
Memristor-Spikelearn: A Spiking Neural Network
Simulator for Studying Synaptic Plasticity under

Realistic Device and Circuit Behaviors
Yuming Liu∗ Angel Yanguas-Gil† Sandeep Madireddy† Yanjing Li∗

∗The University of Chicago, Chicago, IL, USA †Argonne National Laboratory, Lemont, IL, USA

Abstract—We present the Memristor-Spikelearn simulator
(open-sourced), which is capable of incorporating detailed mem-
ristor and circuit models in simulation to enable thorough study
of synaptic plasticity in spiking neural networks under realistic
device and circuit behaviors. Using this simulator, we demonstrate
that: (1) a detailed device model is essential for simulating synaptic
plasticity workloads, because results obtained using a simplified
model can be misleading (e.g., it can overestimate test accuracy by
up to 21.9%); (2) detailed simulation helps to determine the proper
range of conductance values to represent weights, which is critical
in order to achieve the desired accuracy-energy tradeoff (e.g.,
increasing the conductance values by 10× can increase accuracy
from 70% to 83% at the price of 20× higher energy); and (3)
detailed simulation also helps to determine an optimized circuit
structure, which is another important design parameter that can
yield different accuracy-energy tradeoffs.

Index Terms—spiking neural network, synaptic plasticity,
memristor-based designs

I. INTRODUCTION

Memristor-based implementations of synaptic plasticity in
spiking neural networks (SNNs) provide a promising approach
towards energy-efficient online learning [1]–[7]. Such designs
are typically structured as crossbars, and the synaptic weights
of a SNN are represented as memristor conductance values. To
achieve online learning, conductance values need to be updated
based on the corresponding weight value changes required by
the synaptic plasticity algorithm.

A key challenge of designing these memristor-based designs
is that the change in conductance (∆G) of a memristor device
may not exactly match the desired change in the corresponding
weight (∆Wd). This is because ∆G depends not only on
the input voltage V , but also on the current conductance Gi

of the same device. To be specific, ∆G = hi(V ), where
the hi functions can be different for different Gi values and
are determined uniquely by the specific device characteristics.
Therefore, we must design memristor crossbars together with
synaptic plasticity algorithms carefully to mitigate any discrep-
ancies between the desired and actual weight update amounts;
otherwise, the desired accuracy targets may not be achieved.

A naive solution is to determine V such that ∆G and ∆Wd

always match (by using the inverse of the correct hi given
Gi). However, this approach can incur prohibitive costs. For
example, in many existing memristor crossbar designs [2]–[4],
[6], [7], one input voltage signal is shared across all cells in
a row or column to avoid the high overhead of generating a
separate signal for each cell. Since the current conductance

values Gi’s, and thus the hi functions, can be different for the
cells sharing the same input voltage, calibrating the voltage
for individual cells will not work. Even if a signal could
be dedicated to each cell, for real-world tasks it would be
extremely inefficient to re-calibrate every voltage signal every
time the conductance is required to change.

Other potential solutions include (1) mapping weight values
in higher memristor conductance ranges, which reduces the
dependence of ∆G on Gi at the price of increased energy costs;
(2) devising more complex circuit structures to offset the dis-
crepancies between ∆Wd and ∆G; (3) creating hardware-aware
synaptic plasticity algorithms so that the discrepancies between
∆Wd and ∆G can be tolerated. Although only a few examples
are listed, there are many opportunities for inventing new, novel
solutions. To facilitate research for tackling this important co-
design challenge, it is crucial to support realistic simulations of
real-world SNN synaptic plasticity workloads while taking into
consideration realistic memristor device and circuit behaviors.
However, currently no methods or infrastructures exist for this
purpose (more details in Sec. II-E).

