
TIPLock: Key-Compressed Logic Locking using
Through-Input-Programmable Lookup-Tables

1st Kaveh Shamsi
Electrical and Computer Engineering Department

University of Texas at Dallas, Richardson, Texas, USA
kaveh.shamsi@utdallas.edu

2nd Rajesh Kumar Datta
Electrical and Computer Engineering Department

University of Texas at Dallas, Richardson, Texas, USA
rajesh.datta@utdallas.edu

Abstract—Herein we explore using logic elements that can be
programmed through their inputs for logic locking. For this
purpose, we design a novel through-input-programmable (TIP)
lookup-table (LUT) element and develop algorithms to find cuts in
the circuit that can be mapped to such elements while maintaining
programmability. Our proposed TIPLock flow achieves area
savings of 50-70% compared to the traditional approach of using
a key-vector-long scan-chain.

Index Terms—Logic locking, circuit obfuscation, Hardware
security, Through-input programmable

I. METHODOLOGY
Logic Locking involves making an original design semi-

programmable to hide its precise functionality from an un-
trusted foundry [1]. This locked design is then config-
ured/unlocked by a secret key post-fabrication.

TIP-LUT. Fig. 1b shows our proposed locking TIP-LUT.
Two programming transistors with programming bits (PBs)
Lp/Ln are added to the tip of the multiplexer (MUX) tree. By
turning one of the programming transistors on, and configuring
the MUX-tree we can program one of the 2n key bits at a
time. Turning both off allows for normal post-programming
operation. Spice simulations of this modified LUT showed only
a slight (<10%) degradation in delay/power compared to the
scan-chain (SC)-LUT in the FreePDK45nm model library.

(a)

A

A
VSS

VDD

VSS

VDD

4T SRAM

2A Anti-fuse

TIP-LUTSC-LUT
VDDP

VSSP

(b)

SC
SC

SCK
ey Scan-C

hain

Fig. 1. a) Scan-chain 2-input (4-configuration bits) LUT with a transmission-
gate MUX-tree where key bits are shifted in through scan-cells SCs (e.g. DFF
with non-volatile storage). b) The TIP-LUT which adds two programming
transistors (Lp/Ln gate signals) to program the key bits. It can be implemented
with SRAM or anti-fuse saving area compared to DFF scan-cells.

Finding TIP-Eligible Cuts. To lock the circuit using the
above TIP-LUTs, fanout-free cones with n inputs (i.e. isolated
n-cuts) in the circuit need to be picked and replaced with
n-input TIP-LUTs. The inputs of these cuts must be able
to take on all 2n different combinations to guarantee full
programmability of internal TIP-LUTs via the circuit’s primary
inputs. Such a cut is called a TIP-eligible cut.

Given a current cut partitioning/assignment for the circuit, we
identify TIP-eligible cuts using several techniques: 1) Simulat-

ing random patterns on the circuit and identifying cuts whose
inputs take on all possible patterns during this process. 2) Using
a SAT solver to check if all 2n input combinations of a cut can
be asserted via the primary inputs. 3) A hybrid approach in
which an initial round of random simulation is followed by the
SAT-based procedure.

Sharing Programming Bits. Given two TIP-LUTs in the
circuit, if they can be fully programmed using a programming
vector sequence, such that at each step, the programming bits
(Lp/Ln) of the two LUTs happen to be the same, then their
programming bits can be merged, saving additional program-
ming structure area. If two TIP-LUTs cannot be programmed
this way, we say that they conflict. We can add all the conflicts
among the TIP-LUTs to a so-called conflict graph. It is possible
to show that the number of distinct programming bit pairs
(called programming domains) that are needed to fully program
all LUTs is the minimum number of colors needed to color this
conflict graph. This is the famous minimum graph coloring
problem which is NP-complete, but for which good heuristic
non-optimal algorithms exist that we utilize here.

As for building the conflict graph, we use two approaches.
First, is a simple structural test: if the two cuts depend on non-
intersecting sets of primary inputs, then they can be controlled
independently, and hence do not conflict.

SAT-based Simultaneous Conflict and Eligibility Mining.
Second, which is a formal approach, is to construct a SAT
problem, that captures attempting to program a target TIP-LUT
in the circuit to a one/zero while landing every other TIP-LUT
in the circuit into a similar one/zero-programming address. If
this problem is not satisfiable, its UNSAT core can be studied to
find the offending cuts, adding them as conflicts, and repeating
the process. If the UNSAT core shows that the current cut itself
is the source of the problem, this suggests that the cut itself
may not be TIP-eligible. Therefore, this SAT-based procedure
can simultaneously identify both conflicts and TIP eligibility.

