
PR-ESP: An Open-Source Platform for Design and
Programming of Partially Reconfigurable SoCs

Biruk Seyoum, Davide Giri, Kuan-Lin Chiu, Bryce Natter and Luca Carloni
Department of Computer Science Columbia University New York, U.S.A
{biruk, davide giri, chiu, luca}@cs.columbia.edu, bdn2113@columbia.edu

Abstract—Despite its presence for more than two decades and its
proven benefits in expanding the space of system design, dynamic
partial reconfiguration (DPR) is rarely integrated into frameworks
and platforms that are used to design complex reconfigurable
system-on-chip (SoC) architectures. This is due to the complexity
of the DPR FPGA flow as well as the lack of architectural
and software runtime support to enable and fully harness DPR.
Moreover, as DPR designs involve additional design steps and
constraints, they often have a higher FPGA compilation (RTL-to-
bitstream) runtime compared to equivalent monolithic designs.

In this work, we present PR-ESP, an open-source platform
for a system-level design flow of partially reconfigurable FPGA-
based SoC architectures targeting embedded applications that
are deployed on resource-constrained FPGAs. Our approach is
realized by combining SoC design methodologies and tools from
the open-source ESP platform with a fully-automated DPR flow
that features a novel size-driven technique for parallel FPGA
compilation. We also developed a software runtime reconfiguration
manager on top of Linux. Finally, we evaluated our proposed
platform using the WAMI-App benchmark application on Xilinx
VC707.

I. INTRODUCTION

Heterogeneous system-on-chip (SoC) architectures, which
combine general-purpose processors with multiple domain-
specific hardware accelerators, have become a dominant trend
for implementing complex systems across a wide range of
application domains. As the integration of diverse computing
elements into a single chip has become very challenging over
the years, several tools had been proposed both to reduce
the complexity and raise the abstraction of the system-level
design [1]–[3]. However, the majority of the proposed tools still
target FPGAs only for rapid prototyping or functional verifica-
tion purposes. Moreover, the dynamic partial reconfiguration
(DPR) capability, which enables to modify only a portion of
the circuit on the fly without requiring a full reconfiguration of
the FPGA, is rarely exploited by these tools.

The challenge of designing heterogeneous partially recon-
figurable SoCs is multifaceted. On one hand, the complexity
that originates from integrating several independently-designed
components requires a DPR-compliant flexible architecture and
a companion methodology. On the other hand, integrating the
partial reconfiguration flow into a SoC flow can create an
implementation quagmire. The difficulty of the integration is
even more exacerbated by the challenging DPR FPGA flow.
To date, this flow is only semi-automated by the vendor tools,
thus requiring an expert-level familiarity in low-level FPGA
architecture to efficiently implement complex designs. For
example, the allocation of partially reconfigurable accelerators
to reconfigurable regions and the subsequent floorplanning for
these regions still needs to be done manually. Furthermore,
due to the additional design constraints and steps involved

in DPR designs, the full compilation of a DPR design takes
a much longer CPU runtime when compared to equivalent
monolithic designs on commercial CAD tools. Finally, a DPR
system requires the implementation of a software framework
the provides an abstraction for a low-latency reconfiguration as
well as runtime management of different DPR-related services.

While several approaches have been proposed to address
one, or a combination of, these challenges [4]–[9], a holistic
solution is still lacking. To fill this gap we present PR-ESP, an
open-source DPR-based system-level design platform to build
partially reconfigurable heterogeneous SoCs. To realize our
platform, we adopted the heterogeneous tile-based distributed
architecture of the Open-Source ESP platform [1], [10] as a
baseline and introduced several changes to the architecture
of its tiles to enable DPR support. The ESP platform was
especially appealing to us because it simplifies the develop-
ment and integration of loosely-coupled partially reconfigurable
accelerators into complex SoC architectures. We also built a
tool that, in addition to fully automating the DPR flow on
Xilinx FPGAs, opportunistically parallelizes the FPGA physical
implementation stage (place and route, P&R) to reduce the
total FPGA compilation runtime. Finally, we developed a
software stack containing a runtime manager with a lightweight
Application Programming Interface (API) for ESP accelerators
and driver modules for the hardware reconfiguration controller
to support both Linux and baremetal applications.

The following are our key technical contributions:

• We conceived and realized a robust yet flexible automated
system-level design flow for DPR. Our flow, which extends
the current ESP FPGA design flow for monolithic (non
DPR) designs, enables the generation of full and partial
bitstreams for a complete SoC using a single make target.

