
UHS: An Ultra-fast Hybrid Storage Consolidating
NVM and SSD in Parallel

Qingsong Zhu⋆, Qiang Cao⋆ , Jie Yao†
⋆Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology,
†School of Computer Science and Technology, Huazhong University of Science and Technology,

Corresponding Author: caoqiang@hust.edu.cn

Abstract—Non-Volatile Memory (NVM) with persistency and
near-DRAM performance has been commonly used as first-level
fast storage atop Solid-State Drives (SSDs) and Hard Disk Drives
(HDDs), constituting classic hierarchy architecture to achieve
high cost-performance. However, such NVM/SSD tiered storage
overuses primary NVM with limited actual performance and
under-utilizes secondary SSD with increasing bandwidth. Besides,
NVM and SSD exhibit distinguished I/O characteristics, but are
complementary for different I/O patterns. This motivates us to
design a superior hybrid storage to fully exploit NVM and SSD
simultaneously.

In this paper, we propose UHS, an Ultra-fast Hybrid Storage
consolidating NVM and SSD to reap their own merits with key
enabled techniques. First, UHS builds a uniform yet heterogenous
block-level storage view for the upper applications, e.g., file
systems or key-value stores. UHS provides static address-mapping
to explicitly partition the global block-space into coarse-grain
NVM-zones and SSD-zones, which mainly serve the metadata
and file data respectively. Second, UHS presents a fine-grain
request-level NVM buffer to dynamically absorb small file-writes
in runtime and then migrates them to the SSDs in the background.
Third, UHS designs I/O-affinity write allocation and hash-based
buffer indexing to trade off write gain and read cost of the
NVM-buffer. Finally, UHS designs a multi-thread I/O model to
take full advantage of parallelism in both NVM and SSD. We
implement UHS and evaluate it under a variety of workloads.
The experiments show that UHS outperforms SSD, NVM, Bcache-
writeback (representative hierarchy storage), and Device-Mapper
(state-of-the-art hybrid storage) up to 8X, 1.5X, 3.5X, and 6X
respectively.

Index Terms—Hybrid Storage, Non-Volatile Memory, I/O Par-
allelism

I. INTRODUCTION

Non-Volatile Memory (NVM) [1] is considered as persistent
memory blurring the conventional boundary between memory
and storage, attracting extensive attention from both academy
and industry. Traditional storage stack originally designed for
Hard Disk Drives (HDDs) and Solid-State Drives (SSDs) can-
not sufficiently exploit byte-addressability and fast persistency
of NVM. Therefore, recent many works redesign novel data
structures [2], NVM-aware file systems [3] [4], and NVM-
aware Key-Value (KV) stores [5], to make full use of NVM
using byte-accessed interface (e.g., load/store) and dedicated
I/O stack (e.g., PMDK). Mature file systems as EXT4 [6] and
XFS [7] employ direct access (DAX) [8] and memory-map
mechanism.

Meanwhile, SSDs have been evolving to increase both
performance and capacity at a decreasing cost. An intuitive
idea is to combine NVM and SSD to achieve a higher cost-
performance than either of them. Using a classic storage hierar-

(a) Throughput with single thread (b) Throughput with different threads
and I/O Size

Fig. 1: a)Write Throughput vs I/O size ; and b)Write Through-
put vs thread count on Optane Persistent Memory and SSD

chy architecture, fast yet small-capacity NVM absorbs all writes
and most reads as the first-level cache/buffer, while slow but
large-capacity SSDs serve the missed reads and writes evicted
from the NVM in the background. Following this architecture,
recently, tiered file systems, such as Strata [9] and Ziggurat
[10], are designed to buffer hot or recent files in the NVM.

