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Abstract—Applications memory-map file data stored in the
persistent memory and expect both high performance and fail-
ure atomicity. State-of-the-art NOVA and Libnvmmio guarantee
failure atomicity but yield inferior performance. They enforce data
staying fresh and intact at the mapped addresses by continually
updating the data there, thereby incurring severe write amplifica-
tions. They also lack the adaptability to dynamic workloads and
entail housekeeping overheads with complex designs. We hence
propose Acumen with a group of reflection pages managed for a
mapped file. Using a simplistic bitmap to track fine-grained data
slices, Acumen makes a reflection page and a mapped file page
pair to alternately carry updates to achieve failure atomicity. Only
on receiving a read request will it deploy valid data from reflection
pages into target mapped file pages. The cost of deployment is
amortized over subsequent read requests. Experiments show that
Acumen significantly outperforms NOVA and Libnvmmio with
consistently higher performance in serving a variety of workloads.

Index Terms—Memory-map, Persistent Memory, Atomicity

I. INTRODUCTION

Persistent memory (pmem), with byte-addressability, persis-
tency, and fast access speed, provides a promising storage
device to support applications. Manufacturers have shipped
pmem products in NVDIMM [1]–[4] or non-volatile memory
(NVM). Researchers have built new file systems for applica-
tions to explore the potential of pmem in the conventional form
of files [5]–[7]. They mainly utilize the direct access (DAX)
feature that bypasses DRAM page cache for CPU to store and
load file data with pmem. However, the software overhead of
using write and read system calls for file operations is non-
trivial, due to the heavy traversal through multiple software
layers across the user and kernel spaces [7, 8]. It is more
efficient to memory-map file data into a contiguous memory
space with mmap and munmap. Applications use memcpy to
load and store file data mapped in the user’s memory space at
runtime, with evidently reduced software overhead.

With either write or mmap, applications need the under-
lying system software to enable the failure atomicity (all-or-
nothing done) to correctly recover data to a consistent state
upon a crash, e.g., a power outage or kernel panic. To avoid
destroying the original copy for a successful recovery, the
system software makes a backup copy for an in-pmem file page
to be updated by copy-on-write (CoW) or logging [7]–[10].
Before mapping a file page, NOVA creates a replica page and
copies data into the page [6]. It maps the replica page instead of
the original one to receive updates. On a sync request (msync
or fsync), NOVA copies newer data in the replica page back to
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overwrite the file page. Later, Libnvmmio was proposed to use
hybrid logging for failure atomicity before updating mapped file
pages [8]. Libnvmmio counts read and write requests in the past
epoch framed by two consecutive syncs. It adopts undo logging
if the ratio of read requests has reached a threshold (e.g., 40%).
For a more write-intensive workload, it chooses redo logging.

Despite achieving failure atomicity, NOVA and Libnvmmio
yield inferior performance. Both of them cause concrete write
amplifications, as they abide by a de facto principle that systems
must eagerly keep data up-to-date and intact for applications
to access. Note that, after mapping file pages, applications
can only access data at the mapped addresses in the memory-
mapped I/O path. NOVA copies all data elsewhere to serve
current memory-mapped I/Os and copies back for future use.
Libnvmmio, in its either undo or redo logging mode, updates
data at the mapped addresses after logging for the data. How-
ever, data an application freshly writes needs not be ready
in place until the application is to read it. As long as an
application receives correct and genuine data after issuing a
read request, the place where data has been held is unimportant.

NOVA and Libnvmmio also lack the adaptability to dynamic
workloads. NOVA always copies mapped data out and back.
Libnvmmio’s runtime switch on logging modes yet depends on
its knowledge obtained in the past epoch. It may inefficiently
handle I/O requests in the current epoch due to a lag effect.
Worse, Libnvmmio initiates a switch on a sync request. It might
remain ineffectual if applications have a low use of syncs in
a long run. Moreover, Libnvmmio employs a complex multi-
level indexing structure to index log entries for mapped pages,
which incurs substantial housekeeping and traversal costs.