To close this gap, we present a new simulator, called
Memristor-Spikelearn, which is capable of incorporating device
and circuit details to enable the study and benchmarking of
different memristor crossbar designs (using various device
configurations and circuit structures) and synaptic plasticity
algorithms under realistic conditions. Using this simulator, we
simulated two SNN online learning workloads, both are used
to classify the MNIST dataset but they use different synaptic
plasticity algorithms. We experimented with two device models:
a simplified model and a detailed, realistic model, as well as
two different circuit structures: 1R and 1T1R, where each cell
in the crossbar consists of one memristor and one transistor
together with one memristor, respectively. The key results are:

1. Models that do not capture realistic device characteristics
can produce misleading results. For example, when the sim-
plified device model is used, accuracy can be overestimated
by up to 12.8% and 21.9% for the two workloads used in our
experiments, for the 1R circuit structure. Moreover, for the first
workload, the energy cost required to achieve a 82% accuracy
target is underestimated by 5.3× when the simplified device
model and the 1R circuit structure are used.

2. To obtain the desirable accuracy/energy targets, it is
critical to determine the proper range of conductance values to
represent the weight values. For example, for the first workload

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA 

	



in our study, when the 1R circuit and the detailed device model
are used, mapping the unit weight 1 to the conductance value
10−5S yields 70% accuracy while incurring an energy cost
of 0.85nJ/image, while mapping the same weight value to
10−4S increases the accuracy to 83%, but it also increases the
energy cost by 20×.

3. Different circuit structures can yield different accuracy-
energy tradeoffs, which provides another dimension for design
space exploration. For example, while the structure of the
1T1R circuit is larger and consumes higher power than the 1R
circuit, it can partially offset the discrepancies between ∆G
and ∆Wd, thereby allowing weight values to be mapped to
lower conductance ranges to minimize energy costs for online
learning workloads. For example, for the first workload in
our experiments, the 1T1R design consumes 17× less training
energy than the 1R design without sacrificing test accuracy.

In summary, the main contributions of this paper are:
(1) The key observation, confirmed by our results, that it

is essential to study memristor-based designs together with
synaptic plasticity algorithms under realistic device and circuit
behaviors.

(2) The design and implementation of Memristor-Spikelearn,
the first simulator that incorporates detailed device and circuit
models in the simulation of realistic synaptic plasticity work-
loads. We have open sourced this simulator [8].

(3) The accuracy and energy results obtained using
Memristor-Spikelearn for different workloads, device models,
and circuit structures, which provide new insights.

II. BACKGROUND AND RELATED WORK

A. Spiking Neural Network (SNN)

A SNN consists of neurons that communicate to each other
by exchanging spikes, similar to biological neurons, to accom-
plish various tasks such as image recognition, object tracking,
navigation, and motion detection. Neurons are connected by
unidirectional synapses, and each synapse carries a weight
value. A synapse accepts spikes generated by the pre-synaptic
neuron, multiplies them by its weight, and propagates the
weighted spikes to its post-synaptic neuron. The potential of
a neuron is typically determined by accumulating the values of
all in-coming spikes. Once its potential reaches a threshold, the
neuron will generate a spike, and its potential will drop to the
reset level [9].

B. Synaptic Plasticity

Synaptic plasticity algorithms change the synaptic weights in
a SNN based on spike activities collected during the training
process (and, optionally, external information such as golden
prediction results for supervised learning) to enable online
learning. Common forms of synaptic plasticity include STDP
(spike timing dependent plasticity), modulated STDP, and fully-
supervised plasticity [10]. We discuss some examples of synap-
tic plasticity algorithms (the ones used in our experiments) in
more details in Sec. IV-B.

C. Memristor Crossbar Designs for SNN Workloads

In crossbars designed for SNN workloads, the inputs of each
row and outputs of each column correspond to the pre- and
post-synaptic neurons for a set of synapses, respectively, and the
conductance of memristors correspond to the synaptic weights.
Typical circuit structures of a cell include 1R [1], [5], 1T1R
[2]–[4], and 2T1R (two transistors, 1 memristor) [6], [7].

Figure 1 illustrates the circuit structures (1R and 1T1R),
SNN to crossbar mapping, along with the circuit activities for a
2×2 fully-connected layer for three operating modes: (1) Spike
propagation mode used for both inference and training, which
generates spikes in post-synaptic neurons given the spikes from
pre-synaptic neurons. In Fig. 1, we use the orange texts to
annotate how a spike from pre-synaptic neuron 1 propagates
to both post-synaptic neurons. (2/3) weight update mode used
in training, which is triggered by spikes in post-/pre-synaptic
neurons (the synaptic plasticity algorithm decides whether one
or both update modes are required). Conductance (weight)
updates are only applied to the columns/rows that receive post-
/pre-synaptic spikes, and the amounts of conductance change is
specified as input voltages to the rows/columns (so this amount
is the same for all memristors in the same row/column). In
Fig. 1, the blue/green texts annotate an example where weight
updates are triggered after pre-synaptic neuron 1/post-synaptic
neuron 2 generates a spike.