• For the hardware support of our flow, we designed two
new types of tiles that augment the native ESP tile-based
architecture by providing several DPR-compliant features
in a modular way, based on its socket-based approach.
We designed a reconfigurable tile that accommodates a
partially reconfigurable subset of an SoC design. We also
modified the native ESP auxiliary tile by adding new
features to enable and control the partial reconfiguration.

• We designed and integrated a size-driven P&R parallelism
algorithm within our flow to reduce the total FPGA com-
pilation time. We developed the algorithm by performing
an extensive characterization of the Vivado tool with
several designs and then built an approximate model that
correlates the size of the design with the P&R runtime.

• At the software level, we supported our flow by augment-
ing the ESP software stack with a DPR runtime manager

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA 

	



and a driver for Linux and baremetal applications.

II. ESSENTIAL BACKGROUND

This section summarizes the DPR capabilities of Xilinx
FPGAs and the main capabilities of the ESP project to help
the reader appreciate our contributions, which are described in
the following sections.
Dynamic partial reconfiguration (DPR), which has recently
been re-branded as dynamic function exchange (DFX) by
Xilinx [11], includes a static part, which is the subset of the
design that is not subject to runtime reconfiguration, and one or
more reconfigurable partitions (RPs), which host the partially
reconfigurable modules. In the scope of this paper, these mod-
ules are typically loosely-coupled hardware accelerators [12].

The main design steps in the Xilinx DPR flow include
logic partitioning, floorplanning, synthesis, and implementation
(P&R and bitstream generation). In the partitioning step, par-
tially reconfigurable accelerators are pre-allocated to specific
RPs of the design. The floorplanning step involves the gener-
ation of physical placements for the RPs on the FPGA fabric.
The placements for the RPs (pblocks in Xilinx terminology)
must satisfy all the resource constraints of the hosted modules
as well as the technological constraints imposed by the vendor.
DPR floorplanning is not yet fully automated by Xilinx tools
and must be performed manually.
ESP is an open-source research platform for heterogeneous
SoC design and programming [1]. ESP combines a scalable ar-
chitecture and a flexible design methodology [10]. The ESP ar-
chitecture is structured as a tile grid. The tiles form a distributed
system which is inherently scalable, modular and heteroge-
neous. The main types of tile are: processor, accelerator, and
memory. For the processor tile, ESP currently allows a seamless
choice between the 32-bit Leon3 SPARC core [13] and the
64-bit CVA6 (Ariane) RISC-V core [14]. An accelerator tile
contains one or more loosely-coupled accelerators; these can
be accelerators developed with the ESP methodology as well
as third-party open-source accelerators like the NVDLA [15].
Each tile is encapsulated into a modular socket that interfaces it
to a network-on-chip (NoC), which has a packet-switched 2D-
mesh topology with multiple physical planes. ESP also provides
a shared local memory (SLM) tile, which hosts an on-chip
memory of configurable size. The ESP methodology guides the
choice of the number, mix, and placement of tiles for a target
SoC as well as the design of new SoC components, particularly
accelerators.

III. ARCHITECTURAL SUPPORT FOR THE PR-ESP
PLATFORM

In this section we describe how we augmented the ESP archi-
tecture to support DPR. These changes include the addition of
a new type of reconfigurable tile and upgrades in the auxiliary
tile to support runtime reconfiguration.
Reconfigurable Tile Architecture. The native ESP accelerator
tile contains several architectural features that make it non-
compliant with the rules and constraints of a DPR design.
For example, the dynamic power management logic of the
SoC, which contains clock modifying components, resides
deep within the accelerator tile hierarchy. This feature is not

Floorplanner Parallellism algorithm

Post-synth resource utilization parser

Gen impl scripts

Pre-implementation stage

Impl.tcl

Black-box

acc tile generation

Static

Srcs

acc_1

Srcs

SoC gen

Vivado

Syn

SoC flow and Static synthesis

Synth.tcl

...

...

acc_1

Srcs
acc_2

Srcs

acc_n

Srcs

Vivado

Syn

Vivado

Syn
Vivado

Syn

Parallel accelerator synthesis

OoC
Synth.tcl

Semi-parallel
Static
P&R

Vivado
P&R

Vivado
P&R

.bit .bit

Serial
Vivado
P&R

.bit

...