These observations motivate us to develop Acumen to help
applications gain both high performance and failure atomicity
with in-pmem data through a simplistic but effectual design.
• Acumen dedicates an in-pmem reflection page to a mapped

file page that is receiving data updates. To serve fine-grained
sub-page updates, it further partitions a page into slices, with
a bitmap to track the validity of each slice in the file page.

• Acumen writes updated data alternately into either page
without destroying the last valid copy. On a read request, if
the target data stays valid in the reflection page, it deploys
the data into the mapped file page for applications to access
with the mapped address.

Acumen functions as a library with user-friendly interfaces in
the user space, unbound to any particular file system. It writes
data only once without eager in-place updating, and lazily
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triggers a deployment only when an application is to read data
that is invalid in the mapped file page. The cost of deployment
is amortized with subsequent read requests. We implement and
evaluate Acumen with micro- and macro-benchmarks. Acumen
significantly outperforms NOVA and Libnvmmio. Take a write-
intensive workload for example. The throughput of Acumen is
18.9× and 3.2× that of NOVA and Libnvmmio, respectively.

II. BACKGROUND

Pmem. In recent years, computer architects have used
NVDIMM (DRAM backed by flash memory) [1]–[4] or NVM
technologies (e.g., STT-RAM [11] and Intel Optane mem-
ory [12]) to make persistent memory (pmem) products to em-
brace both DRAM’s byte-addressability and disk’s persistency.
New file systems have been built on top of pmem with the
direct access (DAX) feature by which applications directly load
and store data without buffering in DRAM page cache [5]–[7].
Though, using write and read to operate with in-pmem file
data is time-consuming as they frequently switch between user
and kernel spaces and traverse multiple software layers. In order
to reduce software overheads, applications can memory-map a
file and call memcpy to load and store data with pmem.

Atomic memory-mapped update. Mapping file data stored
in pmem matches the byte-addressability of pmem. The persis-
tency of pmem retains data being update after a system crash,
but the crash may leave the update ambiguously half-done if no
failure atomicity is guaranteed. To keep mapped data failure-
atomic is hence a necessity for applications [5]–[10]. State-
of-the-art NOVA and Libnvmmio utilize CoW or logging to
do so [6, 8]. NOVA [6] duplicates file data in replica pages
allocated elsewhere prior to mapping and updates data in them.
On the call of msync or munmap, NOVA copies data back to
refresh original pages. Libnvmmio [8] is a library that employs
hybrid logging. It manages a log per mapped file, in which a
log entry is indexed in a multi-level structure with the in-file
offset as index key. Undo logging records original data in the
log while redo logging logs updated data. Libnvmmio chooses
undo or redo logging according to the counts of read and write
requests in the past epoch framed by two consecutive sync
requests. It uses undo logging by default and transits to redo
logging if writes have taken no less than 40% in all requests.

III. MOTIVATIONAL ANALYSIS

The intention of providing memory-mapped I/Os with the
guarantee of failure atomicity is to exploit pmem’s fast ac-
cess speed, persistency, and byte-addressability. However, the
designs of NOVA and Libnvmmio are ineffectual because of
severe performance overheads in following dimensions.

Firstly, NOVA and Libnvmmio always keep the latest valid
data intact and ready at mapped addresses, due to a de facto
assumption that applications are to access the data at any time.
Whereas, this entails excessive writes when they simultaneously
guarantee the failure atomicity. Fig. 1 illustrates a mapped
page composed of four data items on which an application
consecutively modifies one item twice and then reads it. As
shown in Fig. 1a, NOVA copies original file data into a replica
page ( 1 ) and maps the replica page to serve write and read
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requests ( 2 3 4 ). On the msync request, it copies all data with
updates back to the file ( 5 ). Libnvmmio logs original data with
undo logging by default and puts updated data at the mapped
addresses, writing the same volume of data twice on the critical
path. It logs updated data with redo logging and checkpoints
the data into mapped addresses, regardless of whether the data
is truly to be accessed or not. As the example in Fig. 1 is more
write-intensive, Libnvmmio adopts redo logging. In Fig. 1b,
after each write request ( 2 3 ) Libnvmmio checkpoints updated
data to the file page, but the application only reads the second
version ( 4 ). Therefore, the first checkpoint is unnecessary.

