2024 Design, Automation & Test in Europe Conference (DATE 2024)

LoADM: Load-aware Directory Migration Policy in
Distributed File Systems

Yuanzhang Wang', Peng Zhang', Fengkui Yang', Ke Zhou!, Chunhua Lif*
TWuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
{yuanzhangw, zhangpeng19, fkyang, zhke, li.chunhua} @hust.edu.cn
*Corresponding author: Chunhua Li (li.chunhua@hust.edu.cn)

Abstract—Distributed file systems often suffer from load im-
balance when encountering skewed workloads. A few directories
can become hotspots due to frequent access. Failure to migrate
these high-load directories promptly will result in node overload,
which can seriously degrade the performance of the system. To
solve this challenge, in this paper, we propose a novel load-aware
directory migration policy named LoADM to alleviate the load
imbalance caused by hot directories. LoADM consists of three
parts, i.e. learning-based directory hotness model, urgency analysis
and multidimensional directory migration model. Specifically, we
use a directory hotness model to identify potentially high-load di-
rectories in advance. Second, by combining the predicted directory
hotness and system node status, the urgency analysis determines
when to trigger a migration or tolerate an imbalance. Then, peer
directory co-migration is proposed to better exploit data locality.
Finally, we migrate high-load directories to appropriate storage
nodes through a Particle Swarm Optimization based directory
migration model. Extensive experiments show that our approach
provides a promising data migration policy and can greatly
improve performance compared to the state-of-the-art.

Index Terms—DFS, data migration, machine learning, load
balance

I. INTRODUCTION

Data distribution comes with a cost. Current distributed file
systems (DFS) employ cleverly designed balancing algorithms
to facilitate data distribution [1]-[5]. However, DFS cannot
avoid encountering skewed real-world workloads. The gradual
load imbalance among nodes, especially hotspot data, pro-
gressively introduces the challenge of data migration. If DFS
clumsily fails to trigger a data migration operation in time, it
can cause dramatic performance degradation, e.g., low system
throughput and significant tail latency. Even worse, overloaded
nodes will directly stop writing data. Given the escalating
demands for DFS in contemporary data-intensive applications,
it is imperative to promptly address this challenge.

Typical file-level migration policies can usually be sum-
marised into the following three categories: capacity greedy
based methods, file life cycle based methods and dynamic file
hotness based methods (data hotness represents the access fre-
quency). First, the most common data rebalancing mechanism
in DFS is to greedily migrate data to the most free node,
especially Gluster [1] and Ceph [2], based on capacity once the
node reaches a single threshold. Second, file life cycle based
methods pick files based on the sequence of file creation time
[5]. Third, the dynamic file hotness based approach develops a
migration policy with multiple thresholds, which aims to keep
the disk usage as close to the average usage as possible [4].

However, there are some limitations in file-level migration
methods. First, fine-grained file-level redistribution generates
a high performance tax because it comes with the additional
cost of more pointers [6]. Second, file-level hotness disappears
too quickly. The literature suggests that frequent migrations
do not alleviate load imbalance and cause ’ping-pong’ effects
[7]. Instead, directory-level hotness is much more durable
[8]. Third, the file-level migration method rarely considers
directory locality. Finally, a single dimension (e.g., capacity
or file creation time) is insufficient for identifying the data that
contributes most to load imbalance.

In this paper, we present a Load-aware Directory Migration
Policy (LoADM) efficiently to solve data migration problem.
The first limitation is fixed efficiently and expeditiously by
coarse-grained migration of hot directories to nodes sustaining
less load. To solve the second limitation, LoADM enables
directory hotness model to precisely guide balance. To solve
the third limitation, LOADM proposes adaptive peer directory
co-migration. The peer directories refer to the same node’s
subdirectories (with the same depth) under the same parent
directory. Finally, LoADM solves the last limitation by using
multidimensional information such as bandwidth and IOPS.
Our contributions are as follows:

e New perspective.To the best of our knowledge, this is the
first time to solve DFS data migration from the directory
level. To leverage directory locality, we propose peer
directory co-migration.

o New method. We design a load-aware directory migration
policy (LoADM). We build a lightweight directory hotness
model picking the most urgent directory and its adaptive
peer directories, and use a Particle Swarm Optimization
(PSO) based multidimensional migration model to better
balance the workloads in DFS.

e High performance. We evaluate LoADM by conducting
extensive experiments on practical DFS using real-world
workload traces. LOADM improves IOPS and bandwidth
by 67.4% and 69.2%, and reduces completion time by
41.6% compared to state-of-the-art methods.

