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Abstract— This paper focuses on iso-on-chip-memory-

capacity and iso-footprint Energy-Delay-Product (EDP) 
benefits of ultra-dense 3D, e.g., monolithic 3D (M3D), 
computing systems vs. corresponding 2D designs. Simply 
folding existing 2D designs into corresponding M3D physical 
designs yields limited EDP benefits (~1.4×). New M3D 
architectural design points that exploit M3D physical design are 
crucial for large M3D EDP benefits. We perform comprehensive 
architectural exploration and detailed M3D physical design 
using foundry M3D process design kit and standard cell library 
for front-end-of-line (FEOL) Si CMOS logic, on-chip back-end-
of-line (BEOL) memory, and a single layer of on-chip BEOL 
FETs. We find new M3D AI/ML accelerator architectural 
design points that have iso-footprint, iso-on-chip-memory-
capacity EDP benefits ranging from 5.3× to 11.5× vs. 
corresponding 2D designs (containing only FEOL Si CMOS and 
on-chip BEOL memory). We also present an analytical 
framework to derive architectural insights into these benefits, 
showing that our principles extend to many architectural design 
points across various device technologies.  

Keywords— Monolithic 3D Integration, 3D Architectures. 3D 
Physical Design, Back-End-of-Line (BEOL) Technologies 

I. INTRODUCTION 
21st-century abundant-data applications, e.g., Artificial 

Intelligence/Machine Learning (AI/ML), place unprecedented 
demands on computing systems. Simultaneously, traditional 
2D lithographic scaling is getting increasingly difficult – the 
miniaturization wall. New integration techniques are needed 
to overcome these challenges and enable large energy and 
speed benefits. Ultra-dense 3D, e.g., monolithic 3D (M3D), 
integration [1] is one such approach. By tightly integrating 
many tiers of logic and memory in 3D with ultra-dense 3D 
inter-layer vias (ILVs, i.e., the same metal vias used in today’s 
back-end-of-line – BEOL – processes for metal routing), M3D 
systems can deliver large benefits in computing speed and 
energy efficiency.  

Several prior studies have focused on the system-level 
benefits of M3D. Some (e.g., [1-2]) have shown how futuristic 
M3D systems leveraging multiple interleaved tiers of compute 
and memory can achieve large improvements in system-level 
energy-delay product (EDP) vs. baseline 2D systems. 
However, these benefits are obtained mostly by bringing large 
amounts of off-chip memory on-chip [1-2] – i.e., the M3D 
chips have much larger amounts of on-chip memory vs. the 
corresponding 2D chips (not iso-on-chip-memory-capacity). 
Other studies (e.g., [3-4]) have explored M3D EDP benefits 
vs. 2D chips obtained solely by leveraging 3D physical design 
for a given architecture design point. These studies focused on 
folding existing 2D designs into M3D (i.e., iso-on-chip-
memory-capacity, iso-architecture design point) with 
optimized place and route across 3D tiers (resulting in ~50% 
reduced footprint in M3D designs along with ~20% reduced 
wirelength and buffer sizes). Such M3D folding approaches 
offer limited EDP benefits (e.g., ~1.1-1.4× EDP benefits [3-
4]). In this paper, we show large M3D EDP benefits, in the 

range of 5.3×-11.5×, despite iso-on-chip-memory-capacity 
and iso-footprint comparisons vs. 2D designs. We achieve 
such large benefits by deriving new M3D architectural design 
points that are enabled by M3D physical design (Fig. 1). Our 
M3D physical design uses a foundry M3D technology and its 
associated design infrastructure. 
The key highlights of this paper are: 
 (1) Instead of using predictive models, we demonstrate 
large EDP benefits of M3D using a foundry M3D technology 
with foundry M3D process design kit (PDK) and foundry 
M3D standard cell library calibrated using foundry hardware 
data. The foundry M3D technology integrates Carbon 
Nanotube FETs (CNFETs) for BEOL transistors and Resistive 
RAM (RRAM) for BEOL memory cells on top of silicon 
CMOS [5]. 
 (2)  Using foundry M3D technology, we present a case 
study for iso-on-chip-memory-capacity and iso-footprint 
quantification of M3D benefits vs. 2D. Beyond folding 
existing 2D designs into M3D (and relying solely on physical 
design), we derive new M3D architectural design points 
enabled by M3D physical design.  
 (3) Despite our iso-footprint and iso-on-chip-memory-
capacity constraints, and the relaxed characteristics of BEOL 
technologies (newly) implemented in foundry M3D 
technology, our physical design case study demonstrates 5.7× 
to 7.5× EDP benefits of using M3D over AI/ML neural 
network workloads. These benefits come without 3D thermal 
concerns as peak power density increases by just 1%. We 
emphasize that these M3D benefits are derived from new 