...

Fully-parallel
Static
P&R

Vivado
P&R

Vivado
P&R

.bit .bit .bit

Vivado
P&R

Fig. 1. Block diagram of the PR-ESP FPGA flow.

compliant with the Xilinx DPR rule that prohibits placing clock
modifying logic inside reconfigurable regions. Furthermore,
the accelerator tiles drive an output clock interface that feeds
the main SoC clock, but this is prohibited by Xilinx’s DPR
guideline that does not allow such route-through paths inside
partially reconfigurable partitions [16].

To solve these problems and enable DPR within the tiles, we
designed a new type of tile named reconfigurable tile, which
hosts the runtime reconfigurable accelerators. This tile, whose
architecture is shown in Fig. 2B, contains a reconfigurable
wrapper (the brown box) with a predefined common interface
for all reconfigurable accelerators supported by the SoC that
includes (i) load/store ports for memory access, (ii) config-
uration ports for the memory-mapped registers, and (iii) an
interrupt signal to notify task completion. While compliant with
the ESP socket-based approach, the reconfigurable tile contains
decoupling logic to detach the interfaces of the accelerator
wrapper from the socket during runtime reconfiguration. The
reconfiguration decoupling logic (the red box) is controlled
by software via the memory-mapped configuration registers of
the tile. During reconfiguration, the decoupler also disables the
inputs to the NoC queues (the orange lines), which are located
between the tile port of the NoC routers and the different proxy
components. After a successful reconfiguration, the decoupler
resets and re-enables the queues.

Reconfiguration Controller. To enable runtime partial recon-
figuration, we augmented the auxiliary tile of ESP with a
logic that instantiates the dynamic function exchange controller
(DFXC) IP block from Xilinx [11] and the ICAP primitive
(ICAPE2 or ICAPE3 depending on the FPGA family). The
DFXC is configured at runtime using its memory-mapped reg-
isters via its AXI-Lite interface, which is seamlessly interfaced
to the APB bus of the auxiliary tile using an AXI-Lite to
APB adapter. The DFXC has an AXI4 master interface to fetch
bitstreams from memory. An adapter inside the auxiliary tile
translates the AXI transactions into NoC packets. At the end
of a successful reconfiguration, the DFXC component sends an
interrupt to the processor core in order to disable the decoupler
in the reconfigurable tile and to start the operations of the new
accelerator.

IV. THE PR-ESP FPGA FLOW

Although DPR was primarily intended to build adaptive
systems, it has also been shown to be beneficial for reducing the
time to generate the bitstream of an FPGA design [7]. Beyond
the full automation of the SoC implementation, our DPR flow
is designed to exploit this additional advantage.

!

!



Fig. 1 illustrates our DPR flow, where the RTL-to-bistream
FPGA compilation of reconfigurable SoCs is fully automated
for Xilinx FPGAs. The flow starts by parsing the input SoC
configuration [1] to generate the RTL hierarchy of the full
SoC. The parsing enables the separation of the sources for all
the reconfigurable tiles from the static part. In this work, the
static part is composed of all the instances of memory (MEM),
processor (CPU), auxiliary (AUX), and shared local memory
(SLM) tiles in the SoC. During synthesis, the reconfigurable
accelerators inside the static part are replaced with instances of
auto-generated black-box wrappers. Following the parsing step,
the flow performs a parallel synthesis of the static part and all
of the reconfigurable tiles. These syntheses are performed by
running separate instances of the Xilinx Vivado tool guided
by auto-generated synthesis scripts. To fully parallelize the
synthesis, our flow exploits the out-of-context (OoC) synthesis
mode [11] that is offered by Vivado.

The synthesis stage is followed by the pre-implementation
stage, where the flow performs floorplanning (generates the
placement pblocks for the reconfigurable tiles) and also decides
the optimal level of parallelism that best reduces the total
compilation runtime at the P&R stage of the design. Then,
according to the type of parallelism, the flow orchestrates the
synthesized checkpoints to fully automate the P&R to generate
bitstreams.

DPR Floorplanning. We automated the DPR floorplanning
targeting our Xilinx evaluation boards (VC707, VCU118, and
VCU128) by adapting FLORA, an open-source DPR floorplan-
ning tool [17].