Recent researches and our experiments observe that com-
modity NVM, i.e., Intel Optane DC Persistent Memory Model
[11], exhibits a significant performance advantage only for
small-sized reads/writes compared to NVMe-based SSDs.
However, for large-size writes (more than 128KiB), the fast
SSDs with high internal-parallelism exhibit an almost similar
even higher I/O bandwidth than NVM, as shown in Figure 1(a).
Besides, Figure 1(b) shows that NVM has bounded IO-thread
scalability with a peak write throughput at 4 threads. SSDs have
higher thread-level parallelism and write throughput. Therefore,
NVM does not exhibit a significant advantage in the write
performance over fast SSDs. With the narrowing performance
gap between NVM and SSD, such NVM-SSD hierarchy storage
inevitably overuses NVM but under-utilizes fast SSDs.

To unleash their own potentials simultaneously, this pa-
per proposes UHS, an Ultra-fast Hybrid block-level Storage
consolidating NVM and SSD to serve the upper applications
in parallel. The key idea of UHS is strategically allocate
favorite I/Os to NVM or SSD. To this end, first, UHS offers a
global and uniform block-level storage space for upper storage
software (e.g., file system) upon NVM-zone and SSD-zone
while statically mapping NVM-affinity data (e.g., metadata) to
the underlying NVM-zone. Second, UHS provides an NVM
buffer to dynamically absorb small SSD-targeted writes, and
then migrates them to the SSD. However, this out-of-place write
mode also introduces checking buffer before an SSD-access and
extra migration cost. To address the challenge, UHS designs

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

(a) Throughput of NVM (b) Latency of NVM

Fig. 2: a) Write Throughput vs thread count; b) Latency vs I/O
size on Optane NVM using FIO [12] with libpmem engine.

dynamic NVM-buffer accessing, hash-based buffer indexing,
fast migration, and crash recovery to fully utilize the NVM-
buffer. Finally, UHS provides a parallel I/O-thread scheduling
mechanism to harness the limited parallelism of NVM.

UHS offers a hybrid block-level storage view to hide dif-
ferent I/O accessing characteristics and I/O stacks of NVM
and SSD. This means mature storage software, such as file
systems and KV stores, can be portable to UHS effectively,
thus taking full advantage of both NVM and SSD without major
modification. To the best of our knowledge, UHS is the first
ultra-fast hybrid block-level storage built upon NVM and SSD
in parallel way.

The major contributions of this work are:

• We present a static address-mapping with a unified data
layout but explicitly exposes its NVM block-space, as
well as a dynamic address-mapping to absorb small writes
using the NVM-buffer in runtime;

• We design a parallel I/O scheduling and migration strategy
for full I/O exploitation of NVM and SSD simultaneously;

• We implement UHS and evaluate it under a variety of
workloads. The experiments show that UHS outperforms
SSD, NVM, Bcache-writeback (representative hierarchy
storage), and Device-Mapper (state-of-the-art hybrid stor-
age) up to 8X, 1.5X, 3.5X, and 6X respectively.

II. BACKGROUND AND RELATED WORK

A. NVM and SSD

Non-Volatile Memory (NVM) [1] [?] promises near-DRAM
performance and behavior (byte-addressability) but persistency,
will become an integral part of future superior storage.

However, the experiment on Intel Optane DC Persistent
Memory [11] shows that, its write and read bandwidth in App-
direct mode is about 2.3GB/s and 6.6GB/s respectively, which
is much lower(10x-20x) than the write and read bandwidth of
DRAM. The write bandwidth is even lower than Solid-State
Drive (SSDs) (about 3.5GB/s) when the write size exceeds
128KiB. Besides, NVM has limited I/O parallelism as shown
in Figure 2(a). NVM can reach the peak throughput with
about four threads. When the number of threads increases,
the aggregate throughput even decreases significantly. Besides,
NVM exhibits a remarkable read-write asymmetry where reads
outperform writes by 2∼3X in the I/O delay and throughput.

On the other hand, NAND-based SSDs have been increas-
ing their capacity and performance over last decade, gradu-
ally replacing traditional Hard-Disk Drives (HDDs). Recently,

TABLE I: Characteristics of Representative NVM Storage.
Ext4-DAX NOVA Strata Ziggurat FR UHS

NVM-SSD Hybrid No No Yes Yes Yes Yes
Abstract-Level File System File System File System File System Block Block

Buffer Acceleration No No No Yes No Yes

NVMe-based SSDs exhibit dozens of µ I/O latency and GB/s-
level bandwidth. Certainly, SSDs have inherent drawbacks such
as limited Program/Erase (P/E) cycles, out-of-place updates,
heavy garbage collection (GC), and severe read/write asymme-
try.