II. MOTIVATION

In this section, we make a deep analysis of the design insights
about LoADM from the following three aspects about directory
migration problem.

(1) Directory hotness and lifetime. For real workloads, the
hotspots remain relatively stable over short periods of time,

979-8-3503-4859-0/DATE24/© 2024 EDAA

1.0
0.8
w 0.6
a)
Q04
0.2
0.0

0 1 2 3 4 5 6
logio(access frequency)

Fig. 1. The CDF of log_processed directory access frequency. Directory_level
access have a long-tail characteristic, with few directories having significant
access.

even though they slowly diminish over time [9]. Generally, the
hotness duration of a directory exceeds that of a single file
in the directory [8]. It is not surprising, as many studies have
reported good locality of the directories [10]-[13]. However,
file-level migration strategies ignore this fact which fails to
take advantage of directory locality. Moreover, files may have
a shorter lifetime. Frequent file-level migrations are likely
to be ineffective data moves triggering a ’ping-pong effect’
[7]. In short, file granularity does not necessarily guarantee
rebalancing [14]. Therefore, we address data migration problem
in DFS from the directory level.

(2) Directory access distribution. Fig.1 and Fig.2 clearly
demonstrate our observation based on the analysis of realworld
traces. As shown in Fig.1, we statistically count the IO access
frequency of all last-level directories and then perform a loga-
rithmic process to plot CDF curves. Observationl: Directory-
level access have a long-tail characteristic, with few directories
having significant access. This inspires us to find those high-
load directories by learned directory hotness model detailed in
Section IV-C. By analysing access patterns, LOADM predicts
potentially highly loaded directories and then put them to the
migration queue. This policy is designed to meet future demand
in advance to avoid performance bottlenecks.

(3) Adaptive peer directory co-migration. Previous re-
search considers the peer directory impact when predicting the
load [8]. However, it fails to explore the distinctive contribu-
tions of each peer directory. Namely, how many peer directories
should be selected and whether an adaptive number should be
set. In contrast, we studied the IO distribution between peer
directories as shown in Fig.2(a) and Fig.2(b). We randomly
select 10 hot directories as the horizontal axis, and select the
next one if its subdirectory breadth is less than 10. These
hot directories are predicted by the directory hotness model
and have the same label (detailed in Section IV-C). And the
vertical axis shows the normalized rank of each subdirectory,
with darker colours indicating more frequent access in Fig.2(a).
Observation2: There is a hotness correlation between peer
directories: the peers of the hotter directories may also be
hotter. Observation3: There is not an even distribution of
hotness between peer directories. Observation4: In case of top
frequently accessed peer directories, their hotness may be close
to each other. We notice that the top k peer directory (having a
same parent directory) access are close, but k is not fixed. For
example, for the peer directories under Dir7, the top 3 access

-0.4

Normalized access

Rank of normalized access
o
N

-0.2

0.0
N S SN o N S R S
%% 9% 9% 506 58 90" FEESEE S

(a) Peer directory heatpmap (b) IO distribution under Dir7

Fig. 2. (a) depicts an example of heatpmap for peer directory. We randomly
select 10 hot directories as the horizontal axis (select the next one if its subdi-
rectory breadth is less than 10). The vertical axis shows the normalized access
frequency rank of the subdirectories corresponding to these 10 directories,
with darker colours indicating more frequent IO access. (b) describes the 10
distribution of subdirectories under Dir7 in Figure (a).

frequency is close, while for the peer directories under Dir3,
the number is 2. We define k as the peer directory co-migration
factor. Intuitively, k changes with workloads. Motivated by
the aforementioned observations, we explore the distinctive
contribution of peer directories and design peer directory co-
migration detailed in Section IV-D.

III. PROBLEM STATEMENT

We break directory migration problem into two steps, that
is, which directories to migrate and how to migrate them.

(1) Which to migrate? Intuitively, directories may contain
a non-negligible number of files, which can be a challenge for
directory-level migrations. The first key solution is to combine
information from multiple dimensions (IOPS and bandwidth of
the directory). Some dimensional information is insignificant.
For example, NetApp reports that capacity imbalance does
not necessarily cause system performance degradation [3].
Therefore, using multidimensional load information promotes
thorough consideration. Moreover, it is important to note that
we are concerned with migrating highly loaded directories
where size is not significant. Therefore, scenarios containing
many large files are out of the scope of our study.

