2024 Design, Automation & Test in Europe Conference (DATE 2024)

SpecHD: Hyperdimensional Computing Framework
for FPGA-based Mass Spectrometry Clustering

Sumukh Pinge*, Weihong Xu*, Jaeyoung Kang*, Tianqi Zhang*, Niema Moshiri*, Wout Bittremieux', Tajana Rosing*

*University of California San Diego, La Jolla, CA 92093, USA
{spinge, wexu, j5kang, tiz014, almoshir, tajana} @ucsd.edu
TUniversity of Antwerp, 2000 Antwerpen, Belgium
wout.bittremieux @uantwerpen.be

Abstract—Mass spectrometry-based proteomics is a key enabler
for personalized healthcare, providing a deep dive into the complex
protein compositions of biological systems. This technology has
vast applications in biotechnology and biomedicine but faces
significant computational bottlenecks. Current methodologies often
require multiple hours or even days to process extensive datasets,
particularly in the domain of spectral clustering. To tackle these
inefficiencies, we introduce SpecHD, a hyperdimensional comput-
ing (HDC) framework supplemented by an FPGA-accelerated
architecture with integrated near-storage preprocessing. Utilizing
streamlined binary operations in an HDC environment, SpecHD
capitalizes on the low-latency and parallel capabilities of FPGAs.
This approach markedly improves clustering speed and efficiency,
serving as a catalyst for real-time, high-throughput data analysis
in future healthcare applications. Our evaluations demonstrate
that SpecHD not only maintains but often surpasses existing
clustering quality metrics while drastically cutting computational
time. Specifically, it can cluster a large-scale human proteome
dataset—comprising 25 million MS/MS spectra and 131 GB of
MS data—in just 5 minutes. With energy efficiency exceeding
31x and a speedup factor that spans a range of 6x to 54x over
existing state-of-the-art solutions, SpecHD emerges as a promising
solution for the rapid analysis of mass spectrometry data with
great implications for personalized healthcare.

Index Terms—Mass spectrometry, Proteomics, Spectral Cluster-
ing, HD computing, FPGA, Personalized Healthcare.

I. INTRODUCTION

Mass spectrometry (MS) is a cornerstone technique in
proteomics research, holding a pivotal role in the advancement
of personalized medicine. At its essence, MS offers an intricate
view into protein compositions, enabling researchers to dissect
the protein compositions of various biological samples. Such
insights are foundational to tailoring medical treatments to
individual patients, harnessing the specificity of their molecular
profiles. With the progressive evolution of MS technologies,
there has been a significant surge in data production, with
monthly datasets reaching terabytes. Repositories like MassIVE,
holding over 500TB of data as of September 2023, exemplify
this growth and hold the potential to revolutionize personalized
medicine through the discovery of patient-specific biomarkers
[1]. However, the intricacies of MS data go beyond volume,
encompassing a transformation process that converts a biological
sample into digital spectral representations (Fig. 1). This data is
subsequently structured into digital formats, such as mzML, mgf,
etc. In these formats, m/z ratios are paired with ion intensities,

turning spectral peaks into vectors that are well-suited for
database searching [2], [3], a task similar to pattern matching in
personalized drug discovery datasets. This step matches observed
spectra with known peptide sequences, identifying proteins in the
sample and bridging raw data to biologically relevant insights.
In personalized healthcare, this identification aids in pinpointing
disease-specific biomarkers and precise treatment interventions.

Fragmentation

Aisuayu|

m/z values

Spectra Clustering BEGIN IONS

DBSearch

H
: : [ren]
| (oo] []}
] L]| 0 | :
i i }
HomsTC |} 0 SeeeeesmEEEEEEEEmeeeaed
H
H
HyperOMs ,'

Fig. 1: MS data-analysis pipeline

Despite the prowess of MS, the sheer volume of spectra gener-
ated in typical MS experiments poses significant computational
challenges, especially in tasks like spectral clustering. In MS/MS
spectra, clustering groups alike data into representative consen-
sus spectra. This streamlining not only cuts redundancy and
expedites database searching, a major bottleneck in proteomic
analysis, but also refines the peptide identification process,
potentially halving its runtime [4]. In personalized healthcare
settings, the benefits of clustering are evident as expedited
data analysis directly impacts the quality and timeliness of
patient care; however, despite its advantages, spectral clustering
remains underutilized due to its time-consuming nature and
limitations of current tools. In response, we present SpecHD,
rooted in HDC principles. Designed for FPGA-accelerated MS
clustering, SpecHD integrates the HD representation to ensure
streamlined binary operations, efficiently harnessing the FPGA’s
parallel processing, low-latency, and robust computational
capabilities. Moreover, it adeptly addresses the often-overlooked
computational demands of data preprocessing in MS workflows.
The salient features of SpecHD’s contributions to MS data
processing include:

1) To the best of our knowledge, SpecHD is the first to
implement the linkage agnostic Nearest-neighbor Chain
Hierarchical Agglomerative Clustering (HAC) using FP-
GAs. This strategic alignment within the HDC framework

979-8-3503-4859-0/DATE24/© 2024 EDAA

boosts MS clustering speed by 6-54x [5], [6], achieving
an energy efficiency 31x greater than current benchmarks.

2) With SpecHD, we synergistically blend near-storage MS
preprocessing with FPGA capabilities. Guided by design
space exploration, this approach advances hardware and
energy efficiency while achieving a 3-10x preprocessing
speed up compared to [5], enabling seamless data ex-
changes between the FPGA and NVMe storage.

3) Deviating from conventional tools and leveraging the HD
space, SpecHD uses an innovative approach with stream-
lined preprocessed spectral data, accelerated clustering, and
emphasizes superior clustering quality and database search
efficiency over other MS solutions.

II. RELATED WORKS

MS clustering presents unique challenges compared to tradi-
tional methods due to its high-dimensional and noisy spectral
data. Each MS spectrum holds hundreds to thousands of intensity
values, emphasizing the need for specialized algorithms attuned
to such complexities. Both PIM [7] and FPGA-based solutions,
as well as HD computing methods, lean towards K-means
[8], [9] and DBSCAN [10], with Hierarchical clustering often
overlooked despite its potential. In our MS clustering analysis,
we observed the shortcomings of K-means and DBSCAN. In
contrast, HAC [11] with complete linkage excelled, offering
versatility in cluster shapes, cluster counts, and outlier resilience,
proving uniquely suited for MS data nuances [12].

MS clustering solutions face the dual challenge of max-
imizing clustering quality while minimizing computational
time. MaRaCluster [12] uses optimized distance metrics for
better clustering quality. Falcon [13] employs hashing for
dimensionality reduction and leverages approximate nearest
neighbor algorithms for faster computations. MsCRUSH [4]
utilizes locality-sensitive hashing to minimize pairwise spectra
comparisons, while GLEAMS [6] uses a supervised deep neural
network to embed spectra for optimized clustering. However,
these approaches often make trade-offs between quality and
speed. Bridging the gap between previous methods, HyperSpec
[5] stands out as the state-of-the-art (SoA) tool, establishing
as our primary point of comparison due to its remarkable
speed and commendable clustering performance. HyperSpec
employs HDC and, by harnessing GPU acceleration, achieves
leading results in speed while preserving the clustering quality.
However, a significant concern with HyperSpec and other
GPU-based solutions is when datasets surpass the GPU’s
onboard memory capacity. This constraint inhibits efficient data
processing and frequently necessitates data transfers between the
GPU and the system memory, leading to performance overheads.
The increased power consumption of GPUs, particularly at
peak operations, also adds to operational costs [14]. Beyond
these challenges, HyperSpec is also dependent on general-
purpose libraries, offering two flavours of clustering algorithms:
DBSCAN via the cauML library and HAC using the fastcluster
library, targeting both GPU and CPU platforms, respectively.

Another critical bottleneck in MS clustering tools is the
spectra loading and preprocessing step, which notably consumes
a significant portion of the total execution time [15]. The

escalating growth of MS data poses a substantial challenge to
current clustering solutions, methods reliant on CPU and GPU
architectures, making repository-scale clustering increasingly
impractical. In contrast, FPGA architectures, being well-suited
for scalable and power-efficient solutions, can be custom-
configured to specific applications, enhancing data handling
and minimizing transfer overheads. Given these challenges,
there is a recognized need for near-storage (NS) computing
in efficient MS clustering, merging high-quality results with
computational efficiency.