In summary, NVM still exhibits superior byte-level accessi-
bility, compared to SSDs and HDDs, as shown in Figure 2(b).
However, for large reads/writes (more than 128KiB), fast SSDs
have a closed even higher throughput. Therefore, NVM and
fast SSD are very complementary in different sized I/Os and
internal parallelism.
B. Related Work

The emergence of NVM reshapes traditional storage I/O
stack. We summarize the characteristic of representative NVM
storage systems in Table I in three dimensions as NVM-SSD
hybrid, abstract-level, and buffering-acceleration. A body of
research to exploit the characteristics of NVM is revising or
redesigning NVM-aware file system, for example, Ext4-DAX
[8] and NOVA [13].

Considering NVM is fast, small and expensive while SSD
is relatively slow, large and cheap, prior works also design
file systems and cache/buffer using NVM-SSD tiered storage.
Strata [9] writes all data directly to the upper-layer NVM, and
then migrates cold data to the large-capacity SSD. Ziggurat [10]
further selectively sends asynchronous or large write operations
to the secondary storage device according to dedicated pre-
dictors. Besides, the First Responder(FR) [14] adds the NVM
as the cache of existing file system to absorb requests at the
topmost layer of the I/O stack.

Bcache [15] is a Linux block-cache and supports fast storage
as cache of multiple slow storages, which is a typical hierarchi-
cal storage architecture. Bcache does not support DAX-mode
and can be only accessed via traditional I/O stacks. Device
Mapper [16] is an address-mapping from logical storage to
physical storage but does not employ NVM directly.

Existing works largely neglect the fact that SSD outperforms
the NVM in large I/O performance and thread-level scalability.
More importantly, the classic storage hierarchy makes NVM
overloaded while the I/O capacity of SSD is largely wasted.
C. Motivation

Note that NVM and SSD have their own favorite I/O patterns.
For example, file-system metadata updates with small size (e.g.,
smaller than 4KiB) are notoriously inefficient for HDDs and
SSDs, but are friendly to NVM. In contrast, large file data
stored upon the SSDs requires cost-performance. However,
existing both NVM-alone and NVM-SSD storage cannot reap
their own merits of NVM and SSD simultaneously without ma-
jor modification for existing storage applications (e.g., mature
file system) .

Nowadays, both NVM and SSD are off-the-shelf and easy to
be installed within a machine. Full exploitation for NVM-SSD
hybrid storage is valuable but still challenging.

!

!

Application

Uniform Block Volume

NVM-zone

3.B.Static Address-Mapping

NVM

SSD-zone

3.C.Dynamic NVM-buffer Accessing

3.D.I/O Thread Pool

SSD3.F.Migrate Thread Pool NVM-buffer

Fig. 3: Architecture of UHS
III. DESIGN

A. Overview

To fully exploit NVM and fast SSD, we propose UHS, a
heterogeneous yet uniform block-level storage layer for existing
storage applications (e.g., EXT4 and key-value stores). The
architecture of UHS is shown in Figure 3. First, UHS provides
Static Address-Mapping for NVM-affinity data of upper appli-
cations. Second, UHS offers an NVM-buffer to conditionally
absorb small SSD-writes by Dynamic NVM-buffer Accessing
mechanism. Third, UHS proposes an I/O-thread scheduling to
decouple user and I/O threads to exploit the internal parallelism
of NVM and SSD in parallel. Last, UHS strategically migrates
all buffered data to the SSDs. Next, we will elaborate on these
techniques.
B. Static Address-Mapping

UHS provides a uniform block space but can statically
map a given block-range to an NVM-zone using predefined
configuration like DM-table, for instance, the NVM-zone from
block 0 to block N in the global space. Existing file systems,
such as Ext4 [6] and F2FS [17], have their specific data-
layout defining the areas of all metadata and file data. For
example, when an Ext4 file system is formatted, its metadata
as Superblock, Block Bitmap, Inode Bitmap, and Inode Table
are deterministic. UHS can simply map its upper file system’s
metadata-areas into the NVM-zone and the other data into
the SSD-zone. As a result, UHS can send a write to NVM
when its address belongs to the predefined NVM-address-range.
Otherwise, the write is delivered to the dynamic NVM-buffer
accessing module.