 
Fig. 1: (a) Baseline 2D with Si CMOS and on-chip RRAM. Si CMOS 
supports compute, memory access selectors, memory 
peripherals/controllers.  (b) Iso-footprint, iso-on-chip-memory-capacity 
M3D (Si CMOS + RRAM + CNFETs) with CNFETs memory selectors. 
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architectural design points enabled by M3D physical design 
and not from bringing off-chip memory on-chip or from 
changing the on-chip (BEOL) memory technology.  
 (4) We derive an explainable analytical framework which 
shows M3D design EDP benefits range from 5.3× to 11.5× 
across several AI/ML accelerator dataflows. Our framework 
is accurate, within 10% of our physical design results. 

(5) Using our analytical M3D EDP framework, we find: 
(a) Greater than 5.3× benefits are possible with up to 1.6× 
wider BEOL memory selectors (b) BEOL ILV pitch cannot 
increase more than 1.3× before reducing M3D EDP benefits, 
(c) Additional incremental M3D layers quickly increases EDP 
benefits; these benefits plateau based on application 
parallelizability and thermal limits. This extends our M3D 
architectural design space understanding beyond a specific 
foundry technology and PDK. 

This paper is organized as follows: Section II presents our 
M3D case study. Section III presents our analytical 
framework and quantifies M3D EDP benefits for several 
AI/ML accelerators, dataflows, and workloads, evaluating the 
impact of BEOL memory selector width, BEOL ILV pitch, 
and additional M3D layers. Section IV concludes this paper. 

II. CASE-STUDY: ISO-FOOTPRINT, ISO-ON-CHIP-MEMORY-
CAPACITY M3D IC VS. 2D IC USING FOUNDRY M3D 

TECHNOLOGY 
Ultra-dense M3D based on sequential fabrication of 3D 

layers [5-6] requires upper layers of logic and memory to be 
BEOL-compatible, i.e., fabricated at temperatures less than 
400°C. Existing fine-pitch (e.g., < 100nm) ILVs – 
traditionally used in BEOL metal interconnects – are used for 
vertical connectivity between 3D layers. Low-temperature 
fabrication of several logic and memory technologies [7-8] 
(e.g., CoolCube low-temperature silicon FETs, CNFETs, 2D 
FETs, oxide semiconducting FETs, Resistive RAM, 
Magnetoresistive RAM, Ferroelectric FETs) naturally enables 
such M3D chips. For this case study, we focus on M3D 
integration of a single layer of CNFET and a single layer of 
RRAM on top silicon CMOS transistors because: (a) These 
technologies have already been established within a 
commercial foundry [5]. (b) M3D VLSI design infrastructure 
(foundry M3D PDK with foundry M3D standard cell library) 
has been developed [5]. (c) The M3D design infrastructure 
was made available to us. We extend our M3D design 
principles beyond these specific M3D technologies through 
our analytical framework in Sec. III. 