The second challenge is how to identify the hotspot data.
To solve this problem, we employ a lightweight classification
model to divide the directories into four hotness levels (see
Section IV-C for more details).

(2) How to migrate? After finding the hot directories and the
corresponding co-migrating peer directories, we determine the
location according to a multidimensional directory migration
model based on PSO. To provide a more precise understanding,
we give the following mathematical definitions. Define Balance
as the load balance degree which can be calculated as follows:

v

VETL
In Equation (1), i represents s, node. m represents the max
number of the nodes. v represents the mean of the resource
utilization of each node. R.(i,r) and Ry(i,r) represent the
current and the limit resource value of i;;, node where r
€[IOPS, Bandwidth]. In short, the migration model serves to
maximise the balance without exceeding the upper limit of node
resources.

Balance =

R.(i,r
RtEi,rg - U)2

Service layer Storage layer

‘Workloads } }
|
|
|

|
| * Directory hotness model

10 requests X Data collector + Urgency analysis Storage
| * Directory migration model | nodes

The LoADM policy

Finder
Directory hotness model

7777777

Directory hotness

Labels

Dircctory s

i Multidi sional
Directory level | | Node level [Peerd"ec""y]{ (e mensiond J

co-migration migration

Planner
Urgency analysis Directory migration model

|
|
,,,,,, -

Fig. 3. The architecture of LoADM, which consists of three main modules,
Data collector monitoring the load and processing data from storage nodes,
Finder labeling directories and finding hot directories by learned model, Planner
deciding which directories to migrate and to which nodes.

IV. DESIGN
A. Overview of LoOADM

The key idea of LoADM is to use a load-aware approach
for data migration from the directory-level ensuring the best
DFS balance possible. Figure 3 provides a brief overview, our
method is designed in the service layer. LOADM is composed
of three main modules, Data collector monitoring the load and
processing data from storage nodes, Finder labeling directories
and finding hot directories by learned model, and Planner
deciding which directories to migrate and to which nodes.

B. Data collector

The data used for classification is sampled and pro-
cessed from the data collector module. The directory re-
quest features includes directory depth, time_label, file_object,
I0_Time_mean, parent directory breadth, timeStampDiff(the
average difference between timeStamps of the same access),
directory IOPS_mean and Bandwidth_mean.

C. Finder

This module can label directories and identify hot directories
by learned models. If directory hotness is defined as different
levels, it is essentially a classification problem. Then we can use
a learning model to identify high-load directories in advance.
Learning models can recognise data patterns and perform
specific classification tasks by processing large amounts of
historical data, which are widely available in storage systems
[15]-[17]. For existing directories, their request information can
be collected statistically by the data collector. However, their
labels are unknown.

To solve this challenge, we propose a novel hotness score
measure to guide learning models as shown in the Equation 2:

1—A
HotnessScore = A x F+ ——.)\ €&

ar el

2

where)\ refers to a learned factor (we set the A to 0.5) , I
refers to access frequency to the directory, and AT refers to
the mean value of the time intervals between every two access
in the time window. The small AT means the directory is
potentially a hot directory. We statistically count the upper and
lower limits of the scores, and then divide the score intervals.
For example, we divide the entire score range according to the
ratio of 2.5:2.5:4:1, which corresponds to one label respectively.
Then the group of labels is [hotness_0, hotness_1, hotness_2,

hotness_3], and the data in the top 10% is identified as the
most hot (hotness_3). This division is based on experience and
analysis of real workloads, and we can also flexibly adjust the
division ratio.

Such design in Equation 2 is derived from three aspects.
First, it combines historical information and the current state.
Second, it exploits the possible locality of the data in the time
dimension, i.e. the closer the access time is, the hotter it is
likely to be. Thirdly, it represents the trade off between access
frequency and time. The first half of the Equation 2 reflects
access frequency, while the other part reflects the mean access
speed. Combining them together shows the trend.

