
Scalable Scan-Chain-Based Extraction of Neural
Network Models

Shui Jiang
The Chinese University of Hong Kong

N.T., Hong Kong
sjiang22@cse.cuhk.edu.hk

Seetal Potluri
North Carolina State University

NC, USA
spotlur2@ncsu.edu

Tsung-Yi Ho
The Chinese University of Hong Kong

N.T., Hong Kong
tyho@cse.cuhk.edu.hk

Abstract—Scan chains have greatly improved hardware testabil-
ity while introducing security breaches for confidential data. Scan-
chain attacks have extended their scope from cryptoprocessors to
AI edge devices. The recently proposed scan-chain-based neural
network (NN) model extraction attack (ICCAD 2021) made it
possible to achieve fine-grained extraction and is multiple orders
of magnitude more efficient both in queries and accuracy than its
coarse-grained mathematical counterparts. However, both query
formulation complexity and constraint solver failures increase
drastically with network depth/size. We demonstrate a more
powerful adversary, who is capable of improving scalability
while maintaining accuracy, by relaxing high-fidelity constraints
to formulate an approximate-fidelity-based layer-constrained
least-squares extraction using random queries. We conduct our
extraction attack on neural network inference topologies of
different depths and sizes, targeting the MNIST digit recognition
task. The results show that our method outperforms the scan-
chain attack proposed in ICCAD 2021 by an average increase in
the extracted neural network’s functional accuracy of ≈ 32% and
2−3 orders of reduction in queries. Furthermore, we demonstrated
that our attack is highly effective even in the presence of
countermeasures against adversarial samples.

Index Terms—Deep neural network, testing, scan-chain, model
extraction, scalability

I. INTRODUCTION

Machine Learning (ML) model extraction poses two signifi-
cant challenges: (a) the adversary performs model extraction
with the motivation to exploit the commercial value of
the ML model IP [1]–[6]; and (b) the adversary uses the
extracted model to craft superior adversarial samples [7]–
[9]. These coarse-grained model extraction works assume an
ML-as-a-Service application with the prediction application
programmer interface and publicly accessible query interfaces
facilitated by the cloud provider.

Recently, the neural network (NN) scan-chain attack in
ICCAD 2021 [10] has exposed a new and powerful threat
vector for edge devices. These attacks perform fine-grained
model extraction by exploiting the scan-chain infrastructure
that allows in-field testing [11]. For each query (input vector
to the NN), the NN hardware accelerator is configured to
execute the classification task using a fast (system) clock, and
subsequently, the results of interest are captured at activation
registers using a slow (shift) clock [10]. This scan-chain-based
extraction was shown to defeat all the prior coarse-grained
counterparts by multiple orders of magnitude both in terms
of query count and extraction errors. However, solver failures

2 3 4 5
0%

10%

20%

30%

Layers
So

lv
er

Fa
il

u
re

(a) Constraint solver failures.

0 1,000 2,000
0

1

2

3

·106

Neurons

Q
u

er
ie

s

(b) Queries.

Fig. 1: Increase in constraint solver failures and queries with
network depth and neurons respectively, for NNs targeting
MNIST dataset, with high-fidelity scan-chain extraction.

as well as queries increase with network depth/size as shown
for NNs targeting MNIST dataset in Figure 1.

This paper demonstrates a more powerful adversary,
who is capable of improving scalability while maintaining
accuracy. The adversary relaxes these constraints and exploits
parallelism to formulate an approximate-fidelity-based layer-
constrained least-squares attack using random queries. The
main contributions of this paper are:

• We recognize the prior work in ICCAD 2021 [10] is limited
to exploiting only one input per query (the input vector).
We thereby exploit multiple inputs per query, effectively
increasing parallelism, and hence scalability;

• We further improve scalability by relaxing high-fidelity
constraints without loss in functional accuracy, and using
layer-constrained least-squares regression to solve for the
model parameters using random queries;

• Application on 14 different neural network architectures
with varying neurons per layer and up to 5 layers, has
resulted in ≈ 32% improvement in accuracy on average
and multiple orders of reduction in queries;

• We also show the efficacy of the proposed extrac-
tion attack in the presence of adversarial input de-
fense schemes e.g. FeatureSqueezing [12] and
AdaptiveDenoising [13]; and

• We finally demonstrate how to exploit the least-squares
formulation to trade-off queries with the functional
accuracy of the extracted model.