 Our baseline 2D SoC design is based on an open-source 
AI/ML accelerator [9-10]. We refine this implementation, 
utilizing only RRAM for on-chip AI/ML model weight 
storage and leveraging optimizations reported by a recent 
state-of-the-art RRAM-on-Si-CMOS AI/ML accelerator SoC 
demonstrated in hardware (Fig. 2a, [10]). We chose this 
baseline architectural design point because: (a) We desire an 
iso-on-chip-memory-capacity comparison, so we use an 
accelerator design with only on-chip memory (i.e., our 
baseline starts with the benefits of eliminating expensive off-
chip memory accesses) (b) The optimized accelerator 
architecture uses ~1/20th the SRAM buffers with 1/3rd the 
buffer access energy vs. a comparable architecture with off-
chip memory (e.g., DRAM) leveraging on-chip RRAM’s high 
bandwidth in reading AI/ML model weights (c) Since the 
foundry provides RRAM, a dense BEOL-compatible memory 
technology [11], an RRAM-based design provides an apples-
to-apples comparison while reducing total area devoted to 
memory (i.e., using a 2D memory like SRAM would require 
additional area). RRAM non-volatility also helps eliminate 
idle energy (high for large SRAM-based accelerators) 
between sporadic AI/ML tasks common in edge applications. 
 Fig. 2a-b shows the baseline 2D SoC design. While [10] 
implements just 2 MB of RRAM per chip, we choose a RRAM 
capacity of 64 MB to fit large AI/ML workloads (e.g., ResNet-
152, model size ~60M parameters). The accelerator 
computing sub-system (‘CS’ in Fig. 2b) is a 16×16 systolic 
array of processing elements (PEs), using a weight stationary 
dataflow (inputs streamed into the systolic array, weights 
remain stationary in the PEs), which has high utilization on 
AI/ML workloads such as convolutional neural networks [10]. 
For the baseline 2D design (Fig. 2a-b), RRAM devices are 

 
Fig. 2: AI accelerator SoC designs in baseline 2D: (a) 3D view chip and (b) GDS layout, and in iso-footprint, iso-on-chip-memory-capacity M3D: (c) 3D view 
chip and (d) GDS layout. CNFET-based RRAM access transistors frees Si CMOS space for 8× parallel computing sub-systems (CS) in M3D. 

 
Fig. 3: RRAM and RRAM access transistor with labeled source line 
(SL), bit line (BL) and word line (WL): (a) schematic (b) layout (c) 
Layout of min width Si nMOS FET. (d) Vertical stack of RRAM over Si 
CMOS in PDK. (e) Layout of RRAM array at maximum bit-cell density. 
RRAM access transistors, no additional Si CMOS circuits (e.g., any 
transistors, or any larger circuits) can be placed below the RRAM array. 
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integrated vertically above RRAM access transistors 
implemented with Si nMOS or pMOS FETs (Fig. 3a-d). The 
Si CMOS tier underneath the RRAM cell array (the RRAM 
cells and RRAM access transistors) is therefore fully occupied 
(Fig. 3e), with no space available to place additional Si CMOS 
circuits below the RRAM cell array. Our computing sub-
system (CS) is therefore placed adjacent to the RRAM cell 
arrays (Fig. 2b). 
 Our M3D implementation uses the foundry supplied 
CNFET layer above RRAM (Fig. 4a) to implement the 
RRAM access transistors. The Si CMOS tier underneath the 
RRAM cell array thus becomes available to place additional 
Si CMOS circuits. The BEOL metallization layers below the 
RRAM (highlighted in light blue, Figs. 3d, 4a) can then be 
used to route these additional Si CMOS circuits. Memory 
peripherals (sense amplifiers, controllers, etc.) are left in the 
Si CMOS tier creating blockages that must be placed and 
routed around. We must change the M3D architecture to 
utilize this additional Si CMOS space to the best advantage 
while staying within our iso-footprint and iso-on-chip-
memory-capacity constraints. For this case study, we place 8× 
compute sub-systems operating in parallel, (each identical to 
the 2D configuration), with our RRAM capacity partitioned 
into 8× the banks to provide 8× total bandwidth. 
 The 130 nm technology node foundry M3D PDK (Fig. 4a) 
[5] is used for physical design of both the baseline 2D and iso-
footprint, iso-on-chip-memory-capacity M3D designs. We 
restrict our baseline 2D implementation during synthesis to 
use only RRAM macros and Si CMOS devices; during place-
and-route, a floorplan placement blockage in the CNFET layer 
ensures CNFET standard cells cannot be used (however all 
routing layers can be used – Fig. 3a). While the reported SoC 
on which we base our 2D design was originally optimized for 
the 40nm technology node [10], we relax our physical design 
target frequency (to 20MHz) to account for the difference in 
RRAM access between nodes, preserving the 40nm node 
architectural optimization benefits. 
 Our M3D RTL-to-GDS flow (Fig. 4b) uses standard Si 
EDA tools with custom place and route scripts (based on 