Secondly, NOVA and Libnvmmio lack the adaptability and
flexibility in serving dynamic workloads. NOVA’s CoW strat-
egy always copies mapped pages out and back. Libnvmmio
alternately configures undo or redo logging for read- and write-
intensive workloads, respectively, but triggers a possible switch
on encountering an explicit sync request. This is obviously
inappropriate for workloads without a frequent use of syncs.
Worse, Libnvmmio chooses to use redo or undo logging by
counting historical write and read requests, which may not align
with or even become against ongoing requests. Assuming that
an application alternately switches between being write- and
read-intensive after every sync request while Libnvmmio ini-
tially sets the undo logging as its default, it shall severely suffer
from the lag effect and keep yielding inferior performance.

Thirdly, although Libnvmmio’s logging is more efficient than
CoW, the way it manages a log entry per file page causes non-
trivial overheads. To locate a log entry, Libnvmmio partitions
the in-file offset into five segments and traverses a hierarchical
multi-level indexing structure. With either redo or undo logging,
every write request necessitates a traversal to create a new
logging record (see Fig. 1b). With redo logging, for every read
request, Libnvmmio checks if the latest valid data exists in the
log entry or not, so as not to read out stale data. The cost
of housekeeping and traversal thus aggregates on almost every
request and badly impairs performance.

IV. DESIGN OF ACUMEN

We propose Acumen that performs atomic but lazy updates
with memory-mapped file data for persistent memory. Acumen
manages a reflection page for each mapped file page and makes
a one-to-one staging between them. It alternately writes either
page for failure atomicity but lazily deploys the latest valid data
into the mapped file page only on receiving a read request.

A. Acumen’s Atomic ato_memcpy Interface

To differentiate ordinary memcpy from the atomic memcpy
of Acumen, we introduce a new ato_memcpy which copies
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Fig. 2: An Overview of Acumen’s Components.

data from/to file pages that are mapped into memory with the
guarantee of failure atomicity. We also have ato_mmap and
ato_munmap that initiate and close the mapping between in-
pmem file pages and memory space, respectively.

B. Acumen’s in-DRAM and Pmem Structures

In order to gain high efficiency in housekeeping with the
fast pmem, Acumen incorporates minimal metadata for man-
agement. Fig. 2 shows its structures in pmem and DRAM.
Acumen only stores data and metadata that are essential for
failure atomicity in pmem while placing some metadata in
DRAM to accelerate indexing and searching.

In-pmem structures. For a mapped file, Acumen creates a
staging reflection file in pmem to absorb updates and preserve
failure atomicity. The filename of reflection file is the inode
number of original file, so Acumen leverages the underlying
file system to implicitly record two files’ pairing relation in a
directory entry. Acumen memory-maps both files. A reflection
page (RefPage) is paired to a mapped file page. With regard
to a sub-page update that modifies data less than a page, it
partitions a page into slices in accordance with the size of CPU
cache line. Given the typical page size and cache line size of
4KB and 64B, respectively, a page holds 64 ( 4KB

64B ) slices. To
track if a slice is valid in the mapped file page or the RefPage,
Acumen maintains a validity bitmap in 64 bits (8B) for each
mapped page. The bitmap is the core metadata of Acumen.
Acumen collects 512 ( 4KB

8B ) such bitmaps in a meta page in the
reflection file. As shown in Fig. 2, a reflection file is composed
of multiple chunks and in one chunk there is a meta page and
512 RefPages. Given an offset λo in the original file, we can
calculate its location λr in the reflection file as

λr = λo +

⌊⌊
λo

4096

⌋
/512 + 1

⌋
× 4096 (1)

In-DRAM structures. As shown in Fig. 2, Acumen man-
ages informational metadata in DRAM with a structure named
MmapInfo for a mapped file. An MmapInfo contains multiple
parts, such as the original file’s inode number, descriptor,
length, mapped address, and offset as well as the reflection file’s
metadata like bitmaps. To support simultaneously mapping
multiple files, Acumen builds an index structure for MmapInfos
with the mapped addresses of original files as index keys.