The paper is organized as follows: Sections II and III
provide the threat model and background on NNs. Section IV
explains the proposed scalable methodology on how to

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA 

	



Hidden 

Layer 2

𝒙𝟎
𝟐 𝒚𝟎

𝟐

𝒙𝟏
𝟐 𝒚𝟏

𝟐

𝐖𝟏 =
𝒘𝟎,𝟎
𝟏 𝒘𝟎,𝟏

𝟏

𝒘𝟏,𝟎
𝟏 𝒘𝟏,𝟏

𝟏

𝐛𝟏 = 𝒃𝟎
𝟏 𝒃𝟏

𝟏 𝐓

𝐖𝟐 =
𝒘𝟎,𝟎
𝟐 𝒘𝟎,𝟏

𝟐

𝒘𝟏,𝟎
𝟐 𝒘𝟏,𝟏

𝟐

𝐛𝟐 = 𝒃𝟎
𝟐 𝒃𝟏

𝟐 𝐓

Inaccessible Parameters

𝑦2
1

Hidden 

Layer 1

𝒙𝟎
𝟏 𝒚𝟎

𝟏

𝒙𝟏
𝟏 𝒚𝟏

𝟏

Input 

Layer 

𝒙𝟎
𝟎

𝒙𝟏
𝟎

Scan-Chain AdversaryClock

Scan-chain 

Registers

Fig. 2: Scan chains leaking neuron states after activation, in
a fully connected neural network (FCNN).

exploit multiple inputs per query (the input vector), and
the least-squares regression based extraction (LSR) in detail.
Section V provides the results obtained by applying the
proposed method on a wide range of NN architectures of
varying depths and sizes, as well as comparisons with prior
work. Subsequently, Section VI provides a discussion on the
extraction performance in the presence of adversarial input
defense schemes, and finally Section VII concludes the paper.

II. THREAT MODEL

We follow the same threat model as laid out in the original
neural network (NN) scan-chain attack from ICCAD 2021 [10].
We consider an adversary located at an outsourced assembly
and test (OSAT) facility [14], having physical access to an edge
device that contains the NN models. Their system-level-test
(SLT) [14] feature translates to the adversary’s capability to
execute the classification for a certain number of functional
cycles, switch to debug mode, and use the hardware debug
port to leak internal states as shown in Figure 2. The adversary
then performs a mathematical analysis on these internal
states to extract the NN model parameters.

Recent work categorizes model extraction attacks into
high-fidelity vs. high-accuracy [6]: prior scan-chain-based
extraction [10] performs a high-fidelity attack that aims for
general agreement between the extracted and victim models
on any input vector. As discussed, this leads to an increase
in query formulation complexity and solver conflicts, leading
to no solutions. Our more powerful adversary addresses this
issue by performing a high-accuracy attack by relaxing the
high-fidelity constraints while maintaining accuracy.

Following the earlier work on high-fidelity scan-chain-
based model extraction [10], we assume the adversary has (a)
full architecture knowledge, including the number of layers,
neurons in each layer, and the activation function; and (b)
complete vector output of every hidden layer: under the scan-
chain threat model, the classifier’s response to each input
query contains the vector output of an entire layer of neurons.
For any given query, the intermediate outputs of different
neurons in different layers will eventually be acquired from
the hardware debug port by the adversary. Meanwhile, we
assume that the NN parameters (weights and biases) are kept
in private storage that is out of direct reach of scan chains.

III. BACKGROUND

A fully connected neural network (FCNN) is a feed-forward
neural network, consisting of fully connected layers that
connect each neuron in one layer to every neuron in the
succeeding layer. If we define xi , yi , Wi , and bi as the
pre-activation output vector, output vector, weight matrix,
and bias vector respectively of i th hidden layer (i > 0),
corresponding to NN input vector (query) x0, we have:

xi = Wi ·y(i−1) +bi (1)

yi = h(xi ) (2)

where h(·) is the non-linear activation function. Figure 2
shows an FCNN’s two hidden layers. The weights, biases,
and activation values are represented as double-precision
floating-point numbers in this work. The notation a0-a1-a2-
. . .-an is used in this paper, which signifies that the network
has a0 elements in the input vector, and ai neurons in the
i th hidden layer (i > 0). The Sigmoid is the non-linear
activation function h(·) we used. The Sigmoid activation
function is given below, where x is the pre-activation result
of a neuron and h(x) is the activation result:

h(x) = 1

1+e−x (3)

The output layer uses argmax to select the neuron index
with the largest output of the penultimate layer as the output
of the classifier.