techniques reported in [4]) and is compatible with state-of-the-
art technology nodes. The M3D flow starts from a synthesized 
netlist using RRAM macro modules. RRAM macro blockages 
are modified from their 2D baseline to account for the partial 
blockage (i.e., in the CNFET and RRAM layers) of the RRAM 
cell arrays, and full blockage for the peripherals. Other macros 
(e.g., SRAM buffers) are pre-placed during floorplanning 
using their corresponding layers (e.g., Si CMOS). With the 
generated floorplan, a custom monolithic 3D place and route 
flow (Fig. 4b) generates a M3D physical design solution. Post-
route optimization is performed to meet power and timing 
constraints. System-level EDP is assessed after physical 
design using the achieved frequency, post-physical-design 
power, and architectural simulations to determine the AI/ML 
workload cycle count for each design. Synopsys DC compiler 
was used for the RTL netlist synthesis with P&R performed 
using modified Cadence Innovus scripts. Power analysis is 
performed using Cadence Tempus with default activation 
factors. 2D and 3D designs are given identical target 
frequencies throughout. Fig. 2 summarizes the detailed post 
route comparisons of our two designs. From this case study 
we make several observations: 

Observation 1: For a variety of AI/ML models (e.g., 
AlexNet, VGG, ResNet), our iso-footprint and iso-on-chip-
memory-capacity M3D design achieves 5.7× to 7.5× speedup 
at 0.99× energy, resulting in 5.7× to 7.5× EDP benefits (Fig. 
5). As an example, we show detailed layer by layer benefits 
for one model (ResNet-18) in Table I.  

Observation 2: For our implemented M3D design, the 
power dissipated in the upper layers (CNFET and RRAM) is 
<1% of the total chip power (power-hungry memory 
peripherals/controllers are still located in Si CMOS). Thus, 
our M3D peak power density increases by just 1% vs. the 2D 
design, and our M3D implementation doesn’t require 
additional thermal management ([1] reports similar findings). 

Observation 3: Our 2D baseline already contains a dense, 
BEOL-compatible memory (RRAM). Using a non-BEOL-
compatible memory (e.g., a Si CMOS SRAM that is 2× less 
dense) in our 2D baseline would result in a larger 2D baseline 
area, enabling additional computing subsystems in our M3D 
design (e.g., going from 8× CSs to 16× CSs increasing EDP 
benefits from 5.7× to 6.8×); our M3D benefits are therefore 
conservative vs. traditional non-BEOL-compatible memories.  

 
Fig. 5: Comparison of iso-footprint, iso-on-chip-memory-capacity M3D 
(Fig. 2c-d) vs. 2D (Fig. 2a-b) for different AI/ML model inference.  

TABLE I:  BENEFITS OF ISO-FOOTPRINT, ISO-ON-CHIP-MEMORY-
CAPACITY M3D ACCELERATOR FOR ALL RESNET-18 LAYERS  

 

Layer Speedup Energy EDP benefits
CONV1+POOL 3.14× 1.0× 2.93×

L1.0 CONV1 3.72× 1.0× 3.73×
L1.0 CONV2 3.72× 0.99× 3.73×
L1.1 CONV1 3.72× 0.99× 3.73×
L1.1 CONV2 3.72× 0.99× 3.73×

L2.0DS 2.57× 1.0× 2.57×
L2.0 CONV1 6.0× 0.99× 7.37×
L2.0 CONV2 7.36× 0.99× 7.37×
L2.1 CONV1 7.36× 0.99× 7.37×
L2.1 CONV2 7.36× 0.99× 7.37×

L3.0 DS 2.52× 1.0× 2.51×
L3.0 CONV1 6.84× 0.99× 6.85×
L3.0 CONV2 7.67× 0.99× 7.68×
L3.1 CONV1 7.67× 0.99× 7.68×
L3.1 CONV2 7.67× 0.99× 7.68×

L4.0 DS 3.5× 1.0× 3.5×
L4.0 CONV1 7.37× 0.99× 7.4×
L4.0 CONV2 7.83× 0.99× 7.85×
L4.1 CONV1 7.83× 0.99× 7.85×
L4.1 CONV2 7.83× 0.99× 7.85×