A synaptic weight (wij) is linearly mapped to the conduc-
tance of the corresponding memristor element in the crossbar:
Gij = wij ∗ G1, where G1 specifies the conductance for unit
weight 1. The choice of G1 is an important consideration
because it affects not only the energy consumption, but also
the accuracy of a workload – as discussed in Sec. I, since
the change in conductance depends on the current conductance
state, certain G1 values can lead to larger discrepancies between
the actual and desired weight values than others.

D. Memristor models

We classify existing memristor models into three types based
on their respective levels of details, as summarized in Table I.
Simplified device models, which are widely adopted in previous
work, are inadequate for the purpose of studying memristor-
based implementation of synaptic plasticity (see Sec. V-A).

TABLE I
MEMRISTOR MODEL TYPES

Type Examples How
realistic?

Captures ∆G’s
dependence on G?

Physical PDE-based [11] Most realistic Yes; validated under
fast voltage sweeps

Semi-
empirical

Compact model
for HfOx [12] and
TiO2 [13] devices

Reasonable
Yes; validated under

voltage pulses or
fast voltage sweeps

Simplified TEAM [14],
VTEAM [15] Unrealistic No

E. Prior Work

Multiple SNN simulation frameworks exist; however, they
are not adequate for studying synaptic plasticity implemented
in memristor-based designs. Nengo-dl [16] supports the training
of SNNs as conventional ANNs (Artificial Neural Networks)

!

!



(a) 1R cell circuit structure

(b) 1T1R cell circuit structure

Fig. 1. Memristor crossbar designs and operations to execute SNN workloads,
using a 2× 2 fully-connected SNN layer as an example.

using back-propagation. SnnToolbox [17] is only capable of
converting ANNs to SNNs. Neither Nengo-dl nor SnnToolbox
supports synaptic plasticity algorithms developed for SNNs.
Both Nengo [18] and Brian [19] allow various forms of synaptic
plasticity to be specified, but they lack the proper interface
for incorporating device and circuit details. In BindsNET [20],
synaptic plasticity algorithms are tied to network topology,
making it difficult to flexibly implement any given algorithms
and to incorporate device and circuit details.

Previous work on synaptic plasticity algorithms assumes that
weights are always updated exactly as specified without consid-
ering whether inexact updates can be tolerated [21]–[25]. In [3],
[4], [6], [7], special synaptic plasticity algorithms are tailored
for the specific memristor device and circuit designs. However,
the workloads used are quite simple (e.g., memorizing one or
several input patterns), and the generality/scalability of such
algorithms has not been demonstrated.

III. THE DESIGN AND IMPLEMENTATION OF
MEMRISTOR-SPIKELEARN

We devise a new simulation framework, Memristor-
Spikelearn, to overcome the limitations of previous work dis-

cussed above. The key features of the simulator include: (1)
It allows crossbar designs using different devices and circuit
structures to be flexibly modeled. (2) It provides modular
design, isolating device/circuit modeling from SNN modeling
to achieve extensibility. (3) It allows automated procedures to
be integrated to perform large-scale design space exploration
and benchmarking studies.

A. Base Simulator Design: Spikelearn

We designed Memristor-Spikelearn based on the Spikelearn
simulator [26], implemented in Python. Figure 2 shows a
block diagram of Memristor-Spikelearn, where the original
Spikelearn components are outlined in black boxes.

SNN is the top-level base class, which instantiates (1) Layer,
which represents neurons, and (2) BaseSynapse, which repre-
sents synapses that connect two groups of neurons with any
given topology. From these classes, various subclasses can be
defined. For example, the LIF class implements the leaky-
integrate and fire neurons [9], [27], and the PlasticSynapse class
implements synapses with STDP functionalities. Input spikes
are passed through input ports defined in the SNN class to
connect to the BaseSynapse instances. The step method in SNN
is used to advance simulation by one time step. At each time
step, spikes generated in the previous time step along with input
spikes in the current time step are passed to the call method in
the BaseSynapse class, and the step method of neurons (in the
Layer class) are also invoked to simulate spike activities. The
output spikes of neurons are then recorded for the next time
step, or as network outputs.