III. METHODOLOGY AND FLOW

Our end-to-end HD-based framework delineates three critical
stages: MS preprocessing, MS encoding, and MS clustering.
A specialized NS framework, MSAS [15] has been employed
to enhance performance during MS preprocessing. Both the
HD encoder and our novel NN-chain HAC accelerator (Fig.5)
for MS clustering are seamlessly integrated within the FPGA
architecture. Two distinct strategies guide our approach: 1)
A comprehensive end-to-end framework, echoing established
clustering tools. Within this framework, raw data undergoes
preprocessing in the near-storage accelerator, subsequently
leveraging direct peer-to-peer (P2P) transfers to the FPGA.
The encoded output then utilizes the High Bandwidth Memory
(HBM) to harness its vast bandwidth, laying the groundwork
for the acceleration of clustering kernels. 2) An efficiency-
driven strategy within the HDC framework: raw data is encoded
once, and the preprocessed encoded spectras directly interface
the clustering kernels (via P2P). This method is chosen over
recurrently initiating the computational pipeline, advocating
for a one-time preprocessing followed by subsequent updates,
effectively bolstering real-time data analysis.

W orcripsuter ||

3284133U1 SNAN / 31Dd

MSAS-enabled SSD

Fig. 2: Top-level dataflow and Kernel organisation

A. Proposed MS Preprocessing Module

In the vast landscape of MS tools, modules such as the Spectra
Filter, Top-k Selector, and Scale and Normalization emerge as
standard features in MS preprocessing [2], [6] and are integral to
MSAS [15]. While the U280 Xilinx Alveo platform prominently
supports these functionalities, their synergy with MSAS remains
relatively unexplored. The activation of P2P holds a distinct
strategic advantage: it enables direct data exchanges between the
FPGA and NVMe storage, bypassing the need for intermediary
host memory interactions and thereby reducing bandwidth
constraints. This feature is also applicable to other Alveo
PCle platforms, contingent upon the host system’s ability to
support a large physical address space (64GB BAR) [16]. The
MSAS accelerator, implemented using CMOS technology, is

integrated into the same die as the SSD’s embedded cores.
By being on the same die, the MSAS accelerator can directly
interface with the global on-chip bus, granting immediate access
to data from NAND flashes. This approach empowers it to
achieve bandwidths on par with external SSDs, paving the
way for faster, more efficient preprocessing of large-scale MS
datasets. Within MSAS, the Spectra Filter module plays a pivotal
role by filtering out peaks associated with the precursor ion
or those with intensities falling below 1% of the base peak,
preparing the ground for the Top-k Selector, which employs
a streamlined parallel bitonic network. This design minimizes
data movement overhead, filtering redundant spectral data early
in the preprocessing, thereby promoting efficiency and optimal
handling of expansive MS data. Evaluations and advantages of
this approach will be elaborated upon in Section IV.

(D

bucket; — {(m/zl — 1.00794) X CiJ
resolution

In the context of large-scale datasets, naive approaches
to pairwise spectrum comparisons can rapidly escalate into
computational bottlenecks, especially given the constraints of
on-chip memory. To mitigate this, we adopt a data organization
strategy based on precursor m/z. To manage the computational
complexity, we partition the dataset [13] into smaller, discrete
‘buckets’ calculated as in Eq. 1. Here, C; represents the charge
state of the i*" spectrum and 1.00794 is the mass of the charge.
The term ‘resolution’ is used to describe the granularity of
the mass spectrometer’s measurements, and this value can
range from 0.05 to 1. Such an approach proves advantageous
for high-throughput MS spectrometers, optimizing the use of

computational resources.

B. Proposed MS-spectra Encoder

Each spectrum comprises two vectors corresponding to the
m/z ratios and intensities, both sized by peak_count. Our
aim is to efficiently encode these spectra into a single high-
dimensional vector of size Dy, using a method that has been
proven effective for MS workloads in the HD domain due to its
capability to maintain spatial locality [2], [5]. For this purpose,
m/z values are quantized to a range represented by ID[0,],
and intensity values to L [0, g]. Both vectors, pre-allocated
from high-dimensional memory spaces, have a size of Dy,. For
each pair of m/z and intensity values, bitwise XOR operations
are performed on the corresponding vectors from ID and L. The
results are successively accumulated into a single vector until all
peak_count pairs have been processed. A pointwise majority
function is then applied to this aggregated vector, culminating
in a refined binarized spectrum hypervector:

spectra; = Z(I,» ® Lj)
(4,.9)