IV. ATTACK OVERVIEW

In this section, we present the detailed crafting of our
attack. We first identify the limitations of the existing ap-
proach [10] and then present the details of our more powerful
adversary, the systematic approach used to model the
problem, and finally how to leverage least-squares regression
to extract the model parameters with high accuracy.

A. Motivation

The state-of-the-art scan-chain-based extraction uses iso-
lated activation [10] to extract weights and biases of a neural
network, which consists of two steps: (a) Q-point search;
and (b) application of small perturbations around the Q-
point to expose the model parameters. Although this method
reduces queries by many orders of magnitude compared to
its mathematical extraction counterparts [4]–[6], each query
is still greatly underutilized. The adversary has to apply at
least two queries (let alone the additional queries used to
locate a Q-point) and inspect the scan outputs for all the
neurons in each layer only to deduce one parameter, which
makes the method not scalable to deeper/larger networks
with millions of parameters.

Additionally, query formulation becomes increasingly com-
plex with growth in network depth/size, thereby increasingly
causing failures when trying to solve the isolated activation
constraints, as illustrated earlier in Figure 1a. As a result, it is
important to come up with a simpler querying methodology
to address the formulation complexity issue, or in other words,
make the extraction more scalable. Therefore, for every input

!

!



query, we propose to make full use of the outputs from every
neuron in every layer. We collect the intermediate output
vectors from every layer to form linear systems and solve
the parameters using least-squares regression.

B. Modeling

Due to the bijective property of the Sigmoid activation
function, from Equation 2 we have xi = h−1(yi ). Substituting
this in Equation 1 (corresponding to a single query), we have:

h−1(yi ) = [
Wi bi

]
.

[
y(i−1)

1

]
(4)

When we introduce N queries, the intermediate layers’ output
vectors can be stacked together. For the sake of simplicity,
for any given layer i , if we define:

Pi = [
h−1(yi (0)) h−1(yi (1)) . . . h−1(yi (N −1))

]
(5)

Ai = [
Wi bi

]
(6)

Qi =
[

y(i−1)(0) y(i−1)(1) . . . y(i−1)(N −1)
1 1 . . . 1

]
(7)

We then have:
Pi = Ai ·Qi

Applying transpose will lead to a more conventional system
of linear equations with the unknown matrix Ai ,T (secret
weights and biases) at the rightmost position, which we call
the intra-layer linear system for layer i :

Pi ,T = Qi ,T ·Ai ,T (8)

Since we can access both y(i−1) and yi using scan chains
(define y0 = x0), using Equations 5 and 7 we can directly
compute both Pi ,T and Qi ,T , ∀i , using N queries. The shape
of the unknown parameter matrix Ai ,T is (a(i−1)+1)×ai . This
aligns with the fact that there are ai neurons in layer i , and
each of them has a(i−1) weights along with 1 bias to solve.
For each neuron j , Equation 8 transforms to Pi ,T |column j =
Qi ,T ·Ai ,T |column j , where Qi ,T matrix is reused ∀ j .

Furthermore, input queries can flow unimpededly along
with hidden layers. No matter what layer the adversary is
intentionally extracting, the output of each hidden layer
can all be recorded during the scan shift phase, avoiding
additional and repetitive queries for different Qi s. This
recycling feature of our scheme greatly improves scalability,
as it greatly increases the utilization of each query and can
thus save a large number of queries if the network is deep.
On the other hand, the method in [10], having almost no
query reuse, requires new queries for every incoming neuron.