The metadata generally are frequently accessed in small-size,
such as 4B for bitmap and 128B for Inode, well benefiting from
NVM property. With legacy Linux I/O stack, a block-layer
as UHS only receives at least 4KiB-sized bio requests when
accessing metadata, which is sub-optimal I/O granularity for
NVM but is still beneficial. Emerging NVM-based file system
with byte-addressability can take more advantage of UHS.
The build-in static mapping avoids costly behavior-prediction
and inaccuracy in runtime such as Ziggurat [10] and implicit
metadata caching.w

C. Dynamic NVM-buffer Accessing

According to Static Address-Mapping, all non-NVM requests
should be sent to the SSDs. However, small SSD reads/writes
generally cause high delay, I/O amplification, and wear-out, but
can well be handled by NVM. Therefore, UHS also offers a

kv1 kv2

kv23

rcu_list0 rcu_list1 rcu_listn

kv51

hash table

bitmap

metadata0

ring0 ring1

head

ring2 ring3

tail

I/O

Thread-0

stripe0 stripe1 stripe2 stripe3

NVM

seg0

SI0

seg1

SI1

seg2

SI2

seg3

SI3

NVM-buffer SSD

User

Thread

User

Thread

write

2

3

4
5

2

3
4

5

1 1 read

Fig. 4: UHS Write/Read with NVM-buffer.

dedicate NVM-buffer to serve small SSD-targeted requests in
running time.

This small-write-buffering idea is relatively simple and
friendly to write, but also causes extra access-ahead buffer-
checking due to out-of-place writes in the NVM-buffer. For
a read and write, it is necessary to first determine where its
new value is, i.e., NVM or SSD, which is in the critical path.
To mitigate the extra overhead, UHS introduces a hash-based
indexing mechanism to fast determine whether the new value
of requested block is in the NVM-buffer.

The architecture of NVM-buffer is shown in Figure 4. The
NVM-buffer contains a set of segments (e.g., 4 MiB each
segment) and segment information, called SI. An SI records
the segment state (e.g., clean or used), valid bits, hash-tables,
bitmap, flag and address-range of SSD. The hash-table accel-
erates address-retrieve; the bitmap records whether the block
is used, and the flag indicates whether current segment is in
migrating. An NVM-segment buffers the SSD blocks of a
predefined range of the SSD-zone. UHS records the address
of an SSD-block as key and its buffered address in the NVM-
buffer segment as value. UHS further adopts a chain method to
resolve the hash-conflict when frequently inserting and deleting.
UHS organizes all key-value pairs with rcu list, which uses
Read-Copy-Update to avoid multi-thread contention.

To speed up, UHS buffers all SIs and synchronizes them
between NVM and DRAM. UHS also restricts the NVM-buffer
size (e.g.,16 MiB by default) to reduce the range and delay of
looking-up. Besides, UHS actively migrates buffered data to
the SSD under light load, or reads/writes SSD directly under
heavy small-IO load, avoiding frequent migration.

Static NVM-zone and Dynamic NVM-buffer serve NVM-
affinity data of deterministic application-aware and indetermin-
istic runtime-I/Os respectively, which are complementary to
fully leverage NVM. UHS can adjust the size of NVM-buffer
and the threshold of buffered-writes to effectively control load
intensity upon NVM and SSD at an optimal balancing point.