To accelerate the encoding process, the module employs sev-
eral hardware-level optimizations designed for FPGA platforms.
Specifically, data partitioning directives are applied to the ID
and Level memory arrays via HLS pragmas. This allows
for simultaneous multiple accesses to these arrays, thereby

2)

facilitating loop unrolling within the hd_encoding function.
In turn, this minimizes the initiation interval, leading to a
significant boost in data throughput. Loop unrolling, enhanced by
HLS pragmas, drives parallel processing across peak_count.
The resultant HD vectors are stored in High Bandwidth Memory
(HBM), capitalizing on its massive bandwidth to optimize
both memory access and retrieval speeds for the succeeding
processing of clustering kernels. Moreover, this optimization
compresses our substantial 131GB raw MS dataset down to a
streamlined 5GB, as depicted in Fig.(8b). This compact data is
efficiently stored in the device’s HBM (8GB) for utilization in
both previously outlined strategies.

— #pragma HLS #pragma HLS
— ARRAY_PARTITION A—| UNROLL =
spectia 1] on (L ese ITLITVINY]
w2 [T T TTTTTTITY ,® =
ID Memory @ —
(T - (@ H
of [I1L el HTITEL ° —
Rl — © 2 [oitwe -
R . ® maiority /(&
eee ERILICInniid —
3 Level Memory @]l
s B M= 8); F
4 - i D P ncode
2 R g

Fig. 3: Proposed HLS optimized spectra encoder

C. Kernel-Level Acceleration for NN-Chain HAC:

HyperSpec [5] represents a significant advancement in MS
clustering, yet its dependency on general-purpose libraries and
architectures might not optimally tap into the unique strengths
of FPGA, especially in terms of parallel processing and real-
time capabilities. Classic HAC algorithms face computational
bottlenecks due to their O(n?) time complexity. These algo-
rithms require full matrix updates to calculate pairwise distances
between all data points and to identify the minimum distance
among all pairs. Addressing these challenges, in a pioneering
advancement, SpecHD is among the first to implement the
linkage agnostic NN-Chain HAC using FPGAs. Although the
foundational concept of the algorithm exists [11], our unique
contribution is in its adaptation for FPGA architectures.

Calc PW dist.
(5 oo
‘9" G Q‘ 'G Find MIN
o ©0 () { DG
© () ©
G G @ o Recalc PW dist.
G 6 o @ G EFCDGBA e Repeat 2-5.
E (5] B [b) @ coicrwaist
o ©o OG0 /L .
PE ©®© ° D e
[P o) N Qe
@ CDGBA o Repeat 2-5.

Fig. 4: Naive (above) and NN-chain (below) HAC comparison

The algorithm starts by calculating pairwise distances, akin to
traditional methods, but streamlines the following computational
steps. The NN-Chain algorithm constructs a local ‘chain’ of
closest points and evaluates this chain to identify Reciprocal
Nearest Neighbors (RNN) [11]. Upon identifying an RNN pair,
the clusters are merged, and the distance matrix is updated more
efficiently, avoiding the need for a full matrix update (Fig. 4).

This targeted approach minimizes redundant calculations and
makes NN Chain well-suited for large-scale, data-intensive
tasks without compromising clustering quality. Our architecture
capitalizes on the robust and adaptable nature of the NN-Chain
Algorithm for hierarchical agglomerative clustering (HAC). It is
important to note that HAC is inherently sequential with deep
dependencies. However, in our approach, we made dedicated
efforts to maximize parallelization and enhance optimization. By
exploiting the FPGA’s intrinsic parallel processing capabilities,
our proposed HLS-optimized kernel (Fig. 5) serves as the
computational core, parameterized to operate on diverse data
structures and design configurations.

distance
matrix

0
1
2
Accelerated 3
4
5
N

computations

Calculate
Consensus

[TT1

— ! thres<® Cluster Merg i
H’ ! x | !

Encoded | :::>-Clusler f =, e !
——— Update ! 1

spectra = P !E, My s 6 ox .o x |
bucket ﬂ ﬂ 1 Y 1
N 1

Clusters Tz‘lrestm'd m !