Choosing Optimal P&R Parallelism. For both monolithic
and DPR designs, P&R is the most time consuming design
step. Overall, we would intuitively expect that the total design
compilation time of most DPR designs can be reduced if the
P&R of reconfigurable tiles is parallelized; i.e. the P&R of
reconfigurable tiles is performed in parallel by using separate
Vivado instances. However, deciding the type of parallelism
that minimizes the cost of compilation time becomes a new
challenge that requires a further understanding of the behavior
of the CAD tool (in this case Vivado) in relation to the relative
size and configuration of the static and reconfigurable parts of
different DPR designs. To address this issue, we performed
an exhaustive characterization of the Vivado tool. We built
an empirical model that correlates the size of a DPR design
against the total compilation time for P&R under different
parallelism configurations. Then, we used the model to develop
an algorithm that, depending on the post-synthesis resource
utilization of the design, chooses between three types of P&R
parallelism strategies: (i) serial, (ii) fully-parallel, and (iii)
semi-parallel implementations. Next, we describe the three
implementation strategies along with our model, followed by
the characterization of Vivado. Finally, we provide a description
of the algorithm to choose the appropriate strategy.

Given an SoC containing N reconfigurable tiles with τ ∈
{1, N} denoting the number of parallel P&R runs, we define
three implementation strategies:

• Serial: this is the case when τ = 1 and the implementation
is performed without any parallelism using a single Vivado
instance.

Applications

PRC Driver

ESP LibraryPRC Library PRC Baremetal

Library

PRC Baremetal

Driver

Linux SW stack Baremetal SW stack

Runtime Manager

acc

drivers
DPR Manager

.bit

Newly implemented Provided by ESP but modified by us 

Reconfigurable Tile

DPR wrapper

private
cache

DMA
ctrl TLB

cfg
regs

DVFS
ctrlr

IRQ
ctrl

d
e
c
o
u
p
l
e
r

load/store config

d
o
n
e

Coherence

planes

DMA

planes
IO/IRQ

planes

(A) (B)

Fig. 2. (A) Our proposed software stack (B) The modified reconfigurable tile.
• Fully parallel: this is the case when τ = N and all the

reconfigurable tiles are implemented in parallel by running
separate instances of Vivado. This strategy contains an ad-
ditional intermediate step. Before implementing the recon-
figurable tiles, the synthesized static netlist is first placed
and routed by instantiating place-holder hard-macros of
empty reconfigurable tiles inside the black-boxes within
the netlist. Since these empty netlists are prepared offline,
they add no additional timing overhead. Then, the flow
creates N instances of Vivado, each performing P&R on
a single reconfigurable tile in-context with the pre-routed
static part. In this case, the total compilation time can be
expressed as, Tfull ≈ tstatic + max{Ωi},∀i = 1 . . . N ,
where tstatic and Ωi denote the time to pre-route the
static part and the execution time of the P&R for the ith

reconfigurable tile respectively.
• Semi-parallel: this strategy is for DPR designs where a

fully-parallel implementation is an overkill and the serial
implementation is too slow. In this case, two or more
reconfigurable accelerators are opportunistically grouped
and implemented together in each Vivado instance. Similar
to the fully parallel one, this strategy also includes an
intermediate static-only P&R step.

Vivado Characterization. As our characterization was aimed
at exploring the effect of the size-driven parallelism on the
total compilation time, we investigated the 3-way correlation
between the size (measured in number of LUTs) of the static
part (κ), the average size of accelerators (αav), and the ratio
of sum total of all the reconfigurable accelerators to the static
part (γ). For an SoC with N reconfigurable tiles, these values
can be defined as follows:

κ =
lutstatic
LUTtot

, αav =

∑N
i=1 luti

N · LUTtot
, γ =

∑N
i=1 luti

lutstatic
(1)

where luti and lutstatic denote the number of LUTs in the ith

reconfigurable tile and the static part of the SoC, respectively.
Next, we define the five possible classes DPR designs can be
grouped into depending on their size (resource utilization):
Group 1: κ ≫ αav , designs that belong in this category have
a static part which is much larger than each of the individual
reconfigurable tiles. Depending on the ratio of the total size
of all the reconfigurable tiles to the static part, i.e., the value
of γ, designs in this group can be divided into three classes
described below:
Class 1.1: when γ < 1 the size of the static part is also larger
than the size of all reconfigurable tiles combined.
Class1.2: when γ > 1 the total size of the reconfigurable tiles
exceeds the size of the static part.

!

!