Total 5.64× 0.99× 5.66×

 
Fig. 4: (a) Vertical stack-up of foundry M3D PDK integrating CNFETs, 
RRAM and Si CMOS at a 130 nm node. (b) M3D RTL-to-GDS flow. 
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III. ANALYTICAL FRAMEWORK  
Our baseline 2D chip (Fig. 6a – implemented using Si CMOS 
in the bottom tier and on-chip RRAM in the second tier) has 
a total area !!" and consists of a computing sub-system (or 
‘CS’ - which can contain many parallel processing elements 
or other circuits for computation) with area !#,!", on-chip 
memory area !%,!", and area of system buses and I/O 
!&'(,!". Memory area has two components – memory cells – 
!%,!")*++(  (e.g., the area occupied by RRAM bitcell array, Fig. 3, 
comprising of RRAM cells and RRAM access transistors), 
and memory peripheral circuits/controllers – !%,!",*-./	(e.g., 
sense amplifiers, controllers, implemented in the Si CMOS 
tier). We define #!")*++( = !%,!")*++ !#,!"%  (the area ratio of 
memory cells and the CS), and #!",*-./ = !%,!",*-./ !#,!"%  (the 
area ratio of memory peripherals and the CS). The computing 
sub-system in our baseline 2D chip can perform at most 
&,*01	operations per cycle (i.e., all the processing elements 
are active at full utilization) assuming a maximum memory 
bandwidth of '!"	bits per cycle for &,*01. 
A. Speedup: We analyze execution time on the baseline 2D 
chip of a workload requiring (2 compute operations on 
)2	bits of data (available inside on-chip memory). Based on 
[12], the minimum time (in cycles) required to execute this 
workload in our baseline 2D chip (Fig. 6a) will be the 
maximum of data transfer and computation times (assuming 
that the workload is either limited by compute time or the 
memory access time): 

																																		"!,#$ =	max '
(%
)#$

,
+%

,&'()
-																										(1) 

For an iso-footprint, iso-on-chip-memory-capacity M3D chip 
with an upper 3D tier of memory access transistors (e.g., 
CNFETs) and the freed space in the Si CMOS tier used to 
place N parallel CS in the M3D chip (Fig. 6b), then   

																																1	 = 21 +
4*,#$
+',,-

4!,#$
5 = 61 + 7#$+',,-8																							(2) 

Note that, while we perform this analysis at the granularity of 
a computing sub-system, the same analysis can be performed 
at a finer granularity e.g., at the level of processing elements 
constituting the computing sub-system. Given a total M3D 
memory bandwidth of '3", equally partitioned among these 
N parallel CS, memory bandwidth for each parallel CS 
(labeled as '3"4 , '3"! , . . . , '3"5  in Fig. 6b) will be '3" ,⁄ . We 
further assume that the (2 compute operations in the given 
workload can be partitioned into at most ,# parallel 
partitions. Therefore, while executing this workload, at most 
1.(/	(where, 1.(/ = 	>?@(1#, 1)) parallel CSs in M3D can 
be utilized in parallel. Extending (1), execution time of this 
workload in M3D (in cycles) will be: 

																																			"!,1$ =	>AB '
(%1
)1$

,
+%

1.(/,&'()
-																	(4) 

So, speedup for M3D in this particular case will be: 
																																									DEFFGHE*1$2#$ =

3!,#$
3!,%$

																															(5) 

B. Energy: Let the average memory read/write energy be .!" 
J/bit (baseline 2D) and .3" J/bit (M3D). For )2 bits of 
memory access (including both reads and writes) in the given 
workload, memory access energy (in J) in the baseline 2D 
will be: /%,!" = .!")2, and in M3D will be /%,3" = .3")2. 
Now, we consider compute energy per operation of the CS in 
the baseline 2D chip is /#,!"	J/op and for each of the , 
parallel CSs in the M3D chip is /#,3" J/op. Since the CS in 
the baseline 2D chip and the parallel CSs in the M3D chip is 
implemented in Si CMOS, /#,3" = /#,!" = /#. Similarly, 
the idle energy of the CS in the baseline 2D chip and each of 
the , parallel CSs in the M3D chip is assumed as /#.7+* 
J/cycle. Additionally, we assume that the idle energy for the 
memory in baseline 2D and M3D will be	/%,!".7+* 	J/cycle, and 
/%,3".7+* 	J/cycle respectively. Total energy spent executing the 
given workload for baseline 2D and M3D will be: 