C. Acumen’s Write and Read Procedures

Acumen decouples write from read. It writes data only once
without losing any failure atomicity. Only on receiving a read

request raised by applications will it lazily deploy the latest data
at the mapped addresses if that data stays valid in a RefPage.

Memory-Map. Acumen defines that there is at most one re-
flection file per mapped file even when an application memory-
maps the same file for multiple times. Given a mapping request,
Acumen firstly checks if a reflection file exists with the mapped
file’s inode number as the filename. If not, Acumen creates
a new one and configures its size according to Eq. (1). Then,
Acumen maps the reflection file into the application’s memory
space. Acumen next maps the original file, initializes metadata,
and sets up the file’s MmapInfo with an index inserted.

Write. When a write request arrives in ato_memcpy,
Acumen handles it in the following steps. Firstly, it searches
among MmapInfos and eventually fetches the target page’s
bitmap. As real-world applications continually issue a mixed
stream of full- and sub-page updates, Acumen needs the 64-
bit bitmap to indicate whether the data to be modified stays
valid in the slices of original page (‘0’) or RefPage (‘1’).
For each involved slice, Acumen avoids overwriting the valid
copy but writes newer data into the other file holding the
invalid copy. For example, the bitmap of Page i in Fig. 2 is
0xFFFF00000000FFFF, so the valid data of slices 16 to 47
resides in the original page while the other data is valid in the
RefPage i. On updating, for example, slices 0 to 15, Acumen
writes the newer data into the original page. After writing all
slices for the write request, it modifies in-DRAM and pmem
bitmaps for the page. It also applies a memory fence (e.g.,
sfence) to enforce a persist order between writing data and
updating the in-pmem bitmap and uses the change of in-pmem
bitmap in an 8B atomic write as the end of ato_memcpy.

Read. When a user raises a read request via ato_memcpy,
Acumen firstly fetches the bitmap of target page. If the bits
for involved slices are all ‘0’s, Acumen loads data from the
original page like an ordinary memcpy. Otherwise, it triggers
a deployment. Acumen deploys valid data from the RefPage to
file page and then reads data at the mapped address.

(i) Firstly, Acumen checks the bitmap to find out what slices
should be deployed, i.e., ones with ‘1’s in the bitmap.

(ii) Acumen copies data in such slices from the RefPage to
original file page.

(iii) Next, Acumen sets ‘0’s for deployed slices in DRAM’s
bitmap and persistently updates the in-NVM bitmap using
an 8B atomic write ordered by sfences.

Acumen lazily triggers a deployment only when it receives the
first read request on a mapped page. Subsequent read requests
on the same page amortize the cost of deployment.

Memory-Unmap. When receiving ato_munmap to close a
mapping, Acumen provides two configurable unmap modes. In
the fast mode, it closes both files and frees in-DRAM structures.
On the next ato_mmap, Acumen reuses the same reflection file
and rebuilds in-DRAM structures. In the spatial mode, Acumen
deploys valid data in RefPages and then removes the reflection
file. As a result, the fast mode is faster on exiting and retains the
reflection file. The spatial mode saves pmem space but demands
a new reflection file to be allocated on the next mapping.
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D. Acumen’s Failure Atomicity

Acumen uses memory fences to retain a persist order be-
tween modifying data and the in-pmem bitmap upon an update
or deployment. On platforms without the eADR support, Acu-
men uses cache line flush instructions (e.g., clwb) to manually
flush data and metadata in volatile CPU cache to pmem, while
the eADR guarantees to automatically flush all CPU cache lines
to pmem on a power outage [13]. If an application’s write or
read request involves a single page, Acumen adopts the atomic
change of in-pmem bitmap to mark the success of writing or
deploying slices. If a crash happens before the atomic write,
Acumen regards the latest update failed and the unmodified in-
pmem bitmap still records where valid data stays. If a failure oc-
curs after changing the in-pmem bitmap, the up-to-date bitmap
has already tracked the newest updates that Acumen renders
retrievable for users. When applications do with multiple pages
in one request, Acumen uses hardware transactional memory
(HTM) to atomically change corresponding bitmaps [5]. To
sum up, Acumen secures the failure atomicity and incurs no
ambiguity in updating or reading memory-mapped file data.