Class 1.3: when γ ≈ 1 the size of the static part is approxi-
mately equal to the sum of all the reconfigurable tiles.

Group 2: κ ≪ αav or κ ≈ αav , this category represents
designs where the size of the static part is either equal to or
much less than each of the reconfigurable tiles. Also in this
group, there are two additional classes depending on the size
of γ.
Class 2.1: when γ > 1, then a design contains one or multiple
reconfigurable tiles whose size are larger than the static region.
Class 2.2: the case γ ≈ 1 is true under the condition where the
design contains only a single reconfigurable tile.

Note that, for designs that belong in the second group, γ < 1
denotes an impossible condition, meaning if the size of a static
region is smaller than the average reconfigurable part, then it is
impossible for the ratio of the total reconfigurable area to the
static area to be smaller than one.

To perform the characterization, we designed 4 SoCs, one
for each of the first four classes described above, targeting
Xilinx VC707 FPGA. Since designs that belong to Class 2.2
can only be implemented in a serial mode, there is no need
to investigate further. The first design, SoC_1, which was de-
signed to fit in Class 1.1, has a 4x5 tile configuration containing
16 instances of a reconfigurable MAC accelerator that was
generated by using the ESP Vivado HLS accelerator flow. The
second design, SoC_2, which is of Class 1.2, has a 3x3 tile
configuration and contains four reconfigurable accelerators: (i)
2-d convolutional (Conv2d), (ii) matrix multiply (GEMM), (iii)
Fast Fourier Transform (FFT), and (iv) vector sorting (sort).
These accelerators are designed in SystemC and synthesized by
using the Cadence Stratus HLS tool. The third SoC, SoC_3,
that belongs to Class 1.3, is a variant of SoC_2 containing only
the Conv-2d, GEMM, and sort accelerators. The static part of
all three SoCs is composed of a single instance of the MEM,
AUX, and a CPU tile with an instance of a Leon3 core. The
last SoC, SoC_4, which belongs to Class 2.1, is created by
modifying the CPU tile in SoC_2 to move it from the static
part into the reconfigurable part. In this case, our goal was not
making the CPU partially reconfigurable but reducing the size
of the static part.

We performed the characterization by using several imple-
mentation runs on all four SoCs under different levels of
parallelism and recorded the total design compilation time. The
characterization took hundreds of hours and was performed
using Vivado 2019.2 on an Intel Core-i7 machine with 16 cores
running at 3.6GHz and 64GB DRAM memory. We run each test
case serially to maximize the accuracy of the characterization.
Although we run multiple instances of Vivado on the machine,
due to the inherent sequential nature of the P&R algorithms,
Vivado actually uses a limited number of the cores [18].

Table II reports the resource consumption of the accelerators,
the CPU tile, and the static part with and without the processor.
Table III provides a summary of the characterization for the
four SoCs under different levels of implementation parallelism.
The boldface values on the table denote the implementation
with the shortest compilation time. Based on these results and
a long experience working on DPR designs using the Vivado
tool, we devised an algorithm that chooses an implementation
strategy that improves the total design runtime. The algorithm,

which is based on the strategies defined in Table I, mainly relies
on the resource profile of the design to make a choice. For
example, for designs where the static part is much larger than
both the average reconfigurable accelerator and the sum of all
reconfigurable accelerators (Class 1.1), a serial implementation
is favorable. But under the previous condition, if the static part
is less than the sum of all reconfigurable accelerators (Class
1.2), then a fully-parallel or semi-parallel implementation is
likely to reduce the timing cost. The two entries of Table I that
are left unfilled correspond to impossible conditions discussed
above.

V. SOFTWARE SUPPORT FOR THE PR-ESP PLATFORM

ESP already provides a library API and auto-generated Linux
and baremetal device drivers to invoke accelerators. However,
the software stack lacks the necessary abstraction to enable a
runtime swapping of accelerators and their respective drivers.
We augmented the software stack by implementing (i) a Linux
kernel level runtime manager that handles the scheduling and
synchronization of reconfiguration requests as well as the swap-
ping of accelerator drivers during reconfiguration, (ii) Linux
and bare-metal drivers to handle the decoupling of tiles and
FPGA reconfiguration via the PRC and ICAP modules, and
(iii) a user-space API to expose DPR services to applications.
Fig 2A shows the modified software stack.