Based on this novel hotness measure, we conduct a compre-
hensive analysis of the 9 most popular classification models.
Note that we use SMOTE to balance the samples collected
by the data collector. For simplicity, we use scikit-learn [18]
to train the models. We must strive for a high recall and F1
score, as they represent the likelihood of accurately detecting
distinct hotness. Furthermore, the F1 score serves as a valuable
metric for assessing the equilibrium between two key measures,
namely, precision and recall. And F1 score is defined as
F1 score = 2:lerecisionrecall) he higher, the better).

The top five best-performing models are GBDT, LightGBM,
HistGBDT, RF and DT, and their F1 scores are 82.99%,
82.62%, 81.24%, 79.10% and 75.64%. It shows that there is
little gap in the performance of the best three models, with
values of F1 score above 80%. Compared with other models,
GBDT achieves the best results: the highest recall (83.58%),
F1 score (82.99%). However, the training cost of GBDT is also
the highest. Naturally, the shorter the offline training time for
storage systems, the better. Given that LigbtGBM satisfies both
performance and overhead requirements, we have chosen it as
the primary model. Moreover, we compute the hotness score
periodically to prevent the problem of model aging caused by
drastic data changes.

Planner

[Migration queue

: pirt [Di2]Dir3] ... | ... [DinN] |
|

|

|

| Peerl Peer2-PeerK|...Peerl0
|

|

— |
Adaptive peer directory co-migration | Update global best position] |
= - e =

-
@ l Trigger migration
[C 0 0) Storagenods T T 1]

()
|PSO-based directory migration model|

|
Evaluate fitness function] |

@ : [Initialize directory particle swarm J

| Input to the | [
model |
1

Fig. 4. The workflow of Planner. Based on the directory hotness model, we
perform an urgent analysis to determine whether a migration action will be
triggered. Then we put hot directories into migration queue. Finally, we migrate
highly loaded directories to appropriate storage nodes through a PSO-based
directory migration model.

D. Planner

The Planner is response to balance DFS by making migrating
decisions which consists of two sub-module: urgency analysis
module and directory migration module. Fig.4 depicts the
workflow.

(1) Urgency analysis. Urgency analysis module reacts to the
trend of imbalance in DFS by directory state and node state.
First, based on the Finder’s output we can get the directory’s
hotness level. Typically, we select the directories with the
highest hotness as alternatives, indicating that they have the
potential to influence the balance. The hotter the directory,
the higher the urgency. Second, we analyse the state of the
nodes to determine whether the distributed cluster has reached
the imbalance cliff. On the one hand, the urgency analysis
module will check whether the node’s current state violates the
load’s dynamic threshold. On the other hand, the balance degree
reflects significantly the multidimensional resource differences
between nodes.

In addition to this, we have considered several priority rules.
For example, first, priority is given to directories with small
capacity, thus reducing migration overhead. Second, directo-
ries with high hotness level have also a high priority. The
predicted hotness level affects urgency analysis significantly.
A directory that contributed to a low predicted hotness is given
a much lower priority. In particular, we focus on migrating
highly loaded directories that are not large in size to minimise
migration overhead. In general, these rules are designed to
identify the directories that are most worthy of migration.

lMax difference

o
=)

g
=N

Normalized access
o
S

.O
¥}

peerl peer2 peer3 peer4 peer5 peer peer7 peer8 peer9 peerl0

Fig. 5. An example about how to compute peer co-migration factor k. Peer
directories under a same parent directory in this figure. The difference between
every two points can be calculated to find the access frequency corresponding
to the largest change. In this example, we set k = 3.

(2) Peer directory co-migration. As we described in the
motivation, each peer directory contributes distinctively to the
node load. We notice that the top k peer directory (having a
same parent directory) accesses are close, but k is not fixed.
Intuitively, k changes with workloads. Besides, there can be
a Matthew effect even in the hottest directories, with the top
few subdirectories’ loads being dominant while the next ones
decaying rapidly.

To better explore data locality, we propose a peer directory
co-migration method. The peer directories refer to the same
node’s subdirectories (with the same depth) under the same
parent directory. Co-migration is defined as k peer directories
(k is an adaptive factor) are treated as a whole to be migrated to
the appropriate node. The idea behind this design is to exploit
data locality as much as possible in order to speed up 10 access,
especially sequential access.