BRAM usters i

saw | GLD]

i) g Y 1 I S O

012345.N i

|

Unkage 2 3 12 I S 3

|

|

|

i

i

i

i

i

1

|

|

'
'
1
1
1
'
'
1
1
1
Distance Matri ﬂ : Jl
'
1
1
1
1
'
'
!
!

EFCDGBA

while (num_valid_clusters > 1)

Fig. 5: Proposed FPGA-accelerated NN-Chain HAC architecture

Optimized Distance Matrix Computation: The architecture
incorporates specialized modules, including a fast unrolled
XOR and an efficient population count (popcount) module,
both parameterized for Dy, bits of dimensionality. A dataflow
approach is employed, facilitating task-level parallelism by
enabling concurrent execution of both reading the encoded
spectra and calculating distances, thereby boosting the efficiency
of spectra processing and accelerating the computation of
the distance matrix. Due to the inherently O(n?) nature of
the distance matrix, which demands significant storage, only
the lower triangular part of the distance matrix is retained,
capitalizing on its symmetry. Furthermore, the use of 16-bit fixed-
point arithmetic results in a significant reduction in memory
footprint while maintaining computational accuracy.

Proposed NN-Chain HAC Architecture (Fig. 5): The
process begins by selecting an arbitrary point and calculating its
minimum distance to all other points based on a linkage distance
matrix. Both the selected point and its nearest neighbor are
initially added to a stack. As the algorithm iterates, new elements
are added to this stack based on the smallest distance criterion
until a reciprocal nearest neighbor is identified. Specifically,
if the last index in the stack matches the index of the current
minimum distance, the algorithm proceeds to cluster merging
and updates the distance matrix.

The algorithm manages two separate sets of clusters. One
set, stored in Cluster BRAM, is subject to the exhaustive tree
traversal, as local chains cannot always be guaranteed to fall
under a predefined distance threshold. Other set only merges if
the inter-cluster distance is below this threshold. Each cluster
is comprised of three components: element count, the elements,
and a correction factor (CF) for adaptive adjustments. Upon
identifying an RNN, clusters merge based on their indices

by folding the second cluster into the first, updating both
their elements and total count. A deleted cluster is effectively
removed from future traversals, and its position is replaced by
the next cluster in the array. CF’s are used to dynamically
synchronize these cluster updates. Following each cluster
merge, the distance matrix is updated based on the chosen
linkage criteria. Our flexible architecture, supporting various
linkage criteria like Ward, single, and complete linkage, has
demonstrated that complete linkage yields the most reliable
results in our implementation. In the concluding steps, the
algorithm calculates a consensus cluster by evaluating the lowest
average minimum distance to all other spectra within that cluster,
based on the original distance matrix. Various optimization
techniques, such as memory partitioning and pipelining, are
deployed to maximize computational efficiency and throughput.
These features make our NN-Chain architecture a robust and
adaptable solution for FPGA platforms.

IV. RESULTS

In our experimental setup, we utilized the Xilinx Alveo
U280 Data Center Accelerator Card, featuring an HBM2 total
capacity of 8GB and a bandwidth of 460GB/s. For our SoA
benchmarking, our setup includes a server with a 12-core CPU,
128GB DDR4 memory, and a 2TB NVMe solid-state drive. An
NVIDIA GeForce RTX 3090 GPU with 24GB RAM was chosen
for a comparative evaluation of SoA GPU tools. We conducted
extensive design space exploration for the SSD-level MSAS
accelerator during our preprocessing phase, specifically targeting
both speed and energy optimization. In terms of software tools,
HypersSpec [5] served as the SoA GPU tool, msCRUSH [4]
represented the SoA for CPU solutions, falcon [13] was
acknowledged for SoA in cluster sizes, and GLEAMS [6] was
considered for its leading clustering quality. To evaluate the
robustness of our approach, we selected datasets intended to
highlight the effects of varying sizes and intrinsic character-
istics. As seen in Table I, PXD001468 and PXD001197 have
comparable spectra counts, but their size disparity underscores
the variations within datasets. Such variations can arise from
disparities in the number of data points within individual spectra
or distinct noise characteristics. Evaluating our preprocessing
and clustering modules across these differences offers deeper
insight into its overall performance.

A. Clustering quality

The largest dataset used for clustering quality evaluation
was the Human Proteome Draft dataset, with corresponding
spectrum identifications obtained from the MassIVE reanalysis
RMSV000000091.3 using MS-GF+ [17] and matched against
the UniProtKB/Swiss-Prot human reference proteome.