See Fig. 2 for the overall TIPLock flow.

II. EXPERIMENTS

We implemented our algorithms in C++20 using g++ with
O3 optimization. Tests were run on a 128-thread Threadripper
3990X with 256GB of RAM, with a 2GB-per-thread memory
limit. DFF/MUX cells from the Nangate45nm library were
used for SC/TIP-LUT area calculations. Independent Lp/Ln

were assumed to take up two scan cells (DFFs). ISCAS com-
binational circuits resynthesized to Nangate45nm were used as
benchmarks. neos [2] was used for deobfuscation attacks.

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA 

	



Structurally
independent cuts Need programmability checking with 

SAT queries or random simulation

1) Start with cut-assignemnt
(single gates are trivial cuts)

2) Find TIP-eligible cuts using
structural, simulation, and SAT tests

3) Build conflict graph of TIP-
eligible cuts

4) Minimum-color conflict graph to
get programming domains (colors)

5) Update cut-assignment and repeat

Fig. 2. TIPLock procedure. Identify gates/cuts that are TIP eligible, find conflicts, and minimum color the conflict graph to assign programming domains. The
process can be repeated by making incremental updates to the cut assignment. The simultaneous SAT-based approach merges steps 2&3.

TABLE I
TIP-eligible cut-finding. rt: runtime (seconds), #tip: TIP-eligible cut count and fraction of total gates(=trivial cuts), #pd: number of programming domains.

RandomSim+Structural SAT+Structural Simultanous SAT-based
bench #i/#o #g rt(s) #tip #pd rt(s) #tip #pd rt(s) #tip #pd
c432 36/7 161 0.01 151 (93.8%) 111 (73.5%) 0.03 160 (99.4%) 120 (75.0%) 0.17 160 (99.4%) 58 (36.2%)
c880 60/26 315 0.02 258 (81.9%) 174 (67.4%) 0.08 287 (91.1%) 203 (70.7%) 1.02 287 (91.1%) 118 (41.1%)
c1908 33/25 395 0.04 247 (62.5%) 166 (67.2%) 0.16 283 (71.6%) 202 (71.4%) 1.53 283 (71.6%) 142 (50.2%)
c1355 41/32 452 0.05 246 (54.4%) 132 (53.7%) 0.21 291 (64.4%) 177 (60.8%) 2.06 291 (64.4%) 111 (38.1%)
c499 41/32 464 0.05 258 (55.6%) 154 (59.7%) 0.22 290 (62.5%) 186 (64.1%) 2.02 290 (62.5%) 117 (40.3%)
c2670 157/63 637 0.08 459 (72.1%) 184 (40.1%) 0.31 462 (72.5%) 187 (40.5%) 7.02 462 (72.5%) 109 (23.6%)
c3540 50/22 910 0.29 634 (69.7%) 463 (73.0%) 0.72 634 (69.7%) 463 (73.0%) 15.30 634 (69.7%) 369 (58.2%)
c5315 178/123 1272 0.37 892 (70.1%) 232 (26.0%) 1.18 893 (70.2%) 233 (26.1%) 47.18 893 (70.2%) 163 (18.3%)
c7552 206/107 1532 1.01 1075 (70.2%) 936 (87.1%) 2.17 1081 (70.6%) 942 (87.1%) 46.60 1081 (70.6%) 612 (56.6%)
c6288 32/32 1881 1.73 636 (33.8%) 393 (61.8%) 3.75 636 (33.8%) 393 (61.8%) 62.10 636 (33.8%) 306 (48.1%)