Before the start of application execution, partial bitstreams,
which are mmaped in the user-space in the DDR, are copied
into the kernel memory. This enables the runtime manager
to create a reference between the bitstreams, their physical
addresses, the tiles they will be loaded into, and their re-
spective drivers. The runtime manager uses the built-in kernel
workqueue to manage multiple reconfiguration requests. Recon-
figuration requests are queued up and executed as soon as the
PRC is ready. However, before being inserted into the queue,
the manager forces the calling thread to wait for the accelerator
in the tile to complete its execution. During reconfiguration, it
locks access to the device so that other threads trying to access
it must wait until the reconfiguration is complete (interrupt is
received from the PRC) and the new driver is loaded. The
loading of drivers is realized by modifying the ESP library
that registers and un-registers drivers.

VI. EXPERIMENTAL EVALUATION

We present the case study of an embedded SoC application
that was designed and implemented using our approach. The
SoC is composed of a set of image-processing accelerators for
the open-source Wide Area Motion Imagery (WAMI) bench-
mark suite [19]. Fig. 3 depicts the data flow of the acceler-
ators in the SoC, which include Debayer, Grayscale, Lucas-
Kanade, and Change-Detection kernels. We decomposed the
Lucas-Kanade accelerator into multiple accelerators to further
parallelize its execution. We first profiled each accelerator for
its LUT consumption and execution time by using a 2x2 SoC
with a single accelerator tile and targeting a Xilinx VC707
board. The values obtained from the profiling are annotated
next to each accelerator in Fig 3. We then used the benchmark
application to evaluate compilation runtime of the DPR flow of
PR-ESP as well as the performance (execution time and energy

!

!



TABLE I
THE SIZE-DRIVEN IMPLEMENTATION STRATEGIES IN PR-ESP.

γ < 1 γ ≈ 1 γ > 1
κ ≈ αav - serial fully-parallel
κ ≫ αav serial semi-parallel semi/fully-parallel
κ ≪ αav - serial fully-parallel

TABLE II
THE RESOURCE UTILIZATION OF THE ACCELERATORS.

MAC Conv-2d GEMM FFT Sort CPU Static Static (w/o
CPU)

LUTs 2450 36741 30617 33690 20468 41544 82267 39254

TABLE III
RESULTS FROM THE CHARACTERIZATION OF VIVADO UNDER DIFFERENT

LEVELS OF PARALLELISM. TIME MEASURED IN MINUTES.
αav κ γ design

runtime
τ =
1

τ =
2

τ =
3

τ =
4

τ =
5

τ =
16

tstatic 89 75 75 75 75 75
SoC_1 0.8 27 0.48 ⌈Ω⌉ - 35 30 22 19 18

Ttot 89 110 105 97 94 93
tstatic 181 94 94 94 - -

SoC_2 10.1 27.2 1.47 ⌈Ω⌉ - 79 72 58 - -
Ttot 181 173 166 152 - -
tstatic 158 86 86 86 - -

SoC_3 9.6 27.1 1.07 ⌈Ω⌉ - 48 52 51 - -
Ttot 158 134 137 - - -
tstatic 163 42 42 42 42 -

SoC_4 10.8 11.5 4.1 ⌈Ω⌉ - 88 63 58 52 -
Ttot 163 130 105 100 94 -Debayer

(11,000 ms)
(LUT: 17,741)

Lucas-Kanade

Grayscale
(3,760 ms)

(LUT: 12,939)

Gradient
(4,399 ms)

(LUT: 13,022)

Warp-1
(9,023 ms)

(LUT: 45,663)

Matrix-Sub
(4,400 ms)

(LUT: 11,034)

SD-Update
(12,265 ms)

(LUT: 21,588)

Matrix-Mul
(1,610 ms)

(LUT: 20,989)

Reshape + Add
(1,082 ms)

(LUT: 23,140)

Warp-3
(9,454 ms)

(LUT: 45,663)

Steep.-Desc
(13,426 ms)

(LUT: 24,237)

Hessian + Inv
(22,920 ms)

(LUT: 48,042)

input
frames

Change-Detectionoutput
frames

Warp-2
(17,586 ms)

(LUT: 91,326)

7 9

11
12

2

3

4

5

6 8 10

1

Fig. 3. Data flow model of the WAMI-App.
efficiency) of the partially reconfigurable SoCs implemented
using the PR-ESP platform.
Evaluation of the PR-ESP DPR Flow. For this experiment, we
created four SoCs, each with a 3x3 tile configuration hosting
a combination of the accelerators from the WAMI applica-
tion. The composition of the accelerators is aimed at creating
systems whose LUT consumption profile coincides with the
different classes described in Section IV. The combination of
accelerators inside the SoCs is provided in Table IV (second
column). Also in this case the CPU tile of SoC_D is configured
as partially reconfigurable to reduce the size of the static area.