1) Clustered Spectra vs. Incorrect Clustering Ratio: Fig. 6
illustrates the balance SpecHD achieves between clustered
spectra ratio and incorrect clustering ratio (ICR). The efficacy
of a clustering algorithm can be gauged by its ability to achieve
a high clustered spectra ratio while maintaining a low ICR
(~1-2%). A robust algorithm ensures high fidelity in results
without being overly aggressive, as aggressive clustering may
compromise the quality of analyses. SpecHD’s performance

Area of Interest

wh' SpecHD

-@- HyperSpec

~®- GLEAMS

-@- falcon

@~ msCRUSH

~@- MaRaCluster

~@- spectra-cluster
MsCluster

~@- HyperSpec-DBSCAN

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Incorrect Clustering Ratio

Fig. 6: Clustered spectra ratio vs incorrect clustering ratio

Clustered Spectra Ratio
o
Y

was benchmarked against 9 other tools. With an ICR target of
1%, crucial for maintaining the integrity of downstream analyses,
SpecHD achieved an impressive clustered spectra ratio of 45%.
This result surpassed tools like msCRUSH [4] and falcon
[13], and stood firm against HyperSpec’s 48% [5] and
MaRaCluster’s 44% ICR [12]. Although GLEAMS [6] offered
superior ratios, it required considerably more computational
effort. In comparison, SpecHD boasted a 54x speedup over
GLEAMS. This highlights SpecHD’s ability to balance speed and
accuracy, evidenced by its 1.5-2x speedup in spectra searching
by eliminating redundant searches (ICR = 1-2%).

2) Peptide Identification Overlap: Clustered consensus spec-
tra, which are vital for unique peptide sequence identification
in database searches, can be effectively visualized using Venn
diagrams. Benchmarking against PXD000561 dataset, SpecHD
displayed promising results: a narrow gap of 1.38% behind
GLEAMS [6] for peptides with a 2+ charge, while outshining
HyperSpec [5] by 7.33%. For 34 charge, SpecHD lagged
GLEAMS by 3.24% but surpassed HyperSpec by 5.10%. This
indicates SpecHD’s prowess in balancing both performance
and clustering quality. Further insights into SpecHD’s metrics
revealed its completeness metric at 0.82, a touch beneath the
usual 0.85 seen in other tools. This tradeoff allows SpecHD
to identify a broader range of unique peptides, reinforcing its
potential for comprehensive human proteome studies.

() Charge 2 (b) Charge 3

SpecHD HyperSpec SpecHD HyperSpec

4532 1232

6294 1340

417270
37008

214806

5837 16405 3773

GLEAMS

Fig. 7: Overlap of identified unique peptides

GLEAMS

B. Data Compression & Design Configurations

Preliminary tests assessed the best linkage criteria for HAC
within our SpecHD NN-Chain FPGA algorithm. Complete
linkage was dominant with a 44% clustering ratio and a 0.764
completeness score, followed closely by Ward linkage at 40%
and 0.756, whereas single linkage trailed behind. For data
compression, Dy, = 2048 played a crucial role to maintain
a balance of accuracy and utilization, resulting in compression

Space (GB, Log Scale)

Number of Points.

00 00 101
mm Complete mmN Single mES Ward

(a) Linkage Comparison

(b) Compression factor

Fig. 8: Linkage Efficacy and Compression-SpecHD

rates ranging from 24x to 108x across datasets. While we
expedited certain aspects of the HAC, achieving significant
speedup necessitated deploying multiple kernels, helped by
the lack of intra-kernel dependencies. The integration of these
additional clustering kernels allowed a linear speedup. However,
adding more kernels also brought about routing challenges,
underscoring the balance between parallelism, speed, and FPGA
resource constraints. Presented in Fig.2, our setup, which
comprises one encoder and five clustering kernels, registered a
LUT usage of 44.97% and a BRAM utilization of 55.26%.

Resource Utilization @147MHz

Configurations Parameter
linkage_criteria complete
(% 0.27
Dy, 2048
Q 16
F 4096
max_peak_count 50
0 20 40 60 80 100
Utilisation (%) max_cluster_size 300

(a) Resource Utilization (b) Design Setup

Fig. 9: Design parameters and insights

C. SpecHD vs State-of-the-art solutions

1) Pre-processing Results: To quantify the efficiency of
our preprocessing module, we evaluated it across five different
datasets, as shown in Table I. The hardware setup and config-
urations are based on an Intel SSD DC P4500, and we have
emulated the setup as described in [15]. Energy estimates are
derived from combining SSD simulation data with the SSD
power model referenced [18]. For MS clustering, HyperSpec
[5] establishes the preprocessing benchmark by employing
multiprocessing to concurrently process files across k distinct
CPU cores. We observe a speedup ranging from 3.4-10x over
five diverse data-sets when compared to [5], while also achieving
a considerable reduction in energy consumption—implications
of which will be detailed in subsequent sections.

TABLE I: Preprocessing Performance Metrics

Sample | PRIDE ID Spectra | Size PP time(s) | Speedup [5] | Energy(J)
Kidney | PXD001468 | 1.1M 5.6 GB | 1.79 10.0x 17.38
Kidney | PXDO001197 | 1.IM 25GB | 822 4.2x 77.27
HeLa PXD003258 | 4.IM 54 GB | 18.44 4.3x 166.53
HEK293 | PXD001511 | 42M 87 GB | 28.53 3.4x 268.22
Human | PXD000561 | 21.1M | 131 GB | 43.38 8.9x 382.62

2) Speedup comparisons: In the field of MS-based pro-
teomics, the efficiency of spectral clustering tools is critically
measured by runtime, which becomes increasingly important
as MS repositories continue to expand. With this in mind, we
delve into an end-to-end runtime comparison between SpecHD
and several other comparative tools. Across five datasets (Table

60,
53.5x

Relative Speed Up

PXD001468

PXD003258

PXD001197 PXD001511 PXD000561

W Spec-HD mmm msCRUSH WM falcon WEE GLEAMS

Fig. 10: End-to-end runtime speedup

W HyperSpec

I), SpecHD achieves remarkable speed-ups, ranging from 31x
over GLEAMS for dataset PXDO0OO1511 to an impressive 54x
for PXDO000561. Against HyperSpec, we note a 6x speed-
up, solidifying SpecHD’s efficiency. Our analysis shows that
FPGA systems like SpecHD offer superior speed with a single
encoder module, outweighing the flexibility of GPU-accelerated
encoding, which allows for on-the-fly reconfigurations.

Relative Speed Up (Log Scale)

N SpecHD WEE HyperSpec NN GLEAMS mEN msCRUSH mmm falcon

Fig. 11: Standalone clustering speedup for PXD000561

Within the HDC framework, restarting the computational
pipeline for every new analysis is inefficient. Instead, a strategy
of one-time preprocessing followed by subsequent updates
enhances real-time data analysis. Leveraging the impressive
data compression metrics, our approach underscores that one-
time preprocessing significantly boosts efficiency. When con-
centrating exclusively on standalone clustering of pre-encoded
vectors, the runtime gains are remarkable. SpecHD processed
PXDO000561 in just 80 seconds, marking a 12.3x speed-up over
HyperSpec’s 993 seconds and a 14.3x advantage over GLEAMS.

40
40.0x

&

5 8
g

rqy Efficiency

S

Total Ener
=

Cluster Energy Efficiency

5 5

2.1x 5 3.2x
1.0x

HS - HAC

1.0x
HS - HAC

Spec-HD

(a) End-to-end clustering

HS - DBSCAN

Spec-HD

(b) Standalone clustering

HS - DBSCAN

Fig. 12: Energy efficiency

3) Energy efficiency: In our assessment, SpecHD’s energy
efficiency was benchmarked against HyperSpec, utilizing
measurement tools such as Intel RAPL for CPU, Nvidia SMI
for GPU, and Xilinx XRT for FPGA. In our evaluation of
benchmarks, we prioritized runtime efficiency as our analysis
indicated that other tools with substantially extended runtimes
inherently consumed more energy, making them less comparable
in this context. Notably, the DBSCAN variant showcases a
runtime three times faster than HAC. However, there’s a trade-
off in clustering quality, as shown in Fig. 6. In the end-to-
end energy efficiency, SpecHD exhibited enhancements of 14x

over HyperSpec-DBSCAN and 31x over HyperSpec—HAC,
while in the clustering phase, the gains were 12x and 40x,
respectively. SpecHD’s performance can largely be attributed
to FPGA’s inherent prowess and its emphasis on NS processing,
which counters data transfer limitations prevalent in conventional
systems. As a result, SpecHD serves as an excellent choice for
applications where energy efficiency is of importance.