D. Parallel I/O-thread scheduling

NVM has a limitation of parallelism, especially for write.
Figure 2(a) shows that the NVM write performance peaks at
about 4 threads with poor scalability. However, the number of
user-threads is uncontrolled and varied. Therefore, UHS uses a
parallel I/O-thread scheduling model, which 1) decouples I/O-
thread from user-thread and uses an I/O Thread-Pool with
fixed 4 I/O-threads to read and write, which fits the limited
scalability of NVM, 2) divides NVM and NVM-buffer into a

!

!

Algorithm 1 Dynamic NVM-buffer Write

Small Write

1: idx← hash(offset)
2: send request to I/O-thread[idx]
3: wait(request completes) /*notified by line-15*/

In I/O-thread[idx]
4: if block in segments[idx] then
5: write request
6: update metadata
7: else
8: blk ← a valid block in segments[idx]
9: if blk == −1 then

10: migrate segments[idx]
11: end if
12: write request
13: record blk in metadata
14: end if
15: notify request completes

Large Write

1: if NVM-buffer is not clean then
2: send sub request to all I/O-threads
3: end if
4: write data to SSD-zone

In I/O-thread
5: for block in request do
6: if block in current segment then
7: clear block
8: end if
9: end for

set of chunks, 3) binds an I/O thread to a specific chunk to avoid
concurrent access and out-of-order of associated requests.

The associated requests that are generated by the same user-
thread and access the same address in three orders as read
after write (RAW), write after write (WAW), and write after
read (WAR). For example, user-thread reads block-n first and
then write block-n, which are WAR associated requests. If they
are sent to different I/O-threads and the write incurs before its
associated read finally, the read value could be old. Therefore,
before sending requests to I/O-thread, UHS hashes their offsets.
Afterwards, the user-thread sends them to the target ring buffer
and the I/O-thread will poll to retrieve them in the original
order. For SSD-writes, the user-thread can perform their own
SSD-I/Os in parallel to take full advantage of the capabilities
of both devices.

E. Write and Read

Next, we describe the entire process of small SSD-writes,
large SSD-writes, and SSD-reads, respectively.

Small SSD-Write. Algorithm 1 describes the small SSD-
write process as shown in Figure 4: ① User-thread hashes offset
of an incoming write to get the index, sends the write as a
request to ring buffer[index] and waits for complete. ②I/O-
thread[index] polls the bound ring buffer[index] to retrieve
the request, and ③accesses metadata[index] to search the hash-
table to determine whether the block exists in segment[index].
④ Otherwise, try to get a free block by searching bitmap,
when there is no free block, UHS waits for the segment[index]
to enforce migrating. ⑤ I/O-thread[index] writes data to the

rcu_list0

rcu_list1

....

rcu_listn

Migrate
Thread0

(73,21)

NVM-buffer

SSD

7321

1
2

(12,11) rcu_list0

rcu_list2

....

rcu_listn

(73,21)

3

Migrate
Thread1

(12,11)

4

NVM-buffer

SSD

rcu_list0

rcu_list2

....

rcu_listn

(73,21) (12,11)
6

NVM-buffer

SSD

73

5

write:737
bypass

NVM-buffer

SSD

73

rcu_list0

rcu_list2

....

rcu_listn

(12,11)

read:128 wait9

21

Fig. 5: Migration from NVM-buffer to SSD.
segment[index], updates the metadata[index], adds the target
and buffered address to hash-table and notifies user-thread that
the write has completed.

Large SSD-Write. For large SSD-write, UHS processes it as
shown in Algorithm 1: 1) User thread determines whether the
NVM-buffer’s state is clean. 2) Otherwise, user thread sends
sub request with CLEAR flag to each I/O-thread. 3) User
thread writes data to the SSD-zone. 4) Each I/O thread traverses
sub request to invalidate the block in current segment and
clears the metadata.

SSD-Read. The strategy used by UHS to handle the
SSD-read includes the following steps: ❶ User-thread
splits SSD-Read to sub request with 4KiB block size, ❷
sends sub request to I/O-threads and reads from SSD-
Zone to ssdbuf in parallel. ❸ I/O-thread[index] looks
up metadata[index] to determine whether the target block
is buffered in segment[indx]. ❹If so, I/O-thread[index]
reads the block from segment[index] to nvmbuf . When all
sub requests have done, the I/O thread which completes the
last sub request notifies the user-thread to combine the ssdbuf
and nvmbuf , and then return.