However, does putting k hot directories together on the
same node create another hotspot? To solve this problem, we
use a simple but effective method. First, sort the migration

queue based on load. Second, compute the average historical
load of the migration queue. Third, if the top ones exceed «
multiples of the average, the peer factor for those ones is set
to 0, implying no peer co-migration for them is launched. We
have empirically set the parameter o to 2. For example, for
a migration queue [Dirl,Dir2,Dir3,Dir4,Dir5,Dir6] sorted by
load, the load of Dir2 is more than 2 times the average load,
then Dir2 doesn’t start peer co-migration. In this way, we avoid
the problem of creating additional hotspot. Besides, it should
be noted that not every item in the queue will have hot peer
directories by analysing real-world workloads.

Algorithm 1 Adaptive Peer Directory Co-migration Algorithm
Input: Peer directory set P, Parameter k, Parameter index
Output: £

1: k<0

2: PeerLoad < DataCollector(P)
3: DescendingSort(PeerLoad[index))
4
5

: for each index do
APeerLoad —

: PeerLoad[index + 1] —
Peer Load[index]

6 if max < APeerLoad[index] then
7: k < index

8 break

9: end if

10: end for

11: k « CheckTimeCorrelation(PeerLoad|0, 1, ...k])
12: return k£

Fig.5 illustrates an example of how to compute the peer
co-migration factor k. And the pseudo-code of the adaptive
peer directory co-migration is shown in Algorithm 1. First,
for the alternative hot directory to be migrated, we count
the performance information of its peer directories (Line 2).
Second, sort the peer directory load in descending order (Line
3). Third, calculate the fitted curve of load and index and find
the point with the largest slope, i.e., the inflection point. In
other words, the difference between every two points can be
calculated to find the index corresponding to the first largest
change (Line 10 - Line 9). This step explores the correlation
of the peer directories’ load. And then check the temporal
correlation of these k peer directories (Line 11). Specifically,
the temporal correlation is to check if all these k peer directories
have appeared in the same time window (5 minutes). If anyone
doesn’t appear, delete it. Following the above analysis of load
and temporal correlation, we obtain the peer directories for
adaptive co-migration (Line 12). And experiments in Section
V-B demonstrate our results.

(4) PSO-based multidimensional migration algorithm. We
construct an online, load-aware, peer directory-collaborative
migration algorithm that performs node selection. Briefly, the
main idea is to first select the right directories to put into the
migration queue and then using PSO-based model to enable the
maximum fitness in Equation 3. The pseudo-code is shown in
Algorithm 2.

In general, the solution for dealing with multidimensional re-
sources for the constraint is dimension reduction. This process

transforms the multidimensional resources into a normalized
dimension using a fitness function. Subsequently, the resources
are allocated to logical nodes based on an allocation policy that
ensures the maximum target score defined. Our fitness function
is defined as follows:

Fitness = %(Balcmce]ops—FBalanceBW)—i—U(Nodehomessscore)
(3)
where Balancerpops, and Balancegy, denote the balance
degree of the IOPS and bandwidth, and o(Nodepotnessscore)
denotes the standard deviation of the hotness scores of all nodes
respectively (hotnessScore short for HS in Algorithm 2). We
consider not only the load balancing degree but also the node
hotness score in the fitness function design. The reason for
considering the hotness score calculated by Equation 2 is that
it combines the effects of frequency and time and shows future
trends.

Why use PSO? The basic idea of the PSO method is to
simulate the information exchange and cooperative behavior
among particles in a bird flock, guiding individuals in the search
space towards better solutions. Note that many heuristics (e.g.,
genetic algorithms) can also be used to solve this problem.
However, PSO algorithms usually have a fast convergence rate,
which is important for latency-sensitive applications.

Algorithm 2 Multidimensional PSO_based Migration
Input: Directory list DR, Directory Information DI
Output: BalanceDegree

: /¥*PSO-based multidimensional migration function*/

: function PSO
Initialize Dir ParticleSwarm)()

Evaluate()
Node < UpdateGlobal Position()

end function

/*Main function starts */

HotDirectories < Finder(DR, DI)

: MigrationQueue < Urgency(HotDirectories)

: for each item in MigrationQueue do
peerInfo < GET_PEER_Directory(item)
IOPS, BW,HS + Compute(item, peerInfo, DI)

end for

. Load <+ UpdateLoad(IOPS, BW, HS)

15: PSO(MigrationQueue, Load) 1> Construct the policy
that maximises the PSO model fitness function to find the
recommended migration nodes.