J#$ = K#$(% + J*,#$45,' L"!,#$ −
(%
)#$

N + J!
45,' '"!,#$ −

+%
,&'()

-

+ J!+%																																																														(6) 

J1$ =	K1$(% +	J*,1$45,' L"!,1$ −
(%1
)1$

N + (1 −1.(/)J!
45,'"!1$

+1J!
45,' '"!,1$ −

+%
1.(/,&'()

- + J!+%				(7) 

C. EDP Benefits: Using (5), (6), (7), M3D EDP benefits are: 
																											J(,*1$2#$ = DEFFGHE*1$2#$

J#$
J1$

																					(8) 

With this analytical model we make several observations on 
the architecture changes that lead to M3D benefits: 

Observation 4: We evaluate the EDP benefits of iso-
footprint, iso-on-chip-memory-capacity M3D ICs vs. 
corresponding 2D designs for a variety of architectural design 
points (Table II) based on AI accelerator architectures with 
different organization of the CS (i.e., with different tiling of 
processing elements inside the CS, different memory 
hierarchies). For these design points, we estimate that M3D 
EDP benefits can range from 5.3×-11.5× over corresponding 
iso-footprint, iso-on-chip-memory-capacity baseline 2D 
designs (Fig. 7). Critically, for all these design points, our 
calculated EDP benefits are within 10% of the results 
predicted from a state-of-the-art architectural simulator for 

 
Fig. 7: Energy & delay benefits for different accelerator architectures 
for AlexNet (listed in Table II) inference. Arch. 1-5 are variants of 
popular AI accelerators [14-18] and Arch. 6 is a version of the 
accelerator we designed in Sec. II. We evaluate all architectures using 
ZigZag (labeled as ZZ) [13] and our analytical model. All architectures 
are normalized with the same total number of processing elements (PEs) 
in the CS and same on-chip RRAM capacity. Our results are within 10% 
of ZigZag predicted speedup, energy and EDP benefits. 
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Fig. 6: (a) Baseline 2D chip with a computing sub-system (CS2D) (b) 
Iso-footprint, iso-on-chip-memory-capacity M3D chip with N parallel 
computing sub-systems (!"!"# , …, !"!"$ ). 
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AI/ML SoCs (Fig. 7, [13]) as well as with our physical design 
case study results (Sec. II). 

Observation 5: For compute-bound workloads (i.e., where 
compute operations ≫ memory accesses), additional parallel 
CSs in M3D when given sufficient per-CS bandwidth (e.g., 
nearly the same or better than baseline 2D) results in better 
EDP (Fig. 8a). As an example, for a workload requiring 16 
operations for every bit of memory access, our M3D design 
point will have 2.1× better EDP with a 2× increase in CSs 
with no change in bandwidth. For memory bound workloads 
(i.e., where compute operations ≪ memory accesses), 
increasing bandwidth to each CS (by placing more memory 
peripherals/controllers in Si CMOS tier vs. placing additional 
parallel CSs in M3D) will have better EDP benefits. As an 
example, for a memory bound workload which requires 16 
bits of memory access for every compute operation, our M3D 
design point will see a 2.1× better EDP even with 2× fewer 
CSs but with 2× better bandwidth per CS. 

Observation 6: Baseline 2D designs with a larger on-chip 
memory capacity will see more area freed up in the Si CMOS 
tier by moving memory access FETs in M3D. This results in 
higher compute parallelism and larger EDP benefits. As an 
example, for ResNet-18, M3D EDP benefits go up from 1× 
to 6.8× when RRAM capacity in baseline 2D designs is 
increased from 12 MB to 128 MB (Fig. 9). 
D. Case 1 – M3D memory access FET drive strength: We 
consider relaxing the width of M3D BEOL memory access 
FETs (e.g., if the CNFETs in our case study achieve lower 
on-current vs. ideal as they are newly introduced 
technologies). With relaxed M3D FET widths, memory 
bitcell sizes in M3D will be proportionally larger. As we want 
to maintain our iso-on-chip-memory-capacity constraint, we 
must increase both the M3D and 2D footprints considering 
the larger area of a relaxed memory cell array in M3D (Fig. 
10a). We can then re-optimize the 2D baseline with additional 
parallel CSs to match the M3D footprint (Fig. 10b). For a 
M3D FET width relaxation of 2, the total area for memory 
cells in M3D will be !%,3")*++( = 2!%,!")*++( . Now if, !%,3")*++( < !!" 
(the starting baseline 2D footprint), there is no increase 
required for the M3D chip footprint. However, if !%,3")*++( >