F. Migration

UHS absorbs small SSD-writes in the NVM-buffer, and
then migrates them to SSD at light load, or out-of-space in
a segment. UHS also creates a Migrate Thread-Pool. When
migrating, as shown in Figure 5, each migrate-thread in thread-
pool ❶ selects a hash-table entry, which contains a rcu list, to
get the key-value, ❷ traverses the rcu list and retrieves the key-
value, whose key is the target address in SSD, and the value
is the buffered address in NVM-buffer, ❸ reads block from
segment in NVM-buffer and ❹ writes it to the SSD, ❺ removes
the key-value from hash-table and ❻ frees it atomically. When
the migration ends, UHS will clear the bitmap and valid bits.
Additionally, UHS sets the state of segment as ‘clean’, thus
avoiding extra indexing for reads and large writes.

In order to relieve the impact on user read and write, we use
rcu list to organize the key-value, which ensures the correctness
of concurrent read and write on migrating. When a request
comes, ❼ if the target addresses are not in the hash-table, the
accessed blocks are independent of the migrated data and can
be bypassed to the SSD directly. ❽ Otherwise, the request is
blocked ❾ until all accessed blocks of the request have been
migrated.

G. Crash Consistency and Recovery

UHS ensures the consistency when the system crashes or
powers off. UHS synchronously updates SIs of DRAM and
NVM-buffer, which hardly degrades the performance due to

!

!

(a) 4KiB + 8KiB Write (b) 4KiB + 32KiB Write (c) 4KiB + 8KiB Read (d) 4KiB + 32KiB Read

Fig. 6: The write and read throughput as thread count increases with 1:1 Mixed I/O sizes.

(a) UHS Write (b) SSD Write (c) UHS Read (d) SSD Read

Fig. 7: The write and read throughput on the SSD-zone of UHS and SSD under with different thread-count and request-sizes.

(a) UHS and NVM Write (b) UHS and NVM Read

Fig. 8: The average write and read throughput on the NVM-
zone of UHS and NVM with threads increasing.

fast-persistence of NVM. Besides, UHS invalidates the SI
after the migration is completed. In case of crashing, UHS
can recovery the NVM-buffer by scanning all SIs on the
NVM. Therefore, UHS has a same crash-consistency level as
traditional block-volumes provided.

IV. EVALUATION

All experiments run on a dual-socket Intel Xeon E5 server
with 16 physical cores at 2.30GHz, 256 GB DRAM, and a
128GB Intel Optane DC PMM. The operating system is Ubuntu
20.04 with Linux kernel 5.4.0-107. We compare UHS with
NVM and SSD respectively. We also test two typical hybrid
storage architectures, Bcache [15] and Device-Mapper [16]. In
addition, we implement UHS without the NVM-buffer, called
UHS-NB, to compare with UHS to verify the effectiveness
for small write. Note that current UHS is implemented as
a block-level storage in user-space and cannot be directly
used by existing kernel-based file system and file-system-based
applications. We use blktrace [18] to capture the block I/O
events from Ext4, and then replay the traces as the workloads.

A. Microbenchmarks

We measure the read/write throughput of UHS, NVM, and
SSD under FIO. For NVM, we use libpmem [19] of PMDK
to directly access NVM through mmap. For SSD, we access
the device file with the DIRECT IO flag, like /dev/nvmen1, to
avoid the impact of the upper cache and file system.

Throughput Figure 6 shows the average write and read
throughput as thread count increasing with 1:1 Mixed I/O size,
respectively on the NVM, SSD and UHS. With UHS, the 4KiB
writes are stored in the NVM-zone or the NVM-buffer and

the writes larger than 4KiB are directly written into SSDs.
The I/O pattern with 4KiB+xKiB exploits the overall effect of
NVM and SSD in UHS. For write, the throughput of UHS is
always higher than NVM and SSD, and is approximately equal
to their sum about 4.9GiB/s, which is 1.4x and 1x higher
than NVM and SSD, respectively. For read, when the number
of threads is less than 3, the throughput of UHS is lower than
NVM because the read throughput of NVM is not saturated and
SSD is much slower than NVM. However, when the number
of threads exceeds 4, the throughput of UHS almost saturates
the sum of the bandwidth of NVM and SSD.