16: BalanceDegree < Per formMigration()

17: return BalanceDegree

R AR AN U

e
L B v =

V. EVALUATION
A. Experiment setup

To evaluate the proposed method, we conducted experiments
on two widely used real-world traces (MSN Storage File
Server and Livemap) ! containing 29,345,013 and 44,755,552
traces, respectively. We use scikit-learn [18] to split the dataset
into 60% training data and 40% for model testing. We built

!Dataset: http://iotta.snia.org/traces/158.

GlusterFS with code version 8.2. The system consists of 4
server nodes and 1 client node. Each server node has 64G RAM
and 2TB HDD storage capacity.

Next, we briefly describe the advanced baselines that have
been developed to address data migration problem in DFS.
Hash_Greedy [1], [2] is greedily choosing the node with the
most free capacity to migrate data into; ONTAP [3] determines
the data distribution based on the file size and can be cus-
tomised with a similar greedy migration policy; MogileF'S [5]
selects files for migration based on file creation time; Curator
[4] employs an advanced dynamic data migration scheme based
on file popularity.

B. Balance degree

Balance degree serves as crucial metrics for evaluation, as
discussed in Section III. The higher the balance the better,
which shows how well the system is balanced in each di-
mension. As shown in Fig.6, our LoOADM achieves the best
performance. Specifically, as for MSN traces our approach
LoADM (with peer directory co-migration) improves 1.8X,
2.3%, 2.1x in IOPS and bandwidth, and average compared to
Hash_greedy. As for Livemap, LoADM (with peer directory
co-migration) improves 1.2x, 1.1x and 1.2x in IOPS and
bandwidth, and average compared to Hash_greedy. Another
clue is that our method without peer co-migration yields a
comparable improvement. This illustrates that migration from
the directory level is a promising option.

[MogileFS ~[—J ONTAP [LoADM-without-peer ~[—=J LoADM-with-peer

1.20 = —

g
o
o
]
1
1
1

$1.00
=

5
£0.80

=
O
=}

3
2060
S

£
£0.40
Z

=
o
o
1

1

1|

1

1

Normalized balance
1
1

o
u
=)

0.20

o
o
o

0.00

10PS Bandwidth Average 10PS

(a) MSN

Bandwidth Average

(b) Livemap

Fig. 6. (a) and (b) depict the balance degree of different migration methods.
LoADM with peer co-migration performs the best.

Hash_greedy greedily selects data for migration based on
capacity, ignoring the impact of load. As for MogileFs, files
created early are not necessarily high load. Curator intelligently
makes high disk utilisation as close to the average as possible,
but it tends to select cold data. On the one hand, LoADM can
effectively identify the hotspot directories through the learning
model, so as to filter out the most worthy alternatives for
migration. On the other hand, the PSO-based migration model
can comprehensively consider multi-dimensional information.
In addition, the mechanism of peer directory collaborative
migration also substantially exploits the data locality.

C. Performance in DFS

In this section, we implemented LoADM in GlusterFS. We
use SAR [19] to collect performance statistics. Fig.7, Fig.8 and

3001 =] Hash-greedy == MogileFS == LoADM-without-peer
[] =1 Curator] ONTAP =1 LoADM-with-peer

2501
%]
AL
o
— 200

150+

MSN Livemap Average
Fig. 7. IOPS of different migration methods.

o 2.001 [] £ Hash-greedy =1 MogileFS [LoADM-without-peer
3 | =1 Curator 1 ONTAP =1 LoADM-with-peer
E
=]
=
<
=}
jt 1 B i D D B s I N I
Q
N
E
3
Z

0.00 ; — ‘

MSN Livemap Average

Fig. 8. Bandwidth of different migration methods.

Fig.9 demonstrate the results. Our scheme outperforms the file-
level migration schemes in all performance metrics. On aver-
age, LOADM yields improvement in IOPS (67.4%), bandwidth
(69.2%) and gets the lowest completion time (reduces 41.6%),
demonstrating the advantage of the directory migration method.

D. Overhead

Fig.10 shows the amount of migration data. It can be seen
that our approach migrates the least amount of data. All results
are normalized to the Hash_greedy method. On average, the
overhead of our method with peer co-migration is reduced by
14.7% compared to the baseline (Hash_greedy). The maximum
reduction is 35.5% compared to MogileFS. On both real-world
traces, our approach has the lowest overhead. This is due to
the fact that LoOADM mainly tends to migrate highly loaded
directories with small capacities, which is ignored by other
methods. To summarize, our proposed method not only has the
best performance but also has the least overhead.