!!", a commensurately larger 2D baseline can host up to 
,!"8*9 parallel CSs in the Si CMOS tier with: 

																												1#$6'7 = R
>ABST4*,#$

+',,- − 4#$, 4!,#$U
4!,#$

V																(9) 

If the given workload can be maximally partitioned into ,# 
parallel partitions, 1.(/,#$6'7 = 567 X,#, ,2;<=>Y	parallel CSs 
can be fully utilized for this workload in the new 2D baseline. 
Using (5) and (9), the M3D speedup becomes: 

DEFFGHE*1$2#$6'7 =
"!,#$
6'7

"!,1$
	= 	

>AB L
(%1#$

6'7

'2; ,
+%

1.(/,#$
6'7 ,&'()

N

>AB L
(%1
'3; ,

+%
1.(/,&'()

N
	(10) 

Similarly, energy cost in the new baseline 2D will be: 

J#$6'7 = K#$(% +	J*,#$45,' '"!,#$
6'7 −

(%1#$
6'7

'2; -

+ S1#$6'7 −1.(/,#$6'7 UJ!
45,'"!,#$

6'7

+1#$6'7J!
45,' '"!,#$

6'7 −
+%

1.(/,#$
6'7 ,&'()

-

+	J!+%																																																														(11) 
Thus, M3D EDP benefits for this case will be (Fig. 10c): 

																										J(,*1$2#$6'7 = DEFFGHE*1$2#$6'7 J#$
6'7

J1$
																		(12) 

Observation 7: Our M3D architecture has no loss of EDP 
benefits with up to 1.6× relaxed M3D memory access FET 
widths in the upper M3D tier (Fig. 10c – small benefits are 
retained even up to 2.5× relaxed M3D FET widths). Thus, our 
M3D architectures tolerate up to 40% lower M3D FET drive 
strength while still providing 5.7× EDP benefits. 
E. Case 2 – M3D via pitch: M3D via density limits memory 
cell size, as every memory cell (e.g., RRAM) needs to be 
connected to the upper M3D layer of memory access FETs 
(e.g., CNFETs). If M3D vertical via pitch is [, and memory 

TABLE II: ACCELERATOR ARCHITECTURES EVALUATED  

 

Arch
#

PE 
spatiala

(K, C, 
OX, OY)

Reg/PE or PE 
group (B)

SRAM
On-chip 
RRAM

local 
(KB)

global 
(MB)

1 16,16,2,2 W: 1 O: 2
W: 64 I: 64

O: 256
2

256 MB

2 8,8,4,4 W: 1 O: 2 W: 32 2 256 MB
3 32,32,-,- W: 128 O: 1K - 2 256 MB
4 32,2,4,4 W: 1 O: 2 W: 64 I: 32 2 256 MB
5 32,-,8,4 W: 1 O: 4 W: 1 I: 1 2 256 MB
6 32,32 W&I: 2.2 O:1 I:32 O:32 0.5 256 MB

aK&C = output & input channels, OX&OY = output width and heights

 
Fig. 8: M3D EDP benefits (vs. baseline 2D) varying bandwidth and 
number of parallel CSs.  
 