We first performed P&R on all four SoCs in different paral-
lelism configurations to evaluate if the parallelism strategies
chosen by our algorithm indeed produced the best results.
For all the semi-parallel implementations we set τ = 2. The
boldface columns on Table IV denote the strategy chosen by
PR-ESP for that particular SoC. As shown on the table, for
each class of design, the parallelism strategy chosen by PR-ESP
resulted in the fastest P&R runtime. An interesting point to note
from these results is that, while it is true that parallelization
reduces the compilation time for most designs as suggested
in [7], our results demonstrate that, designs that belong in Class
1.1 benefit from a serial implementation rather than a parallel
one. This point is confirmed again in the comparisons against
monolithic implementations.

We also compared the design runtime of the full implemen-
tation (synthesis and P&R) of the SoCs in PR-ESP against
their equivalent implementations in Xilinx’s standard DPR flow,
which is always performed in a single instance of Vivado.
Table V reports the results of the comparison. The condition
in which our full flow performs the best are for designs that
belong to Classes 1.2 and 2.1. Indeed, in our comparison, PR-
ESP improved the total implementation time of SoC_A by
46 minutes (19%) and SoC_D by 54 minutes (24%). This
improvement is mainly due to the larger size of these classes
of designs (large static part that is exceeded by an even larger
total reconfigurable tiles), which makes the standard DPR
implementation very difficult and time consuming. For such
designs, the PR-ESP flow improves the compilation time by
opting for a fully-parallel implementation. We also evaluated
SoC_C, which represents Class 1.3. In this case, our flow
adopts a semi-parallel implementation strategy using two Vi-

vado instances and implements the design with 2 semi-parallel
runs. Also, in this case our design is slightly better than the
monolithic flow (by 4.4%). Finally, for designs where serial
implementation is the best strategy (Class 1.1), our flow does
as good as, or slightly worse than, the standard implementation.
In fact, for SoC_B, which was implemented in this mode, our
flow was slower by only 5 minutes (2.5%). But when SoC_B
was implemented using either fully-parallel and semi-parallel
modes, the performances were 6.5% and 12.3% worse than the
monolithic implementation, respectively. Indeed, as mentioned
above, such a fine-grained classification of DPR designs with
the assignment of class-specific parallelism is key aspect that
distinguishes PR-ESP from [7].

Evaluation of embedded SoCs. In the second part of the ex-
perimental evaluation, we implemented the WAMI application
in three different SoCs, named SoC_X, SoC_Y, and SoC_Z,
with two, three, and four reconfigurable tiles in each SoCs
respectively. The static part of the SoCs was composed of a
single CPU, MEM, and AUX tiles. Since the WAMI workload
can be mapped to the SoC in multiple ways, depending on
the number of reconfigurable tiles, we manually partitioned the
accelerators to reconfigurable tiles in a way that most likely
maximizes the performance. Table VI lists the allocation of
accelerators to reconfigurable tiles for each SoC. The table
also provides the respective sizes of the partial bitstreams
(pbs) generated for each accelerator. PR-ESP is configured to
generate partial bitstreams using Vivado’s compression mode
to reduce the memory access latency during reconfiguration.
We also developed a multi-threaded Linux software, with one
thread per reconfigurable tile, to control the execution flow
of accelerators. All SoCs process individual frames without
pipelining and are implemented targeting a Xilinx VC707
FPGA connected to a 1GB shared DRAM memory at 78MHz.

Fig 4 provides the results of the comparison of the total
execution time per frame and the energy efficiency, measured in
Joule/Frame. As shown in Fig 4, SoC_X has the best energy
efficiency compared to the other two (1.65x w.r.t. SoC_Y and
2.77x w.r.t. SoC_Z) but it does relatively worse in terms of total
execution time (2.6x and 3.6x worse w.r.t. SoC_Y and SoC_Z).
It also has a higher non-interleaved reconfiguration due to the
fewer number of reconfigurable tiles. On the contrary, SoC_Z
processes the input image in the shortest time but with the worst
energy efficiency out of the three. All in all, SoC_Y has a good
balance between energy efficiency, total execution time, and a
minimal reconfiguration overhead.

