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Abstract—Deep reinforcement learning (RL) has gained popu-
larity for automatically generating placements in modern chip
design. However, the visual style of the floorplans generated
by these RL models is significantly different from the manual
layouts’ style, for RL placers usually only adopt metrics like
wirelength and routing congestion as the reward in reinforcement
learning, ignoring the complex and fine-grained layout experience
of human experts. In this paper, we propose a placement scorer
to rate the quality of layouts and apply abnormal detection to
the floorplanning task. In addition, we add the output of this
scorer as a part of the reward for reinforcement learning of the
placement process. Experimental results on ISPD 2005 benchmark
show that our proposed placement quality scorer can evaluate the
layouts according to human craft style efficiently, and that adding
this scorer into reinforcement learning reward helps generating
placements with shorter wirelength than previous methods for
some circuit designs.

Index Terms—Floorplan, Reinforcement Leaning, Abnormal
Detection, Placement Scorer

I. INTRODUCTION

As a crucial and time-consuming step in modern chip de-
sign, quality of floorplanning directly affects the routability
in routing stage, time convergence, power supply stability and
yeild rate, etc. Throughout the physical design process, a high
quality floorplan normally brings designs with better power,
performance, and area (PPA).

Series research of automated placer has emerged for the past
few years, however, visual styles of output floorplan images for
previous RL placers [2] [3] [5] have intuitive differences with
that of human experts shown as Fig. 1. Unlike neatly arranged
human layouts, RL placers prefer to place macros on the
center of the canvas, make macros overlapping with each other,
gathering in clusters or mixing up together. While wirelength
metrics of placers surpass the human benchmark in some
samples during the early floorplanning stage, this advantage
fades with the following placement step. To overcome the dif-
ficulty of expressing experts’ layout principles mathematically,
we construct a placement scorer to learn hardware experts’
experience from layout images and to predict floorplan quality
according to the learned human standards.

Our contributions are summarized as follows:
• We adopt Transformer-based abnormal detection model

to learn distribution patterns of normal (manual) data
by feature reconstruction. This work is the first to use
unsupervised abnormal detection in floorplanning task.
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Fig. 1. Different placements of adaptec3 and the corresponding scorers of
floorplan quality scorer.

• We integrate the quality score generated by the trained lay-
out scorer into deep RL-based chip floorplanning training
process to help generate layouts like experts.

• Experimental results show that our proposed method can
evaluate quality of layout and shorten the wirelength in
the placement stage.

II. METHODOLOGY

As shown in Fig. 2, we cast the placement quality evaluation
as unsupervised abnormal detection. Inspired by previous work
[4], we treat different circuits as different classes and assume
that human-crafted placements share similar characteristics so
that they can be considered as the same class of images. we
build a model to capture the distribution of all circuits at the
same time (Fig. 2(a)), and detect anomalies for images of
chip placements (Fig. 2(b)). Finally, the model produces an
abnormal value to quantitatively measure the deviation of the
layout’s style from human standards (Fig. 2(c)).
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Fig. 2. Task explanation of anomaly detection in floorplanning.
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Fig. 3. Overview of RL floorplan framework and transformer-based scorer.

TABLE I
HPWL OF PLACEMENT BY DIFFERENT PLACERS (×107).

Placer ad1 ad2 ad3 ad4 bb bb3

Human 7.28 8.19 19.31 17.38 8.93 30.40
DREAMPlace [1] 12.89 15.27 17.55 28.10 10.38 42.69
GraphPlace [2] 8.67 12.41 25.80 25.58 16.85 46.00
MaskPlace [5] 7.93 9.95 21.49 22.97 9.43 37.29

Ours 8.35 9.59 19.85 20.48 9.74 38.76

Overall Framework. As depicted in Fig.3, our overall deep
RL framework includes a policy network and a reward network,
the latter includes the constructed Transformer-based scorer. In
RL floorplan flow, given a placement coordinate array Ot

a×b

(a and b are the size of the canvas) and a netlist graph H , the
policy network maps them into probability distribution Paction.
An action mask Mt generate available actions probability dis-
tribution, from which an action at is sampled. The architectures
of policy network follows [3].

Transformer-based Scorer. As Shown in Fig. 3, Our
Transformer-based scorer receives the observation of a com-
plete macro placement, converts it into an image, and extracts
feature tokens using EfficientNet-b4. The Neighbor Masked En-
coder (NME) integrates feature tokens and derives the encoder
embeddings, after which the Layer-wise Query Decoder (LQD)
outputs the reconstructed features. The training and testing
framework follows UniAD [4].

Inference results. The localization result s is generated from
the reconstruction differences, and the anomaly value result:
So =

∑W
i=0 s(pi), if s(pi) > τ , where pi is the position of

pixel i, and τ is an empirical constant.

III. RESULTS

We choose ISPD 2005, ISPD 2006, ISPD 2011 and DAC
2012 benchmark suites to construct a new dataset for the scorer.
Placers’ performances are evaluated by six of ISPD 2005.

Transformer-based Scorer. As illustrated in Fig.4, anomaly
localization is represented by a heatmap image. High anomaly
values displayed as colors that near the red in color spectrum.
The ranking of floorplan quality according to the anomaly value
s is different with that sorted by the wirelength metric. Abnor-
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Fig. 4. Anomaly localization and anomaly value results for different place-
ments of bigblue3, wl is HPWL of the mixed-size placement, and s is anomaly
value, ∗ indicates the best performance.

mal value assesses floorplan quality in more comprehensive
perspective.

RL Chip Floorplanning. Table I compares the HPWL re-
sults after placing standard cells using DREAMPlace [1], where
“ad” means “adaptec”, “bb” means “bigblue”. The second-best
and the third-best outcomes are marked with underlines and
double underlines respectively. Our outcomes rank within the
top three, outperform the others except human baseline.
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