 
Fig. 10: (a) Moving memory access transistors to the upper M3D FETs 
relaxes memory area constraint in M3D. (b) Number of parallel CSs that 
be placed in M3D and in a commensurately large 2D baseline with 
relaxed M3D FET widths. (c) M3D EDP benefits remain even with 2.5× 
relaxed M3D FET widths. (d) EDP benefits with multiple interleaved 
3D compute & memory tiers in M3D vs maximum parallel workload 
partitions (#%&' - defined in sub-section A, Sec. III). For (d) workload 
has similar compute operations and memory accesses as ResNet-18. 
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Fig. 9: RRAM capacity vs. benefits for M3D Accelerator shown in Sec. 
II, the DNN compute remain unchanged for ResNet-18 (~12M 
parameters, to fit in RRAM capacities from 12 MB to 128 MB).  
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cell area is via-pitch limited, then total memory cell area, 
4*,1$+',,- = >\[#, where k is the memory capacity (in bits) and 
m is the number of 3D vertical vias needed per memory cell. 
EDP benefits for 4*,1$+',,- >	!2; can be evaluated following the 
same method shown above (in Case 1, i.e., EDP benefits are 
unchanged when 4*,1$+',,- <	!2;).  

Observation 8: While minor increases in M3D via pitch 
(e.g., up to 1.3×) do not change our M3D architecture EDP 
benefits, transitioning from fine-pitch M3D ILVs to coarse-
pitch M3D vias (i.e., increasing up to 1.6× or more) result in 
limited to no benefit over 2D designs. Thus, ultra-dense M3D 
vias are key to these M3D architectural benefits. 

F. Case 3 – Multiple interleaving M3D compute & memory 
tiers: By adding additional layers of compute and memory 
devices to a M3D chip we can increase both the memory 
capacity, memory bandwidth, and number of parallel CSs. In 
this vast arbitrary X-tier M3D design space, we consider a 
particular case with interleaved tiers of compute and memory 
in the M3D chip – i.e., some Y tiers of compute and Y tiers 
of memory (in our physical design case study Y = 1). 
Assuming no benefits from increased memory capacity, we 
extend our formulation for M3D EDP benefits by including 
additional M3D parallel CSs. If each memory tier has its own 
memory peripherals/controllers and I/O circuits, then we 
have ,	 = 891 + 729:;<<= + 729>;?@A:		total parallel CSs in M3D. 

Observation 9: Adding just one pair of M3D compute and 
memory layers increase M3D EDP benefits from 5.7× to 6.9× 
for ResNet-18. However, these EDP benefits quickly plateau 
to 7.1× with additional layers as total parallel CSs in the M3D 
design exceeds maximum possible parallelizable workload 
partitions (Fig. 10d). For highly parallelizable workloads, this 
EDP benefit plateau can be substantially higher (e.g., ResNet-
18 - layer L4.1 CONV 0 approaches 23×). 

With multiple layers of stacked memory and compute, 
thermal management becomes necessary [19]. Let the 
resistance to ambient (e.g., determined by on-chip heat sink) 
as ;2 K/W. Then, if each j-th interleaving tier of compute and 
memory adds a thermal resistance of ;@ K/W and a total 
power of &@ W, (including both compute power - &#,@W and 
memory power - &%,@W, i.e., &@ =	&#,@ + &%,@). Total 
temperature rise in this system can be modeled as: 

																								"F>EB4-' =_((_ C̀

4

CDE
) + `%) × ,4

F

4DE
							(17) 

Observation 10: Given a maximum allowed temperature rise 
(typically ~60 K [20]), (17) quickly limits the maximum 
number of interleaved M3D tiers, which must be taken in 
consideration while calculating EDP for such systems. 

IV. CONCLUSION 
This paper establishes the following key points about 

ultra-dense monolithic 3D integration: (1) Even under a 
conservative iso-footprint and iso-on-chip-memory-capacity 
constraints, monolithic 3D integration of logic and memory 
provides large EDP benefits vs. comparable 2D designs with 
today’s foundry M3D technologies. (2) These benefits are 
with newly implemented M3D technologies and will grow 
with further performance optimization (e.g., full CMOS on 
upper layers) and more features (e.g., additional layers). (3) 
The key to these results is co-optimizing architecture with 
physical design; such co-design may prove important for other 

emerging technologies beyond M3D. (4) Our analytical 
framework takes this analysis beyond a specific foundry 
technology deriving the unique characteristics of M3D 
physical design and corresponding architectural design points 
which should apply for many other M3D technologies. (5) 
While not specifically addressed in this paper, such large 
benefits suggest exploration of other ultra-dense 3D 
manufacturing techniques and any unique physical-design-co-
optimized architectures they might offer. 
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