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Abstract—In this paper, we present the SECURED project1,
aimed at improving privacy-preserving processing of data in the
health domain. The technologies developed in the project will
be demonstrated in four health-related use cases and with the
involvement of SME’s selected through an open funding call.

I. INTRODUCTION

The ‘Scaling up secure processing, anonymization and
generation of health data for EU cross border collabora-
tive research and innovation” SECURED project (https://
secured-project.eu/), started in January 2023, aims to enhance
the scalability and efficiency of multiparty computation, data
anonymization, and synthetic data generation, focusing on
private and unbiased artificial intelligence and data analytics.
Specifically addressing challenges in secure multiparty compu-
tation protocols, data anonymization methods for health data,
dynamic on-demand services for synthetic data generation,
federation protocols for machine learning, and support for
health technology providers, SECURED employs algorithmic
improvements and implementation efficiency to scale up pri-
vacy technologies. The project targets well-being, prevention,
diagnosis, treatment, and follow-up care in health-related data,
addressing ethical and legal challenges. SECURED developed
technologies are showcased in four real-world use cases,
including real-time tumor classification, telemonitoring for
children, synthetic data generation for education, and access
to genomic data. SECURED technologies can be further
evaluated by selected SMEs thought a public open call that
will be opened at the end of the second year of the project.

1Funded in part by the European Union (EU), Grant Agreement no.
10109571. Views and opinions expressed are those of the authors and do
not necessarily reflect those of the EU or the Health and Digital Executive
Agency. Neither the EU nor the granting authority are responsible for them.

II. SECURED CONCEPT AND ARCHITECTURE

The SECURED architecture provides a secure and trusted
environment for decentralized, cooperative processing of
health data, employing secure computation, anonymization
(with preemptive de-anonymization assessment), and the cre-
ation of high-quality synthetic data. The vision is to enhance
the sharing of health datasets in Europe by securely connect-
ing EU health data hubs, the health data analytics research
community, e-health SMEs, and end users. The SECURED ap-
proach involves two parallel yet interacting innovation flows:
the data flow and the processing flow, detailed in Fig. 1.

A. Data flow

The SECURED data flow focuses on enhancing data pri-
vacy through anonymization, de-anonymization validation, and
synthetic data generation. The first goal is to enable health
data producers to properly anonymize their datasets using
SECURED’s tools, validated through de-anonymization at-
tacks. The second goal involves augmenting datasets through
privacy-preserving synthetic data generation, ensuring suffi-
cient volume for AI model training and data analysis.

For anonymization, SECURED provides a suite of tools
and an assessment mechanism generating an anonymization
“score” that can intuitively convey the level of protection
offered, allowing data producers to meet specific protec-
tion requirements. If the score falls below a set threshold,
the anonymization process can be adjusted. To evaluate the
usefulness of datasets for AI model training, the volume
of anonymized datasets is assessed. SECURED’s synthetic
data generation techniques help enhance datasets to ade-
quate volumes, combining with unbiasing processes to pre-
vent bias in the final anonymized datasets. The output is
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unbiased, anonymized, actionable datasets stored in data pro-
ducer premises (e.g., EU data hub’s data lakes), registered in
SECURED Innohub Knowledge base and dataset inventory,
accessible to other stakeholders upon request.

B. Processing flow

The SECURED processing flow is focused on scaling up
existing private processing technologies, and designing novel
ones to enable collaborative, privacy-preserving analysis and
processing of health data, without requiring data holders to
share private datasets with other parties. SECURED develops
a secure multiparty computation (SMPC) software library that
supports SMPC-enabled operations for ML/DL (including AI
model training, AI model updating, and AI inference support).
Using this library, stakeholders can adapt their AI-based data
analysis tools using an SMPC transformation process, enabling
the formation of clusters of data producers and processors
that collaboratively compute private datasets without actually
sharing those data. The library supports the training of AI
models using a cluster dataset following a federated learning
paradigm. The federation infrastructure is supported by the SE-
CURED Innohub. The processing flow is aimed at ultimately
allowing Innohub members to contribute to the SECURED
federation with their clusters of AI models (local cluster client
models collaboratively trained through the SMPC-enhanced
Innohub member tools). The produced AI models (aggregated
from various clusters in the federation) are always anonymized
(following a variant of the SECURED data flow) and stored
in the SECURED Knowledge base. These AI models can be
shared with the SECURED Innohub members, thus forming a
“privacy-preserving SECURED marketplace” and can also be
used for the SECURED synthetic data generation mechanism.

C. Innohub

SECURED aims to create and manage a privacy-enhancing
hub, the SECURED InnoHub, that provides tools, services, and
support for the privacy-preserving processing of health data to
stkeholders in the healthcare domain, including researchers,
innovators, health data users as well as EU data Hubs across
Europe. The goal of the hub is to enable stakeholders to
leverage available datasets to perform accurate, distributed
data analytics, while preserving the privacy of the data. The
SECURED Innohub promotes collaboration among parties by
acting as a one-stop collaboration point, for sharing results and
collaboratively building expertise. As the data analytics tech-
nology most widely adopted for health data is machine/deep
learning, the hub focuses the offered tools and services on
enhancing the privacy of ML/DL solutions, including an
SMPC-capable toolbox that can operate in various modes
under a SECURED federation infrastructure. The SECURED
Innohub will bring together providers and consumers of health
data and offer them a trusted, secure and privacy-preserving
environment to research, test their solutions, and collaborate.