V. CONCLUSION

In this paper, we introduced SpecHD, a novel framework
that integrates the strengths of HD computing with FPGA-
accelerated architecture, targeting the current inefficiencies in
mass spectrometry-based proteomics. In-depth evaluations reveal
that SpecHD can efficiently process a vast human proteome
dataset in a mere 5 minutes. It outperforms other tools, achieving
speedups between 6x and 54x, and showcases an impressive
energy efficiency of over 31x, all while retaining the potential
for repository scale clustering. Moving forward, it becomes
imperative to consider further refinements for SpecHD and
contemplate its integration right at the point of data capture
within established proteomics processing workflows.

ACKNOWLEDGMENT

This work was supported in part by PRISM and CoCoSys,
centers in JUMP 2.0, an SRC program sponsored by DARPA
(SRC grant number - 2023-JU-3135). This work was also
supported by NSF grants #2003279, #1911095, #1826967,
#2100237, #2112167, #2052809, #2112665.

REFERENCES

[1] C. A. Ciocan-Cartita et al., “The relevance of mass spectrometry analysis
for personalized medicine through its successful application in cancer
‘omics’,” Int J Mol Sci, vol. 20, no. 10, May 2019.

[2] J. Kang, W. Xu et al., “Massively parallel open modification spectral
library searching with hdc,” 11 2022.

[3] J. Kang et al., “Accelerating open modification spectral library searching
on tensor core in high-dimensional space,” Bioinformatics, Jun. 2023.

[4] L. Wang et al., “mscrush: Fast tandem mass spectral clustering using

locality sensitive hashing,” J. Proteome Res., vol. 18, pp. 147-158, 2019.

W. Xu et al., “Hyperspec: Ultrafast mass spectra clustering in hyperdi-

mensional space,” J. Proteome Res., vol. 22, no. 6, Jun 2023.

[6] W. Bittremieux et al., “A learned embedding for efficient joint analysis of
millions of mass spectra,” Nat Methods, vol. 19, pp. 675-678, Jun 2022.

[71 M. Imani et al., “Dual: Acceleration of clustering algorithms using digital-
based processing in-memory,” in MICRO, 2020.

[8] M. Imani, S. Salamat et al., “Fach: Fpga-based acceleration of hyperdi-

mensional computing by reducing computational complexity,” 2019.

S. Salamat, M. Imani, and T. Rosing, “Accelerating hyperdimensional

computing on fpgas by exploiting computational reuse,” IEEE Transactions

on Computers, vol. 69, no. 8, pp. 1159-1171, 2020.

N. Scicluna et al., “Arc 2014: A multidimensional fpga-based parallel

dbscan architecture,” ACM Trans. Reconfigurable Technol. Syst., nov 2015.

F. Murtagh and P. Contreras, “Methods of hierarchical clustering,” 2011.

M. The and L. Kill, “Maracluster: A fragment rarity metric for clustering

fragment spectra in shotgun proteomics,” JPR., Mar 2016.

W. Bittremieux et al., “Large-scale tandem mass spectrum clustering using

fast nearest neighbor searching,” Rapid Commun. Mass Spectrom., 2021.

A. Pattnaik et al., “Scheduling techniques for gpu architectures with

processing-in-memory capabilities,” in PACT, 2016.

W. Xu, J. Kang, and T. Rosing, “A near-storage framework for boosted

data preprocessing of mass spectrum clustering,” in DAC, NY, USA, 2022.

Xilinx, “Pcie peer-to-peer communication,” 2022, xRT Documentation.

S. Kim and P. A. Pevzner, “Ms-gf+ makes progress towards a universal

database search tool for proteomics,” Nat Commun, vol. 5, Oct 2014.

M. Jung et al., “Nandflashsim: High-fidelity, micro-architecture-aware

nand flash memory simulation,” ACM Transactions on Storage, Jan 2015.

[5

—_

[9

—

[10]

[11]
[12]

[13]
[14]
[15]

[16]
[17]

(18]