B. New Features Essential for Simulating Memristor-based
Synaptic Plasticity

The original Spikelearn optimistically assumes that ∆G
always exactly match the desired ∆Wd. To incorporate realistic
device and circuit behaviors in simulation, we augmented the
original simulator with three new classes: PlasticSynapseCir-
cuit, SynapseCell, and Data driven. Together they serve as a
flexible interface to allow different device models and circuit
structures to be specified, as shown in Fig. 2.

To add a new device model to present a synapse using one
memristor (1R), a new class that inherits SynapseCell will need
to be defined. The key methods in this class (deltaG to signal
and update) are used to calculate and apply the actual ∆G
based on the corresponding ∆Wd, so ∆G is different for
different device models for the same ∆Wd.

To perform simulation using more complex circuit structures
(e.g., 1T1R or 2T1R) than 1R, we created the Data driven
class, derived from SynapseCell, in which a lookup table
is provided to store ∆G values under various combinations
of memristor voltage, current, and conductance values. The
information required by the table may be obtained through
detailed circuit/device simulations. Memristor-Spikelearn refers
to this lookup table throughout the simulation to apply the
actual weight changes to each synapse in the network.

Furthermore, each PlasticSynapseCircuit object is capable
of estimating its total energy consumption by accumulating
the energy consumed for every spike propagation and weight

!

!



Fig. 2. The block diagram of Memristor-Spikelearn, showing the major classes and key methods.

update operation, which is obtained based on the device/circuit
models.

IV. EXPERIMENT SETUP

To showcase the capability of Memristor-Spikelearn and also
to obtain new insights on memristor-based implementations of
synaptic plasticity in SNNs, we implemented and conducted
various experiments using different device/circuit models and
workloads. All experiments were run on Intel(R) Xeon(R)
Silver 4116 servers.

A. Device and Circuit Models

We experimented with the following crossbar designs: (1)
1R cells with a semi-empirical HfOx memristor model [12]
(Chen 15 in Fig. 2); (2) 1R cells where memristors are modeled
using VTEAM [15]; and (3) 1T1R cells with the same semi-
empirical device model as (1). We specified the information
required by the lookup table in the Data driven class by
sweeping the memristor conductance, the voltage on the gate of
transistor, and the voltage on the top terminal of the memristor
in HSPICE simulation to determine the actual conductance
change under each combination of these circuit parameters. A
Verilog-A implementation of the semi-empirical model is used
to model the memristor in HSPICE simulation. In addition,
a software baseline is implemented where all weight updates
exactly match the amounts specified by the algorithms.

B. Workloads

We ran experiments using two workloads, both of which
are used to classify the MNIST dataset. The first workload
(Workload 1) implements a STDP-based unsupervised algo-
rithm [24]. The SNN consists of three layers. The input
layer encodes each pixel as a Poisson spike sequence. Then
a set of excitatory synapses fully connect the input layer to
400 excitatory neurons in second layer . The weights of the

excitatory synapses are trainable. The third layer consists of 400
inhibitory neurons. Each excitatory neuron is connected to one
inhibitory neuron, and each inhibitory neuron is connected to all
excitatory neurons except its input excitatory neuron to provide
lateral inhibition [24]. The weights of the synapses connecting
the second and third layers are treated as hyper-parameters and
are not changed during training. To train the SNN, the full
MNIST training/test sets of 60, 000/10, 000 images are used for
training/testing, respectively. First, the weights of the excitatory
synapses are updated in an unsupervised manner: each training
sample is presented as input spikes for 1, 000 time steps, during
which the amount of weight change of a synapse upon a spike
of its pre- or post-synaptic neuron is exponential wrt. the time
since the last spike. Afterwards, a supervised procedure assigns
labels to the excitatory neurons: each neuron is assigned the
digit to which it fires the most frequently during the last 10, 000
training samples. For inference, the digit predicted for a sample
is the one with the highest average spike count among all
excitatory neurons of the same label.

To simulate this workload in Memristor-Spikelearn, the Sec-
ondOrderLayer and HomoeostasisLayer classes were added
(outlined by green boxes in Fig. 2), as they are required to
model neuron behaviors required by the algorithm.

In the second workload (Workload 2), the SNN is a fully-
connected network with 784 input neurons, 1, 500 hidden
neurons, and 10 output neurons (corresponding to the 10 classes
in MNIST). During inference, each pixel of an input image
is converted into a series of spikes spanning 49 time steps
and is fed to each input neuron. The output neuron that
generates the most spikes during the next 49 steps provides
the predicted digit. To train the weights of all synapses in this
SNN, an algorithm that approximates gradient descent [25] is
used, and 33, 000 training samples and 1, 000 testing samples
are randomly selected from the MNIST training and testing

!

!



datasets, respectively. Each training sample is presented as input
spikes for 49 time steps. At the end of every update interval
(7 time steps), an error value is assigned to each hidden and
output neuron. The error of an output neuron is set to 1 if
it corresponds to the correct label but does not generate any
spike in this interval, −1 if it corresponds to an incorrect label
but generates spike(s) in this interval, and 0 otherwise. The
error vector of the hidden neurons is the product of the output
neuron error vector and the weight matrix between the hidden
and output layers (except that if no spike is generated by a
hidden neuron during this interval, its error value is adjusted to
0). After assigning error values, all pre-synaptic spikes from the
first two layers in this interval are replayed. During replay, if a
synapse receives a spike, its weight update amount is calculated
by multiplying the learning rate with the error value of its post-
synaptic neuron.

C. Parameter Mapping

As discussed in Sec. II-C, G1 (the conductance value used
to represent unit weight 1) is an important design parameter. In
our experiments, we swept different values of G1. For each G1

value, we also experimented with various learning rates. The
accuracy reported for each G1 value is the the best accuracy
that is achieved across different learning rates.

V. RESULTS

A. Accuracy Results using Different Memristor Models

For the 1R design, when either VTEAM or the semi-
empirical device model is used, the accuracy of Workload
1 cannot reach the same accuracy as the software baseline
(Fig. 3). For Workload 2, accuracy comparable to the soft-
ware baseline is only achieved if weights are mapped to
high conductance ranges (Fig. 4). Moreover, the test accuracy
obtained when using the semi-empirical model can be quite
different from that obtained using VTEAM. For Workload
1, when G1 = 10−5S, simulation using the semi-empirical
device model shows significantly lower test accuracy than the
software baseline (70%, down from 86%), while simulation
using VTEAM indicates a test accuracy of 79%. The maximum
accuracy gap between the two models is 12.8%, which occurs
at G1 = 7× 10−6S. In higher conductance ranges (e.g., when
G1 = 10−4S), the accuracy gaps are much smaller.

Similar trends also exist in the results for Workload 2, as
shown in Fig. 4. When G1 is mapped to a lower conductance
value (e.g., 1.4 × 10−5S), simulation with the semi-empirical
model shows a significant test accuracy degradation compared
to the software baseline, while using VTEAM overestimates the
test accuracy by up to 21.9%. For G1 ≥ 5×10−5S, simulations
using these two models lead to similar test accuracy results.

To explain these differences, we analyzed the device models.
In both models, the maximum resistance is Roff = 2.2MΩ.
wmin, the minimum weight value that can be represented
in the circuit, can be derived accordingly (it is 0.0044 and
0.044 when G1 is 10−4S and 10−5S, respectively). A higher
wmin value contributes to lower accuracy because weight
values smaller than wmin are required by the workloads. The

significant accuracy loss observed using the semi-empirical
model when G1 is small (e.g., when it is 10−5S) is due to
the larger degree of switching non-uniformity (i.e., the rate
of conductance change depends more heavily on the current
conductance state). VTEAM is not capable of revealing this
problem as it assumes the same conductance change rate for
all conductance values; therefore, it incorrectly suggests that
setting G1 to a small value (e.g., 10−5S) leads to reasonable
accuracy for both workloads. These results clearly confirm our
key observation that it is critical to incorporate detailed device
models that capture realistic device behavior.

Fig. 3. Energy and accuracy results of Workload 1. The network is trained for
2 epochs (i.e. 2 iterations through all training samples), and then evaluated for
test accuracy.

Fig. 4. Energy and accuracy results of Workload 2. The network is trained for
3 epochs, and then evaluated for test accuracy.

B. Accuracy Results using Different Circuit Designs

For Workload 1, high test accuracy (∼ 82%) is achieved
even when G1 is as low as 10−5S for the 1T1R design
(below this range, the accuracy drops because the minimum
weight value that can be presented becomes too high). For
the 1R design, a similar accuracy is achieved only with a
much higher G1 of 10−4S, while a lower G1 value results in
much lower accuracy. This is due to significant non-uniformity
of switching for the 1R synapses as discussed in Sec. V-A.
This effect is less significant in the 1T1R design, because for
weight updates upon post-synaptic spikes (as shown in Fig. 1b
with green annotations), a desired ∆Wd is translated into the
current applied on the corresponding memristor device. Since
voltage changes linearly wrt. current, it partially offsets the
non-uniform switching effect.

!

!



C. The Impact of Weight-Conductance Mapping on Accuracy-
Energy Tradeoffs

We performed experiments with different values of G1 to
investigate its impact on accuracy-energy tradeoffs. Results
for Workload 1 using the 1R design is shown in Fig. 3.
When G1 = 10−5S, the test accuracy is only 70%, and the
training energy is 0.85nJ/image. For G1 = 10−4S, the test
accuracy increases to 83%, but the energy (16.6nJ/image) also
increases significantly (by 20×). For Workload 2 (Fig. 4), when
G1 = 2 × 10−5S, the test accuracy is 95.2% and the training
energy is 4.5nJ/image. When G1 = 7× 10−5S, both the test
accuracy and energy are higher (97.9% and 12.4nJ/image,
respectively).

Comparing the semi-empirical model with VTEAM, they
largely agree on the energy consumption for various G1 val-
ues, showing an approximately linear relationship. The only
exception is for Workload 2, when the accuracy is low, simu-
lations using the semi-empirical model indicate higher energy
consumption results than those obtained from simulations us-
ing VTEAM. This is because, the number of weight update
operations is inversely proportional to the accuracy for this
workload (note that this does not apply to Workload 1). Since
VTEAM suggests higher accuracy, this means less weight
update operations, and thus lower energy consumption.

However, VTEAM cannot be used to accurately determine
accuracy-energy tradeoffs because it can over-estimate accuracy
significantly. For example, in Workload 1, if an accuracy of
82% is required, simulations using VTEAM suggest that G1

can be set to 2×10−5S, yielding a low energy consumption of
3.1nJ/image. This result is too optimistic – it is > 5× lower
than that obtained from the realistic semi-empirical model.

Comparing the 1R design with the 1T1R design, the latter is
more complex and generally less energy efficient for inference
[28]. However, for training, the 1T1R design may allow G1 to
take on a much smaller value than what is required by the
1R design without sacrificing accuracy, thereby resulting in
lower training energy (e.g., by 17× for Workload 1 with a 82%
accuracy target as shown in Fig. 3). The takeaway here is that
different circuit structures can yield different accuracy-energy
tradeoffs, which provides another dimension in design space
exploration for memristor-based implementations of synaptic
plasticity in SNNs.

VI. CONCLUSION

We present the Memristor-Spikelearn simulator to enable
the study of memristor-based implementations of synaptic
plasticity in SNNs under realistic device and circuit behav-
iors. Memristor-Spikelearn is designed with extensibility and
scalability in mind. We have open-sourced this framework, and
our eventual goal is a powerful infrastructure encompassing
rich and diverse libraries of device and circuit models, SNN
architectures, synaptic plasticity algorithms, and online learning
tasks to facilitate future research.

ACKNOWLEDGMENT

This work was supported by DOE ASCR and BES Mi-
croelectronics Threadwork. This material is based upon work

supported by the U.S. Department of Energy, Office of Science,
under contract number DE-AC02-06CH11357.

REFERENCES

[1] Y. Wang et al., “Energy efficient rram spiking neural network for real
time classification,” in GLSVLSI, 2015.

[2] S. Ambrogio et al., “Spike-timing dependent plasticity in a transistor-
selected resistive switching memory,” Nanotechnology, sep 2013.

[3] S. Ambrogio et al., “Neuromorphic learning and recognition with one-
transistor-one-resistor synapses and bistable metal oxide rram,” IEEE
Transactions on Electron Devices, 2016.

[4] G. Pedretti et al., “Stochastic learning in neuromorphic hardware via
spike timing dependent plasticity with rram synapses,” IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, 2018.

[5] D. Querlioz et al., “Simulation of a memristor-based spiking neural
network immune to device variations,” in IJCNN, 2011.

[6] S. Kim et al., “Nvm neuromorphic core with 64k-cell (256-by-256)
phase change memory synaptic array with on-chip neuron circuits for
continuous in-situ learning,” in IEDM, 2015.

[7] Z. Wang et al., “A 2-transistor/1-resistor artificial synapse capable of com-
munication and stochastic learning in neuromorphic systems,” Frontiers
in neuroscience, 2015.

[8] Y. Liu et al. https://github.com/YLab-UChicago/Memristor-Spikelearn.
[9] F. Ponulak et al., “Introduction to spiking neural networks: Information

processing, learning and applications.,” Acta neurobiologiae experimen-
talis, 2011.

[10] J. C. Magee et al., “Synaptic plasticity forms and functions,” Annual
review of neuroscience, 2020.

[11] S. Larentis et al., “Resistive switching by voltage-driven ion migration in
bipolar rram—part ii: Modeling,” IEEE Transactions on Electron Devices,
2012.

[12] P.-Y. Chen et al., “Compact modeling of rram devices and its applications
in 1t1r and 1s1r array design,” IEEE Transactions on Electron Devices,
2015.

[13] M. D. Pickett et al., “Switching dynamics in titanium dioxide memristive
devices,” Journal of Applied Physics, 2009.

[14] S. Kvatinsky et al., “Team: Threshold adaptive memristor model,” IEEE
Transactions on Circuits and Systems I: Regular Papers, 2013.

[15] S. Kvatinsky et al., “Vteam: A general model for voltage-controlled
memristors,” IEEE Transactions on Circuits and Systems II: Express
Briefs, 2015.

[16] D. Rasmussen, “Nengodl: Combining deep learning and neuromorphic
modelling methods,” Neuroinformatics, 2019.

[17] B. Rueckauer et al., “Conversion of continuous-valued deep networks
to efficient event-driven networks for image classification,” Frontiers in
Neuroscience, 2017.

[18] T. Bekolay et al., “Nengo: a python tool for building large-scale functional
brain models,” Frontiers in neuroinformatics, 2014.

[19] M. Stimberg et al., “Brian 2, an intuitive and efficient neural simulator,”
eLife, vol. 8, aug 2019.

[20] H. Hazan et al., “Bindsnet: A machine learning-oriented spiking neural
networks library in python,” Frontiers in neuroinformatics, 2018.

[21] S. R. Kheradpisheh et al., “Stdp-based spiking deep convolutional neural
networks for object recognition,” Neural Networks, 2018.

[22] G. Srinivasan et al., “Restocnet: Residual stochastic binary convolutional
spiking neural network for memory-efficient neuromorphic computing,”
Frontiers in neuroscience, 2019.

[23] P. Ferré et al., “Unsupervised feature learning with winner-takes-all based
stdp,” Frontiers in Computational Neuroscience, 2018.

[24] P. U. Diehl et al., “Unsupervised learning of digit recognition using spike-
timing-dependent plasticity,” Frontiers in computational neuroscience,
2015.

[25] A. Tavanaei et al., “Training spiking convnets by stdp and gradient
descent,” in IJCNN, 2018.

[26] A. Yanguas-Gil et al., “Automl for neuromorphic computing and
application-driven co-design: asynchronous, massively parallel optimiza-
tion of spiking architectures,” in ICRC, 2022.

[27] M. Bouvier et al., “Spiking neural networks hardware implementations
and challenges: A survey,” J. Emerg. Technol. Comput. Syst., apr 2019.

[28] D. Niu et al., “Design of cross-point metal-oxide reram emphasizing
reliability and cost,” in 2013 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2013.

!

!


	Select a link below
	Return to Previous View
	Return to Main Menu