III. SECURED PRIVACY-PRESERVING TECHNIQUES

A. Homomorphic Encryption

Homomorphic Encryption (HE) enables functions to be
evaluated on encrypted data. For SECURED, this allows the
inference or training of AI models to be performed while the
confidentiality of the medical data is still guaranteed [1], [2].
We mainly focus on Fully HE (FHE), which allows arbitrary
polynomial functions to be evaluated, and schemes including
BGV [3], BFV [4], and CKKS [5], as well as TFHE [6].

Following the growth of research on HE, a number of open-
source libraries/frameworks have been developed that offer
HE functionality. In SECURED we start from these existing
works, including HElib [7] developed by IBM, SEAL [8]
developed by Microsoft, TFHE [9] an open-source project
that uses Fast Fully Homomorphic Encryption over the Torus,
HEAAN [5] developed by HEAAN CryptoLab [10]. These
libraries support different HE schemes and offer various trade-
offs between speed, memory, data transfer, data represen-
tation, and supported operations. Because of the intrinsic
complexity of HE and the diverse nature of every scheme, HE
libraries/frameworks are mainly focused on solving specific
problems, thus no library can be considered the best overall.
SECURED will provide support for choosing the most suitable
solution for a target problem.

B. Secure Multi-Party Computation

Secure Multi Party Computation (SMPC) techniques rele-
vant to SECURED can be divided into two classes: Garbled
Circuits and Secret Sharing. Garbled circuits [11] allow parties
to compute together with private inputs while minimizing the
risk of private inputs becoming known to other parties. Secret
sharing is based on the idea that a secret can be spread over
multiple shares (thus multiple parties), where all or a majority
of shares need to be combined to retrieve the secret.

A number of frameworks exist for SMPC. The ABY frame-
work [12] allows quick conversion between different data rep-
resentations, which is a challenge in standard SMPC settings.
MP-SPDZ [13] encompasses multiple SMPC protocols and
security models and acts as a unifying tool to benchmark
SMPC protocols against each other. Other implementations
have been designed specifically for privacy-preserving deep
learning with SMPC components, such as Chameleon [14] in a
two-party setting and SecureML [15] with three parties where
SMPC is combined with HE. These works serve as guidelines
of what can be integrated into the SECURED pipeline.

C. Data Anonymization, de-Anonymization and Private Syn-
thetic Data Generation

There is consensus on the benefits of sharing health data for
medical research [16], but it is a complex task that requires
recollection, permissions, and security measures as this kind
of data is sensitive. For this reason, data anonymization, de-
anonymization and synthetic data generation have recently
grown along with Deep Learning techniques, as it provides
a way to remove sensitive personal information and generate
new data that can be used for analysis (as base dataset or for



Fig. 1. The data flow and the processing flow in the SE-
CURED architecture Fig. 2. The architecture of SECURED

data augmentation) as well as for education, as shown in the
use cases.

However, the anonymization and generative techniques are
not perfect in accuracy, usability, and privacy, and are subject
to advanced de-anonymization and re-identification attacks.
Generative models can be improved to create better synthetic
data, and the usability of these methods can be improved, for
example, by providing the user with the ability to condition the
generation with input parameters [17]. Finally, the generated
data should be different enough from the original data so that
it cannot be re-identified with engineered attacks [18]. SE-
CURED will try to address these challenges during the project
to provide good, usable, and secure methods to anonymize and
generate health data.

IV. LEGAL IMPLICATIONS

Techniques for comprehensive data collection, processing,
and sharing activities are underpinned by a legal framework
that addresses data and privacy protection, AI, cybersecurity,
and medical devices. The European Commission has set up
a strategic approach for data. It is recognized that data is
pivotal for innovation in a data-agile health economy, but it
is crucial that the handling and processing of patient data is
maintained under the relevant rules and principles at different
jurisdictional levels. In healthcare, the right to privacy and
data protection is shaped by a multitude of hard-law and
soft-law frameworks, including the European Convention on
Human Rights and the Council of Europe’s Convention for the
Protection of Individuals concerning the automatic processing
of personal data. Some aspects needs to be further clarified.

For instance, the status of whether SMPC anonymizes or
pseudonymizes data remains unclear. ENISA, for instance,
categorizes SMPC as a pseudonymization technique. Despite
securing input data, there is a potential risk that the generated
output could reveal personal information if the input data itself
contains personal data. In addition, with synthetic data, it is
debated where synthetic data transitions from being personal
to non-personal. The European Data Protection Supervisor
(EDPS) recommends privacy assurance assessments to deter-
mine the extent to which data subjects can be identified when
dealing with synthetic data.

To ensure the safeguarding of patient health and safety,
the EU has introduced the In Vitro Diagnostic Regulation
(IVDR) and the Medical Devices Regulation (MDR). These
frameworks establish safety requirements and information
technology measures applicable to all medical devices. Soft-
ware, in particular, may qualify as a medical device if intended
for use, alone or in combination, for a purpose specified in the
medical devices regulation. Alongside IVDR and MDR, the
Regulation on Health Technology Assessment (HTA) aims to
harmonize health technology assessments across EU Member
States. The HTA is defined as a multidisciplinary, systematic,
and transparent process to evaluate the effectiveness of health
technologies.

V. SECURED PILOTS

A. Real-Time, ultrasound-guided neurosurgery
Functional Ultrasound Imaging (fUSI) is a groundbreaking

neuroimaging technique that visualizes cerebral blood flow,
akin to Functional Magnetic Resonance Imaging (fMRI). In
healthcare, fUSI can revolutionize early diagnosis and treat-
ment of brain diseases, especially during surgery. As a valuable
adjunct to Magnetic Resonance Imaging (MRI) in neuro-
surgery, fUSI compensates for intraoperative brain changes,
enhancing tumor classification and aligning with preoperative
MRI data. However, this co-registration method encounters
two primary limitations: Control-Point Identification and Com-
putational Demands. Concerning the first, control points are
crucial for accurately recalculating the grid upon which the
MRI data is interpolated, however, identifying corresponding
control points in both MRI and fUSI images is challenging.
Concerning the second, updating MRI scans, especially those
with high voxel counts and intricate deformations, is computa-
tionally intensive. To tackle the above problems, we make two
condierations. First, we will use intraoperative, 3D, ultrafast-
Doppler ultrasound imaging to guide the MRI realignment
process.Second, we will use an HPC cluster that can update the
MRI scans in real time during the operation. We will use state-
of-the-art HE technology to ensure that MRI data is securely
stored on the cluster and that the interpolation/regridding, and
the multimodal data (MRI & fUSI) fusion, is only performed
using encrypted MRI data without compromising its privacy.



B. Telemonitoring for children

Cancer centres have increased their use of telehealth as part
of the cancer care delivery continuum . Patient-centered cancer
care includes high level of decentralization and broadens
precision medicine from “the right treatment, for the right
patient, at the right time” to include “in the right place”. The
ability to undergo chemotherapy treatment at home without
jeopardising patient safety is a main line of innovation in
oncology departments. The development of models based on
clinical data sets from patient telemonitoring demands novel
techniques that ensure data security. SECURED tools for
federated learning and scientific data synthesis, as well as
reduced computing costs, are critical to meeting clinicians’
expectations. In addition to these promising lines of research,
the incorporation of wearable and tracking devices as part
of the telehealth experience is already emerging as a future
cancer care model. Ensuring that telehealth platforms can track
these novel technologies will be critical for coalescing data
into the most effective telehealth visit possible. The tools
in SECURED’s anonymization techniques are also critical to
accomplishing this.

C. Synthetic-data generation for education

Using the SECURED architecture, this pilot will facilitate
the education of doctors by using synthetic data generated
based on patient data. For instance, educators can integrate
ML tools into their daily practice when generating exams,
guaranteeing that questions never repeat. Online education
tools have transitioned to robust learning management systems
(LMS) that offer a wide range of features. As more educa-
tional institutions and learners rely on digital platforms for
remote learning, the access and storage of data have raised
significant challenges. The primary concern lies in how these
platforms handle sensitive information. Balancing the need
for data-driven insights to improve educational outcomes with
safeguarding individuals’ privacy rights is an ongoing chal-
lenge. The SECURED tools directly address these challenges
by enabling the development of privacy-preserving education
environments and consultation platforms tailored for highly
sensitive healthcare data.

D. Access to Genomic Data

The availability of human genetic data has grown signif-
icantly. Examples include the Database of Genotypes and
Phenotypes (dbGaP) and the National Cancer Institute’s (NCI)
Genomic Data Commons. Initiatives have also started national
biobanks, i.e., longitudinal cohorts with data from hundreds
of thousands of volunteers. A famous example is the UK
BioBank, which has led to key discoveries in the genetic archi-
tecture of several diseases. While this trove of information has
extraordinary potential for biomedical research, particularly
when analyzed with AI, several ethical, legal, and technical
barriers currently limit the impact that these data can have.

SECURED tools will be used to overcome several of these
challenges. For example, we will use SECURED’s federated
learning to train models on independent genetic datasets from

several sources. Once this model is successful, researchers
will be able to analyze and train models on genetic data
from different projects without the need to download local
copies of these datasets. Similarly, this could also potentially
allow biobanks to provide access to researchers to the data
to ML models while preserving patient privacy. As part of
this pilot, the limits of patient anonymization using genetic,
environmental, and clinical data will be assessed.

VI. CONCLUSIONS

SECURED aims to increase the efficiency of privacy-
preserving data processing by scaling up multi-party com-
putation, data anonymisation and synthetic data generation.
Focusing on private and unbiased AI and data analytics, it will
demonstrate technologies developed in health-related use cases
like real-time tumor classification, telemonitoring for children,
education, and access to genomic data. SECURED will also
analyse the current ethical and legal challenges associated with
data sharing and privacy-preserving technologies.
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