The shape of Qi ,T is N × (a(i−1) +1), hence,

r ank(Qi ,T ) ≤ min{N , a(i−1) +1} (9)

(a) If r ank(Qi ,T ) = a(i−1) +1, Equation 8 becomes a trivial
least-squares problem. Every neuron gets a unique solution
of its parameters, and these extracted parameters exhibit
high fidelity towards the original network. (b) However, if
r ank(Qi ,T ) < a(i−1)+1, there are multiple solutions that satisfy
Equation 8, becoming an under-determined least-squares
problem. We show in the later sections that for layer i , it is

TABLE I: Rank-deficiency of Qi matrices in deeper networks
and its impact on i th layer’s intra-layer linear system.

(a) Qi ’s in 784-256-64-32-10 architecture, i = 1,2,3,4

Matrix Dimension Rank a(i−1) +1 Under-determined?
Q1 785×785 785 785 No
Q2 257×785 257 257 No
Q3 65×785 46 65 Yes
Q4 33×785 31 33 Yes

(b) Qi ’s in 784-256-128-64-32-10 architecture, i = 1,2,3,4,5

Matrix Dimension Rank a(i−1) +1 Under-determined?
Q1 785×785 785 785 No
Q2 257×785 257 257 No
Q3 129×785 107 129 Yes
Q4 65×785 65 65 No
Q5 33×785 33 33 No

not possible to achieve high fidelity, although high accuracy
can still be retained.

C. Query Number, Rank Deficiency, and Under-Determination

When the query number N < a(i−1)+1, Equation 8 is clearly
under-determined. But we observe from the experimental
results later in Section V that even when N is astonishingly
low, the extracted model’s accuracy can still be reasonably
high. This feature can act as a trade-off between the accuracy
and the query count. When N ≥ max{a0, a1, . . . , a(n−1)}+1, N
is uncoupled from Inequality 9, and the inequality becomes
r ank(Qi ,T ) ≤ a(i−1) + 1. In this way, whether Qi ,T is rank-
deficient will be the sole determinant factor of whether
system 8 is under-determined.

It is well-known that random matrices have full rank with
a very high probability [15]. Additionally, we have observed
empirically that when applied with a full-rank random matrix
at the input of the neural network, due to the non-linear
activation function, the input matrix to the subsequent layers
has a high rank with a high probability. We exploit this
observation to efficiently perform model extraction using
uniformly distributed random queries.

As an example, Table I shows the ranks of the Qi matrices
in deeper network architectures, obtained empirically by
simulating the network using random input queries. For
both the architectures presented in Table I, we generated 785
uniformly distributed random input vectors to constitute the
input matrix Q1. In this case, N ≥ max{a0, a1, . . . , an}+1, and
Qi ’s rank is the only factor that decides whether layer i sees
an under-determined least-squares problem or just a trivial
least-squares problem.

Due to heavy non-linearity, we observe that most of
the neurons in the deeper layers produce outputs that
are exceptionally close to either 0 or 1. These extreme
values challenge the capacity of the hardware registers, also
damaging the numerical diversity of Qi (i ≥ 2). As a result,
some of the Qi (i ≥ 2) are degraded to rank-deficient matrices,
as shown in Table I. It is worth noting that even if Q(i−1)

is rank-deficient, Qi can still be full rank, thanks to the
non-linear activation function. Nevertheless, as long as even

!

!



−17−15−13−11 −9 −7 −5 −3 −1 1
0

5 ·10−2
0.1

0.15
0.2

0.25

loge3
1

P
ro

b
ab

il
it

y

Fig. 3: Distribution of output errors for neuron 1 in layer 3.

one layer’s intra-layer linear system is under-determined, the
entire extracted network will lose its high-fidelity feature.

D. Under-Determined Least-Squares Regression
When layer i ’s intra-layer linear system (Equation 8)

becomes under-determined, its parameters have multiple
solutions. It is natural to desire the parameter solution Ai

with the most generalization ability, that is, for any given
input of layer i , this layer’s output has the smallest deviation
from the ground truth output. To achieve this goal, we find
the Ai with the minimal l 2 norm in the solution set.

min∥Ai∥2, s.t . Qi ,T ·Ai ,T −Pi ,T = 0 (10)

The importance of the minimal value can be explained by
taking a look at the input matrix Qi ’s distribution. As indi-
cated earlier, normally the elements in Qi for deeper layers
are exceptionally close to either 0 or 1, as a consequence of
heavy non-linearity. If the weights are not at their minimal
value, the layer i will be more susceptible to arbitrarily small
input values. If large weights are assigned to such small
inputs, predictions on unseen data can be heavily biased by
these weights if the corresponding inputs suddenly become
close to 1 [16]. Therefore, to avoid this scenario, we require
the weights to be at an overall minimum.