VI. CONCLUSION

This paper proposes a load-aware directory migration policy
for achieving DFS load balance. We build a directory hotness
model to identify hot directories. Thus, it will trigger the
migration if the urgency analysis is satisfied. In addition,
we propose peer directory co-migration to exploit directory
locality. Finally, a directory multidimensional information mi-
gration model is designed. The experimental results show our
proposal LoOADM not only smooths workload balance but also
substantially improves practical DFS performance, such as
IOPS and completion time by 67.4% and 41.6% in contrast
to state-of-the-art methods.

ACKNOWLEDGMENT

This work was supported by the National Key Research and
Development Program of China (Grant No.2023YFB4502701)

= Hash-greedy
=1 Curator

=1 MogileFS
=1 ONTAP

=1 LoADM-without-peer
=1 LoADM-with-peer

1.001

0.50

Normalized completion time

MSN Livémap Avérage

Fig. 9. Completion time of different migration methods.

1.501 [} [Hash-greedy =1 MogileFS [==1 LoADM-without-peer
o [] 3 curator [ONTAP [LoADM-with-peer
£
<
=]
Z100t--++
o}
]
g
£ 0.50/
4
0.00

MSN Livémap Ave}age

Fig. 10. Migration traffic of different methods.

and National Natural Science Foundation of China (Grant
No0.62232007,N0.61821003).

REFERENCES

[1] Red Hat, “Gluster,” 2019. [Online]. Available: https://www.gluster.org/

[2] Sage A. Weil et al., “Ceph: A scalable, high-performance distributed file
system,” in OSDI’06, 2006, pp. 307-320.

[3] NetApp, “Netapp ontap flexgroup volumes best prac-
tices and implementation guide,” 2021. [Online]. Available:
https://www.netapp.com/pdf.html?item=/media/12385-tr4571.pdf

[4] Ignacio Cano et al.,, “Curator: Self-Managing storage for enterprise
clusters,” in NSDI’17, 2017, pp. 51-66.

[5] Danga Interactive, “Mogilefs.”
https://github.com/mogilefs/mogilefs-docs

[6] Ram Kesavan et al., “Flexgroup volumes: A distributed WAFL file
system,” in ATC’19, 2019, pp. 135-148.

[7]1 Yiduo Wang et al., “Lunule: an agile and judicious metadata load balancer
for cephfs,” in SC’21, 2021, pp. 47:1-47:16.

[8] Yuanzhang Wang et al., “Ldpp: A learned directory placement policy in
distributed file systems,” in ICPP’22, 2022, pp. 1-11.

[9] Ziyue Qiu et al., “Frozenhot cache: Rethinking cache management for
modern hardware,” in EuroSys’23, 2023, p. 557-573.

[10] Siyang Li et al., “Locofs: A loosely-coupled metadata service for dis-
tributed file systems,” in SC’17, 2017, pp. 1-12.

[11] Annamalai Muthukaruppan et al., “Sharding the shards: managing data-
store locality at scale with akkio,” in OSDI’18, 2018, pp. 445-460.

[12] Yang Zhan et al., “Efficient directory mutations in a full-path-indexed file
system,” TOS, vol. 14, no. 3, pp. 1-27, 2018.

[13] Wenhao Lv et al., “Infinifs: An efficient metadata service for Large-Scale
distributed filesystems,” in FAST 22, 2022, pp. 313-328.

[14] Peter Macko et al., “Survey of distributed file system design choices,”
TOS, vol. 18, no. 1, pp. 1-34, 2022.

[15] Giulio Zhou et al., “Learning on distributed traces for data center storage
systems,” MLSys’21, pp. 533-549, 2021.

[16] Mohammed Bakr Sikal et al., “Thermal- and cache-aware resource man-
agement based on ml- driven cache contention prediction,” in DATE 22,
2022, pp. 1384-1388.

[17] Ke Liu et al., “A lightweight and adaptive cache allocation scheme for
content delivery networks,” in DATE’23, 2023, pp. 1-6.

[18] Scikit-learn, “scikit-learn,” 2019. [Online]. Available: https://scikit-
learn.org/stable/

[19] Sysstat, “sysstat-system performance tools for the linux operating
system.” [Online]. Available: https://github.com/sysstat/sysstat

[Online]. Available:

