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Abstract—Mass spectrometry-based proteomics is a key enabler
for personalized healthcare, providing a deep dive into the complex
protein compositions of biological systems. This technology has
vast applications in biotechnology and biomedicine but faces
significant computational bottlenecks. Current methodologies often
require multiple hours or even days to process extensive datasets,
particularly in the domain of spectral clustering. To tackle these
inefficiencies, we introduce SpecHD, a hyperdimensional comput-
ing (HDC) framework supplemented by an FPGA-accelerated
architecture with integrated near-storage preprocessing. Utilizing
streamlined binary operations in an HDC environment, SpecHD
capitalizes on the low-latency and parallel capabilities of FPGAs.
This approach markedly improves clustering speed and efficiency,
serving as a catalyst for real-time, high-throughput data analysis
in future healthcare applications. Our evaluations demonstrate
that SpecHD not only maintains but often surpasses existing
clustering quality metrics while drastically cutting computational
time. Specifically, it can cluster a large-scale human proteome
dataset—comprising 25 million MS/MS spectra and 131 GB of
MS data—in just 5 minutes. With energy efficiency exceeding
31× and a speedup factor that spans a range of 6× to 54× over
existing state-of-the-art solutions, SpecHD emerges as a promising
solution for the rapid analysis of mass spectrometry data with
great implications for personalized healthcare.

Index Terms—Mass spectrometry, Proteomics, Spectral Cluster-
ing, HD computing, FPGA, Personalized Healthcare.

I. INTRODUCTION

Mass spectrometry (MS) is a cornerstone technique in
proteomics research, holding a pivotal role in the advancement
of personalized medicine. At its essence, MS offers an intricate
view into protein compositions, enabling researchers to dissect
the protein compositions of various biological samples. Such
insights are foundational to tailoring medical treatments to
individual patients, harnessing the specificity of their molecular
profiles. With the progressive evolution of MS technologies,
there has been a significant surge in data production, with
monthly datasets reaching terabytes. Repositories like MassIVE,
holding over 500TB of data as of September 2023, exemplify
this growth and hold the potential to revolutionize personalized
medicine through the discovery of patient-specific biomarkers
[1]. However, the intricacies of MS data go beyond volume,
encompassing a transformation process that converts a biological
sample into digital spectral representations (Fig. 1). This data is
subsequently structured into digital formats, such as mzML, mgf,
etc. In these formats, m/z ratios are paired with ion intensities,

turning spectral peaks into vectors that are well-suited for
database searching [2], [3], a task similar to pattern matching in
personalized drug discovery datasets. This step matches observed
spectra with known peptide sequences, identifying proteins in the
sample and bridging raw data to biologically relevant insights.
In personalized healthcare, this identification aids in pinpointing
disease-specific biomarkers and precise treatment interventions.

Fig. 1: MS data-analysis pipeline

Despite the prowess of MS, the sheer volume of spectra gener-
ated in typical MS experiments poses significant computational
challenges, especially in tasks like spectral clustering. In MS/MS
spectra, clustering groups alike data into representative consen-
sus spectra. This streamlining not only cuts redundancy and
expedites database searching, a major bottleneck in proteomic
analysis, but also refines the peptide identification process,
potentially halving its runtime [4]. In personalized healthcare
settings, the benefits of clustering are evident as expedited
data analysis directly impacts the quality and timeliness of
patient care; however, despite its advantages, spectral clustering
remains underutilized due to its time-consuming nature and
limitations of current tools. In response, we present SpecHD,
rooted in HDC principles. Designed for FPGA-accelerated MS
clustering, SpecHD integrates the HD representation to ensure
streamlined binary operations, efficiently harnessing the FPGA’s
parallel processing, low-latency, and robust computational
capabilities. Moreover, it adeptly addresses the often-overlooked
computational demands of data preprocessing in MS workflows.
The salient features of SpecHD’s contributions to MS data
processing include:

1) To the best of our knowledge, SpecHD is the first to
implement the linkage agnostic Nearest-neighbor Chain
Hierarchical Agglomerative Clustering (HAC) using FP-
GAs. This strategic alignment within the HDC framework
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boosts MS clustering speed by 6–54× [5], [6], achieving
an energy efficiency 31× greater than current benchmarks.

2) With SpecHD, we synergistically blend near-storage MS
preprocessing with FPGA capabilities. Guided by design
space exploration, this approach advances hardware and
energy efficiency while achieving a 3-10× preprocessing
speed up compared to [5], enabling seamless data ex-
changes between the FPGA and NVMe storage.

3) Deviating from conventional tools and leveraging the HD
space, SpecHD uses an innovative approach with stream-
lined preprocessed spectral data, accelerated clustering, and
emphasizes superior clustering quality and database search
efficiency over other MS solutions.

II. RELATED WORKS

MS clustering presents unique challenges compared to tradi-
tional methods due to its high-dimensional and noisy spectral
data. Each MS spectrum holds hundreds to thousands of intensity
values, emphasizing the need for specialized algorithms attuned
to such complexities. Both PIM [7] and FPGA-based solutions,
as well as HD computing methods, lean towards K-means
[8], [9] and DBSCAN [10], with Hierarchical clustering often
overlooked despite its potential. In our MS clustering analysis,
we observed the shortcomings of K-means and DBSCAN. In
contrast, HAC [11] with complete linkage excelled, offering
versatility in cluster shapes, cluster counts, and outlier resilience,
proving uniquely suited for MS data nuances [12].

MS clustering solutions face the dual challenge of max-
imizing clustering quality while minimizing computational
time. MaRaCluster [12] uses optimized distance metrics for
better clustering quality. Falcon [13] employs hashing for
dimensionality reduction and leverages approximate nearest
neighbor algorithms for faster computations. MsCRUSH [4]
utilizes locality-sensitive hashing to minimize pairwise spectra
comparisons, while GLEAMS [6] uses a supervised deep neural
network to embed spectra for optimized clustering. However,
these approaches often make trade-offs between quality and
speed. Bridging the gap between previous methods, HyperSpec
[5] stands out as the state-of-the-art (SoA) tool, establishing
as our primary point of comparison due to its remarkable
speed and commendable clustering performance. HyperSpec
employs HDC and, by harnessing GPU acceleration, achieves
leading results in speed while preserving the clustering quality.
However, a significant concern with HyperSpec and other
GPU-based solutions is when datasets surpass the GPU’s
onboard memory capacity. This constraint inhibits efficient data
processing and frequently necessitates data transfers between the
GPU and the system memory, leading to performance overheads.
The increased power consumption of GPUs, particularly at
peak operations, also adds to operational costs [14]. Beyond
these challenges, HyperSpec is also dependent on general-
purpose libraries, offering two flavours of clustering algorithms:
DBSCAN via the cuML library and HAC using the fastcluster
library, targeting both GPU and CPU platforms, respectively.

Another critical bottleneck in MS clustering tools is the
spectra loading and preprocessing step, which notably consumes
a significant portion of the total execution time [15]. The

escalating growth of MS data poses a substantial challenge to
current clustering solutions, methods reliant on CPU and GPU
architectures, making repository-scale clustering increasingly
impractical. In contrast, FPGA architectures, being well-suited
for scalable and power-efficient solutions, can be custom-
configured to specific applications, enhancing data handling
and minimizing transfer overheads. Given these challenges,
there is a recognized need for near-storage (NS) computing
in efficient MS clustering, merging high-quality results with
computational efficiency.

III. METHODOLOGY AND FLOW

Our end-to-end HD-based framework delineates three critical
stages: MS preprocessing, MS encoding, and MS clustering.
A specialized NS framework, MSAS [15] has been employed
to enhance performance during MS preprocessing. Both the
HD encoder and our novel NN-chain HAC accelerator (Fig.5)
for MS clustering are seamlessly integrated within the FPGA
architecture. Two distinct strategies guide our approach: 1)
A comprehensive end-to-end framework, echoing established
clustering tools. Within this framework, raw data undergoes
preprocessing in the near-storage accelerator, subsequently
leveraging direct peer-to-peer (P2P) transfers to the FPGA.
The encoded output then utilizes the High Bandwidth Memory
(HBM) to harness its vast bandwidth, laying the groundwork
for the acceleration of clustering kernels. 2) An efficiency-
driven strategy within the HDC framework: raw data is encoded
once, and the preprocessed encoded spectras directly interface
the clustering kernels (via P2P). This method is chosen over
recurrently initiating the computational pipeline, advocating
for a one-time preprocessing followed by subsequent updates,
effectively bolstering real-time data analysis.

Fig. 2: Top-level dataflow and Kernel organisation

A. Proposed MS Preprocessing Module

In the vast landscape of MS tools, modules such as the Spectra
Filter, Top-k Selector, and Scale and Normalization emerge as
standard features in MS preprocessing [2], [6] and are integral to
MSAS [15]. While the U280 Xilinx Alveo platform prominently
supports these functionalities, their synergy with MSAS remains
relatively unexplored. The activation of P2P holds a distinct
strategic advantage: it enables direct data exchanges between the
FPGA and NVMe storage, bypassing the need for intermediary
host memory interactions and thereby reducing bandwidth
constraints. This feature is also applicable to other Alveo
PCIe platforms, contingent upon the host system’s ability to
support a large physical address space (64GB BAR) [16]. The
MSAS accelerator, implemented using CMOS technology, is