Figure 7 shows the average write and read throughput of
SSD-zone and SSD with different threads under varying I/O
sizes. Specially, when the I/O size is 4KiB, the write throughput
of SSD-zone is about 1.5x∼3x higher than SSD. Because UHS
uses the NVM as the NVM-buffer to absorb the small writes
to SSD-zone. This manifests the advantage of the NVM-buffer.

Figure 8 shows the average write and read throughput of
NVM-zone. We test NVM-zone with 4KiB I/O size under
different numbers of threads. Compared with the NVM, the
NVM-zone has higher parallelism on write. When the number
of threads is less than 4, the throughput of NVM-zone is equal
to NVM. However, with the number of threads increasing, the
write throughput of UHS does not drop significantly like NVM
due to parallel I/O-thread scheduling, and is up to 2x higher
than NVM with 16 threads.

Latency Table II shows the access latency of NVM-buffer
and NVM. The read and write latency of NVM-buffer is
slightly higher than NVM, because UHS uses parallel I/O-
thread scheduling to fully leverage the parallelism of NVM
but introduces a little extra overhead.

TABLE II: NVM-buffer and NVM Latency

I/O UHS Latency NVM Latency
Write 1.74mu 1.693mu
Read 1.261mu 1.259mu

Figure 9(a) and 9(b) show the read and write latency of SSD-
zone and SSD. Specially, the write latency with 4KiB I/O size
of SSD-zone is much lower than SSD because of the NVM-
buffer. Besides, UHS migrates the data in NVM-buffer under

!

!

(a) UHS and SSD Write (b) UHS and SSD Read

Fig. 9: UHS and SSD Access Time.
light load. When the NVM-buffer’s state is clean, UHS directly
reads and writes file data in the SSD. Therefore, the latency of
SSD-zone is equal to SSD.

B. Macrobenchmarks

We use Filebench to perform three workloads as CreateFile,
FileServer and Varmail to evaluate the overall performance of
UHS. In order to make the trace match file operations better
and simplify the replay, we turn on the packed meta blocks
feature to place metadata sequentially during mkfs, turn off
lazy itable init, lazy journal init and has journal to avoid
additional initialization. For a 512 GiB logical volume, the
configuration of Static Address-Mapping maps block 0 to
1928764 in the volume to NVM, and maps block 1928765
to the last block in the volume to SSD. Because bcache does
not support the NVM, we create a logical device using NVM
and directly use mmap to read and write it. Before testing with
Bcache, the size of dirty data is zero. Table III summarizes the
characteristics of these three workloads.

Figure 10 shows the performance of four existing storage
architectures and UHS. For metadata-intensive workloads, such
as CreateFile, UHS improves performance up to 1.5x by
concurrent access to NVM and SSD. Varmail has a balance of
read and write workload and FileServer has a write-intensive
workload. UHS gains nearly 25% and 53% improvement
respectively because of the NVM-buffer absorbing small write
mainly. Compared with the SSD, Bcache and Device-Mapper,
UHS has almost up to 8x, 3.5x and 6x improvement respec-
tively, which is mainly due to effectively exploit NVM and
SSD in parallel.

TABLE III: Filebench workload Characteristic

Workloads Avg File Size I/O size(r/w) R/W Ratio
CreateFile 16KiB 0/16KiB 0:1
FileServer 128KiB 1M/16KiB 1:2
Varmail 16KiB 1M/16KiB 1:1

C. Migration

When UHS is under light load or uses up a segment,
the buffered data will be written to the SSD. To measure
the migration overhead, we set different NVM-buffer sizes,
continuously write data to NVM-buffer and record migration
time of each segment.