We refer to the ground truth NN model to be extracted
as an oracle. In order to understand how similarly the
extracted neurons in a certain layer function compared with
the corresponding counterparts in the oracle, we introduce
output error to quantify the deviation of an extracted neuron’s
output w.r.t. the corresponding neuron’s output in the oracle:

e i
j = ∥y i

ex, j − y i
j ∥ (11)

Equation 11 describes the Euclidean distance between the
j th neuron’s output of the extracted model and the oracle
in layer i . When the entire MNIST testing set (10000
images) is applied to these networks, 10000 entries of e i

j
will be produced. For instance, Figure 3 shows the general
distribution of these errors when i = 3, j = 1. From the plot,
it is evident that most of the errors are smaller than 10−9.
This indicates that the parameters obtained from under-
determined LSR work substantially identical to the oracle’s
neuron.

V. EXPERIMENTAL EVALUATION

This section demonstrates the superiority of our LSR
extraction method over state-of-the-art model extraction from
ICCAD 2021 [10] under the same scan-chain threat model,
by empirically demonstrating an improvement in extraction
accuracy and with fewer queries. Further, we exploit the

250 500 750
1,000

0%
20%
40%
60%
80%

100%

Queries

A
cc

u
ra

cy

Oracle

Extracted

(a) 784-32-10

250 500 750
1,000

0%
20%
40%
60%
80%

100%

Queries

A
cc

u
ra

cy

Oracle

Extracted

(b) 784-256-32-10

250 500 750
1,000

0%
20%
40%
60%
80%

100%

Queries

A
cc

u
ra

cy
(c) 784-256-64-32-10

250 500 750
1,000

0%
20%
40%
60%
80%

100%

Queries

A
cc

u
ra

cy

(d) 784-256-128-64-32-10

Fig. 4: Accuracy comparison between the oracle and the
extracted model, for different FCNN topologies.

trade-off between input queries and the extracted model’s
accuracy and show that an accuracy of 90.22% can be reached
with as few as 550 queries.

A. Experimental Setup
We have trained 14 different FCNN architectures using the

MNIST digit recognition dataset [17], where 60000 images
were used as the training set while 10000 images were used
as the testing set. We adopted the mean square error (MSE)
function as the loss function, with Adam [18] as the optimizer
(β1 = 0.9,β2 = 0.999,ϵ= 10−8). We have set the learning rate
to 0.0025 and the batch size to 16.

We use Python to simulate our LSR attack. The ran-
dom inputs are generated from the uniform distribution
U (0,d), d < 1, where d is a tunable parameter that varies
across different networks, using NumPy. The ICCAD 2021
attack [10] is also implemented in Python, with the SciPy
linear programming tool [19] as the constraint solver. All
of our experiments are carried out on an Intel(R) Core(TM)
i7-8750H Processor with 16 GB RAM.

B. Results
Table II shows the results obtained by implementing

our LSR algorithm and comparing it with the prior work
proposed in ICCAD 2021 [10], using 14 networks of different
depths/sizes. This prior work adopts an isolated activa-
tion scheme for preciseness, requiring about 2(

∑n−1
i=0 ai ai+1)

queries for architecture a0-a1-a2-...-an . In contrast, our
algorithm LSR requires only max{a0, a1, . . . , a(n−1)}+1 queries.
In the case Qi s, ∀i , happen to be full rank, the exact high-
fidelity solution can be obtained. However, even if not all
Qi s are full rank, high accuracy for the extracted model can
still be retained. The query counts can be reduced further at
the cost of fidelity while achieving reasonable accuracy at
the same time, as shown in Figure 4.

!

!



TABLE II: ICCAD 2021 corresponds to the high-fidelity scan-chain attack that requires
isolated activation [10] and LSR corresponds to the proposed approximate-fidelity but high-
accuracy layer-constrained least-squares solution.

Architecture Original accuracy
ICCAD 2021 LSR

[10] (Proposed)
Queries Accuracy Queries Reduction Accuracy Improvement

784-32-10 96.41% 51530 96.41% 785 66× 96.41% 0%
784-512-10 97.84% 824330 97.84% 785 1050× 97.84% 0%

784-1024-10 97.88% 1648650 97.88% 1025 1608× 97.88% 0%
784-1408-10 97.8% 2266890 97.76% 1409 1609× 97.8% 0.04%
784-2048-10 97.9% 3297290 97.9% 2049 1609× 97.9% 0%

784-256-32-10 97.01% 435922 96.89%† 785 555× 97.01% 0.12%
784-256-64-10 96.05% 468994 86.36%† 785 597× 96.05% 9.69%
784-512-64-10 97.06% 936890 95.93%† 785 1193× 96.1% 0.17%

784-512-128-10 97.36% 1066250 8.92%⋆ 785 1358× 97.25% 88.33%
784-32-10-10-10 95.05% 52290 81.92%† 785 67× 95.05% 13.13%
784-32-32-32-10 96.03% 58186 11.21%⋆ 785 74× 96.03% 84.82%

784-256-64-32-10 97.21% 471882 10.32%⋆ 785 601× 97.21% 86.89%
784-32-10-10-10-10 94.68% 52350 10.1%⋆ 785 66× 94.68% 84.58%

784-256-128-64-32-10 97.3% 561354 11.35%⋆ 785 715× 97.3% 85.95%
† These accuracy degradations are caused by a small number of constraint solver failures.
⋆ When extracting these networks, the constraint solver fails an entire layer. Therefore, these accuracies are

exceptionally low.

Due to the exceptionally large number of queries, the
runtime of the prior work [10] is much greater than that
of our extraction. The models extracted using our proposed
method do not suffer any loss in accuracy, while most of the
models extracted from [10] degrade in accuracy to various
extents with increasing network depth.

Subsequently, we have explored the ability to trade off
accuracy with queries in the context of our scalable least-
squares extraction. We have demonstrated in Section IV-D
that even when layer i ’s intra-layer linear system is under-
determined, the solved layer exhibits equivalent external
behavior. Inspired by this property, we explore the best
accuracy the extracted model can achieve when the adversary
has a tighter query budget (fewer than 785). We extract the
model using queries ranging from 100 to 1000, and report
the achieved classifier accuracy as shown in Figure 4.

We find that as queries increase beyond 100, the extracted
model’s accuracy increases rapidly. By the time the query
counts reach 550, the extracted model’s functional accuracy
will have reached approximately 90% for most of the archi-
tectures. Subsequently, the rate of accuracy increase drops
gradually until it reaches the oracle’s accuracy.

VI. DISCUSSION
In this section, we measure the efficacy of our attack,

LSR, in the presence of existing countermeasures, and
describe the limitations. FeatureSqueezing (FS) [12] and
AdaptiveDenoising (AD) [13] are two input distortion
defensive techniques primarily aiming against adversarial
samples. FS [12] prunes the input space so that the adversar-
ial noise gets eliminated while maintaining the major features
of the normal inputs. FS consists of three components: bit-
depth reduction (or quantization), local median smoothing,
and non-local smoothing. AD [13] then further automated
the denoising process in an adaptive manner.

A. With FeatureSqueezing

Bit-depth reduction: [12] observed that quantizing the
input to few grayscale levels through bit-depth reduction can

cancel out low levels of adversarial noise. For example, if the
input range is (0,1), 1 bit-depth yields 21−1 +1 = 2 grayscale
levels: {0,1}. 3 bit-depth yields 23−1 +1 = 5 grayscale levels:
{0,0.25,0.5,0.75,1}. Every input value m is transformed to
[2n−1·m]

2n−1 , where n is the bit-depth and [·] is the function for
rounding to the nearest integer.

In practice, to cope with the severe non-linearity in deep
networks, the adversary usually uses small input values (in
U (0,d), d < 1) so that Qi is more likely to be full-rank,
resulting in better accuracy. Since the input is small, the
output of the first few layers will not reach deeply into the
heavily non-linear regions. However, with the presence of
bit-depth reduction, all the inputs will be rounded to 0 if
the adversary decides to use smaller inputs. If the input
distribution is U (0,1), on the other hand, the bit-depth
reduction will have less impact on the extraction, but the
extracted model’s overall accuracy may decrease.

As shown in Figure 5, if the bit-depth is larger, models
extracted with input distribution U (0,d) (d < 1) generally
have better accuracy. However, if aggressively small bit-depth
(e.g. 1 or 2) is used for better protection [12], all the inputs
with U (0,d) (d < 1) will be set to zero, while inputs with
U (0,1), however, remain valid, resulting in less accurate, yet
valid model extractions. The adversary can then decide the
value of d himself/herself based on the specific scenarios.

Local smoothing and non-local smoothing: Median local
smoothing runs a sliding window over the pixels of the input
image, and replaces the center pixel with the median of
all the elements in the window. On the other hand, non-
local smoothing finds similar patches in a larger portion
of the input image and replaces the center patch with the
average of all the similar patches. We have implemented
local smoothing using scipy.ndimage.median_filter
function from SciPy [20] and non-local smoothing using
cv2.fastNlMeansDenoisingColored function from
OpenCV [21] respectively. Smoothing has almost zero impact
on our extraction, as shown in Table III.

!

!



1 2 3 4 5 6 7 8
0%

25%

50%

75%

100%

bit-depth

A
cc

u
ra

cy

U (0, 1
3 )

U (0,1)

(a) 784-32-10

1 2 3 4 5 6 7 8
0%

25%

50%

75%

100%

bit-depth
A

cc
u

ra
cy

U (0, 1
5 )

U (0,1)

(b) 784-256-32-10

1 2 3 4 5 6 7 8
0%

25%

50%

75%

100%

bit-depth

A
cc

u
ra

cy

U (0, 1
5 )

U (0,1)

(c) 784-256-64-32-10

1 2 3 4 5 6 7 8
0%

25%

50%

75%

100%

bit-depth

A
cc

u
ra

cy

U (0, 1
5 )

U (0,1)

(d) 784-256-128-64-32-10

Fig. 5: Impact on extracted model accuracy with bit-depth reduction squeezing. The red dots represent the oracles’ accuracy.

TABLE III: Impact on accuracy with other input distortion
methods. ⋆ refers to local smoothing method (with a
median sliding window of (3,3)). † refers to non-local
smoothing method (with a searching window of (13, 13),
patch size is (3, 3) and filter strength is 2). We compare
the accuracy of the original NN and the extracted NN.

Counter-
measure

NN
784-

32-10
784-256
-32-10

784-256-
64-32-10

784-256-128
-64-32-10

LS⋆
ori. 95.03% 94.98% 95.82% 96.14%
ext. 95.03% 94.98% 95.85% 96.24%

NLS† ori. 94.3% 93.73% 94.58% 95.04%
ext. 94.3% 93.73% 94.34% 94.61%

AD
ori. 94.15% 90.53% 94.31% 94.7%
ext. 94.15% 90.53% 94.21% 94.5%

B. With AdaptiveDenoising

As mentioned, AD first calculates the input entropy and
then chooses the denoising methodology. The input goes
through a quantization process similar to bit-depth reduction
and spatial filter smoothing. The difference, however, is that
the parameters are not manually tuned but automatically
adjusted based on entropy. The results of model extraction
with AD are present in the last two rows of Table III.

C. Limitations

Although we have shown that our proposed LSR can
extract large-scale deep neural networks with very few queries
and achieve high accuracy, it has the following limitations.

Activation function: Our method has been tested on a
bijective activation function. The adversary can exploit the
bijective property and find the pre-activation value in each
layer through scan chains to build intra-layer linear systems.
Extension to non-bijective activation functions (e.g. ReLU)
would be interesting future work.

Improvement in fidelity: Fidelity is not guaranteed in our
approach, because uniformly distributed random inputs are
not fully compatible with the heavy non-linearity of deeper
networks. Due to this, it is common for Qi for large i to
be rank-deficient. Coupling input generation strategies with
non-linearity would be interesting future work.

VII. CONCLUSIONS

We demonstrate a more powerful scan-chain attack com-
pared to the state-of-the-art, which is capable of scal-
ing to deeper/larger networks with random queries and

layer-constrained least-squares regression. The proposed
method shows ≈ 32% improvement in the classifier’s ac-
curacy on average, and multiple orders of reduction in
queries, thereby demonstrating scalability. The proposed
extraction methodology is also effective in the presence
of existing countermeasures like FeatureSqueezing and
AdaptiveDenoising. Further, we have demonstrated that
it is possible to systematically trade-off queries with accuracy
within our least-squares framework.

ACKNOWLEDGEMENT

The research work described in this paper was conducted
in the JC STEM Lab of Intelligent Design Automation funded
by The Hong Kong Jockey Club Charities Trust.

REFERENCES

[1] F. Tramèr et al, “Stealing Machine Learning Models via Prediction APIs,” in
USENIX Security Symposium, 2016, pp. 601–618.

[2] B. Wang and N. Z. Gong, “Stealing hyperparameters in machine learning,” in
IEEE Symposium on Security and Privacy (SP), May 2018, pp. 36–52.

[3] M. Juuti et al, “PRADA: Protecting Against DNN Model Stealing Attacks,” in
IEEE European Symposium on Security and Privacy, 2019, pp. 512–527.

[4] D. Rolnick and K. P. Kording, “Reverse-engineering deep ReLU networks,” in
ICML, vol. 119, 2020, pp. 8178–8187.

[5] N. Carlini, M. Jagielski, and I. Mironov, “Cryptanalytic Extraction of Neural
Network Models,” in CRYPTO, vol. 12172, 2020, pp. 189–218.

[6] M. Jagielski et al, “High accuracy and high fidelity extraction of neural
networks,” in USENIX Security Symposium, 2020, pp. 1345–1362.

[7] D. Lowd and C. Meek, “Adversarial learning,” in ACM SIGKDD International
Conference on Knowledge Discovery in Data Mining, 2005, pp. 641–647.

[8] N. Papernot et al, “Practical black-box attacks against machine learning,” in
AsiaCCS, 2017, pp. 506–519.

[9] T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg, “BadNets: Evaluating Backdooring
Attacks on Deep Neural Networks,” IEEE Access, vol. 7, pp. 47 230–47 244,
2019.

[10] S. Potluri and A. Aysu, “Stealing neural network models through the scan
chain: A new threat for ML hardware,” ICCAD, pp. 1–8, 2021.

[11] “1149.1-2013 - IEEE Std. for Test Access Port and Boundary-Scan,” 2013.
[Online]. Available: https://standards.ieee.org/standard/1149_1-2013.html

[12] W. Xu et al, “Feature Squeezing: Detecting adversarial examples in deep
neural networks,” in Network and Distributed System Security Symposium,
2018.

[13] B. Liang et al, “Detecting adversarial image examples in deep neural
networks with adaptive noise reduction,” IEEE Transactions on Dependable
and Secure Computing, vol. 18, no. 1, pp. 72–85, 2021.

[14] “ASE Group Test Service,” 2021. [Online]. Available: https://ase.aseglobal.
com/en/products/test

[15] X. Feng and Z. Zhang, “The rank of a random matrix,” Applied Mathematics
and Computation, vol. 185, no. 1, pp. 689–694, 2007.

[16] K. He, “SVD in machine learning: Underdetermined least squares,” The
University of Chicago, Tech. Rep., 2019.

[17] Y. LeCun, C. Cortes, and C. J. Burges, “The MNIST database of handwritten
digits.” [Online]. Available: http://yann.lecun.com/exdb/mnist/

[18] D. P. Kingma et al, “Adam: A method for stochastic optimization,” ArXiv,
2014.

[19] “scipy.optimize.linprog,” 2021. [Online]. Available: https://docs.scipy.org/
doc/scipy/reference/optimize.html

[20] “scipy.ndimage.median_filter,” 2021. [Online]. Available: https://docs.scipy.
org/doc/scipy/reference/generated/scipy.ndimage.median_filter.html

[21] “Denoising: Computational Photography,” 2022. [Online]. Available:
https://docs.opencv.org/4.x/d1/d79/group__photo__denoise.html

!

!


	Select a link below
	Return to Previous View
	Return to Main Menu