E. Implementation for Acumen

To avoid wasting pmem space, Acumen reserves and adjusts
the size of reflection file through the ftruncate1 that does
not truly allocate space until data is written down. Acumen
also calls fallocate2 to deallocate and reclaim an unused
in-pmem reflection page when all bits in the page’s bitmap are
‘0’s, since all valid data is stored in the original page.

Acumen utilizes fine-grained read-write locks to share
in-DRAM structures. For acceleration, it buffers the most-
recently-used (MRU) MmapInfos in an in-DRAM cache (see
Fig. 2). Acumen adopts the red-black tree to index all Mmap-
infos while it uses a linked list to manage the Mmapinfo cache.

F. Optimization and Limitation

Acumen atomically handle write requests with memory-
mapped files and efficiently serve read requests. Its reduced
writes benefit both performance and lifetime for pmem [14, 15].
Yet there exist few special cases that shall be taken into account.

Sparse updating. Application may sparsely update data at
distant locations which, for example, are much greater than
512 pages in the mapped file. As a result, an allocation of
contiguous pages for the reflection file underutilizes pmem
space. To deal with sparse updates, Acumen adds an extra
option to format the meta page, in which alongside a file
page’s bitmap it places the page’s number. Thus, a meta page
compactly indexes 256 ( 4KB

16B ) RefPages. Acumen accordingly
adjusts in-DRAM structures to suit and index new meta pages.

Sharing between multi-processes. Users may employ Acu-
men to concurrently update data with the same mapped file
across multiple processes. They can share the original file and
reflection file with virtual file system (VFS) and underlying
file system through locking/unlocking. But how to concurrently
operate with in-DRAM structures is non-trivial, since each

1https://www.man7.org/linux/man-pages/man3/ftruncate.3p.html
2https://www.man7.org/linux/man-pages/man2/fallocate.2.html

process has its private virtual memory space in DRAM. To
handle this issue of inter-process sharing, Acumen makes use of
POSIX shared memory with shm_open3 and mmap to house
and share the in-DRAM structures for concurrent accesses.

Viability. Acumen is implemented as a library in user space,
not bound to any particular underlying file system. Modifying
applications from memcpy to Acumen’s ato_memcpy is not
difficult. For example, we just change 14 lines of code for
SQLite [16] to use Acumen’s interfaces. Although Acumen is
designed with the context of memory-mapped I/Os, its idea can
be applied to reshape write and read system calls [7, 8].

Mixed use. Like NOVA and Libnvmmio, a mixed use of
ato_memcpy with ordinary memcpy or write is disallowed,
as that may cause mayhem in file data due to different paths
taken in the system software stack. Reading mapped data by
memcpy or read is also likely to leak stale or corrupted data.

Tail latency. Acumen lazily triggers deployments for read
requests and the deployment cost is amortized. Though, Acu-
men incorporates an additional flag in ato_memcpy for appli-
cations that are highly sensitive of a one-time longer tail read
latency. Given a set flag, Acumen eagerly deploys data after
each write while applications can reorganize and optimize their
source codes such that they hide the latency of deployments by
doing something else before launching a read request.

V. EVALUATION

Setup. We have implemented and tested Acumen on a
server with Intel Optane pmem in 1024GB installed. The CPU
is Intel Xeon Gold 6342. The OS is Ubuntu 21.04 with kernel
5.4.206 while the compiler is GCC/G++ 10.3.0. We mount
NOVA file system on pmem with a default page size of 4KB.

We evaluate Acumen to vanilla NOVA and Libnvmmio which
are both open-source. In line with the code of Libnvmmio, all
three perform pmem writes in non-temporal stores [5]. Acumen
and Libnvmmio make atomic updates directly with memcpy
variants while NOVA needs an explicit msync invoked after
a write. To have the same level of failure atomicity, we call
msync after memcpy for NOVA. We choose Fio [17] as the
micro-benchmark. For macro-benchmarks, we run YCSB [18]
and TPC-C [19] on SQLite 3.39.0 [16] configured with the
memory-mapped I/O path. We comprehensively configure these
benchmarks to issue both full- and sub-page I/O requests [6]–
[8]. The main metric to measure performance is throughput.

A. Micro-benchmark

Fio has an mmap I/O engine that generates memory-mapped
I/Os. We make it operate with a 8GB file for 600 seconds while
varying the request size from being sub- to full-page and the
ratio of random read and write requests. Fig. 3 captures three
designs’ throughputs (bandwidths in MB/s) in six diagrams.

Fig. 3a shows how three designs handle an absolute write-
intensive workload that keeps issuing random write requests.
Take 1KB request size for example. The throughput of Acumen
is 18.9× and 3.2× that of NOVA and Libnvmmio, respectively.
The superb performance of Acumen is mainly because it has

3https://www.man7.org/linux/man-pages/man7/shm overview.7.html
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Fig. 3: A Comparison among Acumen, Libnvmmio, and NOVA by Testing with Fio Random Read/Write Workloads

minimized pmem writes and simplistic management strategy.
Given a write-only workload, Acumen does not deploy data but
only writes modified data into either RefPages or original file
page. Comparatively, NOVA has to copy and memory-map all
file pages as replica pages before writing down newer data [6].
It demands an explicit msync and copies newer data back to
make an atomic update. The costs of copying and msyncs are
considerable. The reason why Acumen outperforms Libnvmmio
is twofold. Libnvmmio’s hybrid logging employs an undo log
by default and may switch to redo logging in case that it has
observed a higher write ratio (≥ 40%) in the recent epoch.
Undo logging writes the same volume of data to the log and and
file page, respectively, on the critical path. Redo logging logs
newer data and checkpoints the data to file pages. Both logging
modes must write the same volume of data twice in order to
achieve failure atomicity and, more important, eagerly ensure
that the latest valid data stays at the mapped addresses, thereby
incurring massive pmem writes. However, the lazy deployment
of Acumen transiently decouples writes from reads. It writes
updated data only once but delays necessary deployments until
applications raise a purposeful read request. This properly
matches the access pattern of random writes captured in Fig. 3a.
We have recorded the volume of I/Os executed by three
designs to complete the random write workload. Acumen has
conducted dramatically fewer I/Os than the other two. Without
loss of generality, we still illustrate with 1KB write requests.
The quantity of data Acumen has written is just 20.2% and
48.6% that of NOVA and Libnvmmio, respectively. This in turn
justifies the efficacy and effectiveness of Acumen.

Additionally, in Fig. 3a, Acumen yields the highest perfor-
mance with 2KB request size instead of 4KB. This observation
aligns with experimental results recorded by other researchers
when they were performing non-temporal stores with Intel
Optane pmem [12]. It also suggests to applications on how to
configure and tune their request sizes in doing memory-mapped
I/Os with real-world pmem products for higher performance.

As shown by Fig. 3b to Fig. 3f, with an increasing ratio of
read requests, Acumen keeps yielding superior performance.
For example, on serving the read-intensive workload with a
ratio of 80%/20% for read and write requests, the overall
throughput of Acumen is 2.5× and 1.2× that of NOVA and
Libnvmmio, respectively, with the 1KB request size. The reason
why the performance gap narrows is twofold. Firstly, the impact
of write requests on the overall performance is substantial
but decreases. Copying data to finish write requests inevitably
hurts NOVA’s throughput. The msyncs NOVA needs for failure
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Fig. 4: A Comparison by Testing with YCSB Workloads

atomicity impose barriers that block both afterward write and
read requests. Libnvmmio proceeds with undo logging for this
read-intensive workload but writes the same volume of data
twice on the critical path. However, writes just take up 20%
of all requests. Secondly, Libnvmmio with undo logging and
NOVA directly read data at mapped addresses, while a higher
ratio of read requests might engage Acumen more in deploying
data. Although it amortizes the deployment cost over following
read requests on the same page, the likelihood of successive
accesses onto one page may not be high within Fio’s synthetic
random read pattern. Though, Acumen still prevails over the
other two designs on joint write and read performances.

B. Macro-benchmark

We choose SQLite as the testbed as it is widely used from
data centers to smart phones. We set it with memory-mapped
I/Os in a sufficient maximum mmap size of 120GB. The journal
mode is TRUNCATE. SQLite writes data with the database in a
unit of database page, for which we set four sizes (see Fig. 5).

YCSB. We choose YCSB for two purposes. One is to
evaluate Acumen with workloads in which write and read
requests are continually issued according to realistic semantics.
YCSB has six typical workloads that can be found in real-
world applications. For example, its workload A is known as
SessionStore that records a user’s recent actions in a session.
The other purpose is to test the adaptability and scalability of
Acumen. Take loading data for instance. The SQLite database
file dynamically fluctuates from 11GB to 20GB. Each work-
load’s runtime access behavior is also regularly changing.
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Fig. 5: A Comparison on TPC-C Workload with Multi-threads

Fig. 4 captures the throughputs (bandwidths in MB/s) of
Acumen, Libnvmmio, and NOVA when they load data and
process six workloads. We run ten million records and opera-
tions with the default 1KB key-value size. Note that the Y axis
Fig. 4 is in the logarithmic scale. As shown by four diagrams
with varying database pages, Acumen consistently outperforms
NOVA and Libnvmmio. For example, with workload A that has
50%/50% update/read running atop database pages in 512B,
Acumen’s throughput is 2.4× and 1.2× that of NOVA and
Libnvmmio, respectively. With workload C that is read-only,
three designs achieve comparable performances. The reason
why Acumen yields higher performance with YCSB workloads
is twofold. Firstly, it reduces write amplifications and avoids
pmem writes unneeded for read operations, which is a star con-
trast to NOVA and Libnvmmio. Secondly, Acumen is efficiently
adaptive in doing with the changes of underlying database file
and each workload’s access behavior. For example, when the
database file size changes, all three need to remap the file.
Acumen easily resizes the reflection file (see Sections IV-E).
NOVA must copy back data and recopy it to new replica pages.
Libnvmmio, however, is even more inefficient than NOVA due
to checkpointing data upon munmap and building a new multi-
level indexing structure in line with the resized database file.
This also explains why Libnvmmio’s throughput is lower than
that of NOVA in Fig. 4.

TPC-C. TPC-C [19] is an OLTP workload that differs from
YCSB workloads. It has five types of transactions composed
of select, insert, update and delete operations. More important,
we configure multi-threads when running it to further evaluate
Acumen. We set eight million transactions. We vary the number
of threads and also the database page size of SQLite. As shown
in Fig. 5, all three’s performances degrade with the increase of
threads due to more lock/unlock operations enforced at multiple
software layers. Whereas, Acumen still exhibits consistently
higher throughput. For example, with four threads and 2KB
database page, it completes 124.1% and 29.3% more transac-
tions per second than NOVA and Libnvmmio, respectively. This
confirms Acumen’s efficacy in supporting concurrent memory-
mapped I/Os for realistic multi-threading applications.

VI. CONCLUSION

In this paper, with memory-mapped files stored in pmem,
we develop Acumen. Acumen pairs a reflection page to a
mapped file page and makes them alternately receive updates
by writing data only once to preserve the failure atomicity.
It lazily deploys valid data into mapped addresses only when
applications raise a read request. Extensive experiments show
that Acumen substantially outperforms state-of-the-art works.
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