIBI v.2 Communication Network for
System-on-Chip. In LNCS 3133, pp. 412-422, Jul. 2004.

[12] H. Takada et al. Hardware/software co-configuration for
multiprocessor SoPC (work-in-progress report). In Proc.
WSTFES’03, pp. 7-8, May 2003.

[13] X. Wang and S.G. Ziavras. Parallel direct solution of linear
equations on FPGA-based machines. In Proc. IPDPS’03,
pp. 22-26, Apr. 2003.

0
200
400
600
800

1000
1200
1400
1600
1800
2000

8 32 64 128 256 480
Signal payload (bytes)

Ti
m

e
(µ

s)

same thread different threads different processors

Figure 7. Delays in UML signal passing scenarios.

0

5

10

15

1 2 3 4
Number of CPUs

R
ec

ep
tio

n
de

la
y

(m
s)

0
0.2
0.4
0.6
0.8
1
1.2
1.4

Th
eo

re
tic

al

th
ro

ug
hp

ut
 (M

b/
s)

Reception delay Theoritical throughput

Figure 8. Reception delay and maximum throughput
with different number of CPUs.

Table 4. Required memory footprint.
Software part Code

[bytes]
RW-data
[bytes]

Total
[bytes]

TUTMAC model 21 624 1 900 23 524
eCos 75 920 47 791 123 711
State machine scheduler 29 028 3 049 32 077
HIBI API 7 232 61 824 69 056
Total software 133 804 114 564 248 368

	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