Figure 11 reports the results. Overall, Migration time in-
creases with the increasing size of NVM-buffer, because the
migration-threads need to be waked up. We also test UHS
on Polling mode where migration-threads poll to determine
whether invoking migration. The execution time is slightly less.
As expected, the delay of thread state switching is reduced by
polling. However, UHS uses Migration Thread-Pool, setting it

Fig. 10: Filebench Fig. 11: Migration Time

to Poll mode consumes some CPU cycles. Therefore, we use
the non-Polling model in the implementation of UHS.

V. CONCLUSION

In order to fully exploit the I/O characteristics of NVM and
SSD in block-level, we propose an ultra-fast block-level hybrid
storage upon NVM and SSD, called UHS. UHS presents a
block-level heterogeneous storage with a unified data layout
but an explicit NVM block-space, designs static and dynamic
NVM-buffer accessing considering predefined storage affinity
and runtime workload to fully reap the merits of NVM and
SSD respectively to achieve superior performance.

ACKNOWLEDGMENT

This work was supported in part by NSFC No.62172175,
Creative Research Group Project of NSFC No.61821003, Na-
tional key research and development program of China under
Grant 2018YFA0701800, and Key Research and Development
Project of Hubei No.2022BAA042.

REFERENCES

[1] B. C. Lee, P. Zhou et al., “Phase-change technology and the future of
main memory,” IEEE micro, 2010.

[2] D. Hwang, W.-H. Kim, Y. Won, and B. Nam, “Endurable transient
inconsistency in Byte-Addressable persistent B+-Tree,” in FAST, 2018.

[3] Y. Yang, Q. Cao et al., “Spmfs: A scalable persistent memory file
system on optane persistent memory,” in 50th International Conference
on Parallel Processing, 2021.

[4] “ctFS: Replacing file indexing with hardware memory translation through
contiguous file allocation for persistent memory,” in FAST, 2022.

[5] Z. Lu, Q. Cao et al., “p2kvs: a portable 2-dimensional parallelizing
framework to improve scalability of key-value stores on ssds,” in EuroSys,
2022.

[6] M. Cao, S. Bhattacharya et al., “Ext4: The next generation of ext2/3
filesystem,” 2007.

[7] C. Hellwig, “Xfs: the big storage file system for linux,” ; login:: the
magazine of USENIX & SAGE, 2009.

[8] “Supporting filesystems in persistent memory,” 2022. [Online]. Available:
https://lwn.net/Articles/610174/

[9] Y. Kwon, H. Fingler, T. Hunt, S. Peter, E. Witchel, and T. Anderson,
“Strata: A cross media file system,” in SOSP, 2017.

[10] S. Zheng, M. Hoseinzadeh et al., “Ziggurat: A tiered file system for non-
volatile main memories and disks,” in FAST, 2019.

[11] Intel, “Intel® optane™ dc persistent memory.” 2022. [On-
line]. Available: https://www.intel.com/content/www/us/en/architecture-
and-technology/optane-dc-persistent-memory.html

[12] “Fio,” 2022. [Online]. Available: https://github.com/axboe/fio
[13] J. Xu and S. Swanson, “Nova: A log-structured file system for hybrid

volatile/non-volatile main memories,” in FAST, 2016.
[14] H. Song, S. Kim et al., “First responder: Persistent memory simultane-

ously as high performance buffer cache and storage,” in ATC, 2021.
[15] “Bcache,” 2022. [Online]. Available: https://bcache.evilpiepirate.org/
[16] “device-mapper,” 2022. [Online]. Available:

https://www.kernel.org/doc/html/latest/admin-guide/device-
mapper/index.html

[17] C. Lee, D. Sim et al., “F2FS: A new file system for flash storage,” 2015.
[18] “blktrace,” 2022. [Online]. Available: https://github.com/sdsc/blktrace
[19] “libpmem,” 2022. [Online]. Available: https://pmem.io/pmdk/libpmem/

!

!

	Select a link below
	Return to Previous View
	Return to Main Menu