TABLE II
TIPLock area overhead and deobfuscation time. TIP-x% means x percent of TIP eligible cuts (those from the largest programming domains first) were

mapped to TIP-LUTs. #pd/#rc: final programming domain and replacement counts. ao-sc/tip: area overhead (in times) for the SC/TIP-LUTs respectively. dt:
deobfuscation time, #di: number of OG queries. #k: number of keys. kerr: best key error rate (E: correct key via equivalence checking)

perc 20% 40% 80%

bench tip/g #pd/rc #k ao-
sc(x)

ao-
tip(x) dt(s) #di kerr #pd/rc #k ao-

sc(x)
ao-
tip(x) dt(s) #di kerr #pd/rc #k ao-

sc(x)
ao-
tip(x) dt(s) #di kerr

c432 160/161 3/32 78 4.44 1.32 2.83 228 E 11/64 222 13.1 4.46 2.79 118 E 36/128 580 34.9 13.1 TO 90 0.22
c880 287/315 7/57 182 5.12 1.6 1.86 66 E 24/114 444 12.8 4.49 15.2 99 E 76/229 1000 29.0 11.5 TO 33 0.19
c1908 283/395 7/56 168 3.67 1.16 0.38 42 E 27/113 440 9.82 3.59 77.7 197 E 86/226 998 22.5 9.26 TO 33 0.13
c1355 291/452 6/58 170 3.29 1.0 14.9 105 E 15/116 368 7.18 2.29 338.4 132 E 64/232 1028 20.6 7.69 TO 76 0.01
c499 290/464 4/58 162 3.09 0.87 44.8 131 E 15/116 406 7.91 2.52 TO 215 E 67/232 1064 21.1 7.96 TO 76 0.01
c2670 462/637 4/92 252 3.52 0.93 7.6 146 E 15/184 630 9.01 2.64 TO 1633 0.0 65/369 1372 19.8 6.7 TO 191 0.01
c3540 634/910 25/126 462 4.51 1.57 17.4 153 E 71/253 1004 9.88 3.77 150.1 273 E 243/507 2010 19.8 9.23 TO 27 0.34
c5315 893/1272 5/178 462 3.11 0.78 8.03 104 E 20/357 1168 8.06 2.25 88.3 199 E 85/714 2648 18.5 5.76 TO 198 0.0
c7552 1081/1532 30/216 754 4.26 1.37 211.9 398 E 121/432 1698 9.69 3.69 TO 153 0.01 396/864 3410 19.5 8.88 TO 39 0.06
c6288 636/1881 10/127 496 2.16 0.64 TO 39 0.01 27/254 992 4.32 1.33 TO 47 0.04 179/508 2728 12.1 4.68 TO 29 0.4

Locking Performance. Per Table I SAT-based procedures
found the maximum number of TIP-eligible trivial cuts, while
simple random testing surprisingly found on average more than
95% of the same. The simultaneous SAT-based procedure takes
the most amount of time but achieves the lowest number of
programming domains. All locking tasks were completed in
less than two minutes and within the memory limit.

20 40 60
comparator width

10

15

20

25

ar
ea

ov
er

he
ad

20 40 60
comparator width

0

500

1000

1500

2000

ar
ea

SC-LUT
TIP-LUT

TIP-LUT+NoPPShare
orig

Fig. 3. Area overhead (in times) and area (in NanGate45 library units) of
comparators of size 2 to 64 mapped to TIP and SC LUTs. The SC-LUT is
dramatically larger. Program pin sharing (logn domains for n-bit comparators)
has a big impact on area overhead as well.

Deobfuscation and Overhead. Table II shows area over-
heads and oracle-guided (OG) SAT attack times [3] for circuits

locked with varying percentages of TIP-eligible cuts mapped
to TIP-LUTs, with those in the largest programming domains
going first. We can see an overall 50-70% reduction in area
overhead for the TIP-LUT compared to the SC-LUT. Even
small ISCAS benchmarks can overwhelm the SAT attack when
mapping large portions of their gates to (TIP)-LUTs.

Per Fig. 3 we locked point-functions (PF, comparators) [1]
with TIPLock as well. All primitive cuts in a binary comparator
AND-tree are TIP-eligible, and the number of programming
domains is always log n for n-input comparators. When at least
the first XOR layer of the PF is mapped to TIP-LUTs, reliable
exponential query counts (2n for n-bit comparators) plus error
rates higher than single-point PFs were observed under the
oracle-guided SAT attack.

REFERENCES

[1] M. Yasin, A. Sengupta, M. Ashraf, M. Nabeel, J. Rajendran, and
O. Sinanoglu, “Provably-secure logic locking: From theory to practice,”
in Proc. ACM Conf. on Computer & Communications Security, 2017.

[2] neos. http://www.bitbucket.com/kavehshm/neos.
[3] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the security of logic

encryption algorithms,” in Proc. IEEE Int. Symp. on Hardware Oriented
Security and Trust, pp. 137–143, IEEE, 2015.

!

!


	Select a link below
	Return to Previous View
	Return to Main Menu