!

!



TABLE IV
SUMMARY OF THE EVALUATION OF THE P&R PARALLELLISM IN PR-ESP.

TIME IS MEASURED IN MINUTES

SoC accs (in-
dexes from
Fig 3)

αav κ γ
P&R
run-
time

fully-
par

semi-
par

serial

tstatic 98 98 -
SoC_A {4, 8, 10, 9} 9.2 29.1 1.26 ⌈Ω⌉ 52 88 -

(class 1.2) TP&R 150 186 192
tstatic 95 95 -

SoC_B {2, 3, 11, 1} 4.5 28.3 0.6 ⌈Ω⌉ 48 61 -
(class 1.1) TP&R 143 156 135

tstatic 88 88 -
SoC_C {7, 11, 8, 2} 5.5 28.2 0.97 ⌈Ω⌉ 71 64 -

(class 1.3) TP&R 159 152 167
tstatic 48 48 -

SoC_D {4, 5, 9, 2} 23.5 12.2 2.4 ⌈Ω⌉ 71 83 -
(class 2.1) TP&R 119 131 142

TABLE V
COMPARISON OF COMPILATION TIME OF THE PR-ESP IMPLEMENTATION

AGAINST MONOLITHIC IMPLEMENTATIONS. TIME IS MEASURED IN MINUTES.
PR-ESP monolithic

Synth tstatic max{Ω} Ttot τ Synth P&R Ttot

SoC_A 47 98 52 197 4 fully-par 91 152 243
SoC_B 54 135 - 189 1 serial 60 124 184
SoC_C 42 88 64 194 2 semi-par 74 129 203
SoC_D 49 48 71 168 6 fully-par 81 141 222

TABLE VI
THE PARTITIONING OF ACCELERATORS INSIDE THE THREE SOCS.

SoC_X SoC_Y SoC_Z
Reconf.
Tile

WAMI accs pbs
(KB)

WAMI accs pbs
(KB)

WAMI accs pbs
(KB)

RT 1 {1, 4, 9, 10, 8} 328 {1, 3, 7, 12} 283 {1, 6, 12} 305
RT 2 {2, 3, 6, 7, 11} 245 {2, 6, 8} 247 {2, 5, 11} 359
RT 3 - - {4, 9, 10} 378 {4, 10, 7} 317
RT 4 - - - - {3, 8, 9} 397

2

6

4

8

SoC_X SoC_Y SoC_Z

2

4

acc_exec_time

reconf time
energy efficiency

J
o
u
l
e
s
/
F
r
a
m
e
 
(
n
o
r
m
a
l
i
z
e
d
)

T
o
t
_
e
x
e
c
_
t
i
m
e
(
n
o
r
m
a
l
i
z
e
d
)

Fig. 4. Total execution time and energy efficiency of the WAMI SoC
implementations.

VII. RELATED WORKS

The efficient implementation of partially reconfigurable SoCs
continues to be challenging despite the growing research on
several aspects of DPR designs. This include efforts to automate
the DPR FPGA flow [4]–[6], as well as software frameworks
to abstract several DPR related services [8], [9]. Recently some
works [7], [18] had also been proposed to enable parallel
compilations of DPR designs to reduce the daunting FPGA
design runtime. But most of the proposed approaches focus
on one or a few combinations of the challenges. Furthermore,
most of the proposed works rarely take advantage of porting
DPR into well matured SoC integration tools [1], [2], that
enable to integrate several independently-designed components.
To address the DPR-related design challenges in a compre-
hensive way, we propose PR-ESP, an open-source platform
to design partially reconfigurable SoCs. Our platform adopts
the ESP platform but augments the architecture, methodology,
and introduces a novel size-driven parallel FPGA compilation
technique to reduce design runtime.

VIII. CONCLUSION

We presented an open-source platform for a system-level
design flow of partially reconfigurable SoC architectures tar-
geting FPGA implementations. Our approach combines ESP,
an agile open-source SoC design platform, with our custom

DPR automation tool for Xilinx FPGAs. We augmented both
the architecture and the methodology of ESP with capabilities
that allow it to support dynamic partial reconfiguration in a
modular and scalable manner. Furthermore, we introduced a
robust yet flexible FPGA flow that fully automates design
implementation.

Acknowledgments.This work was supported in part by DARPA (C#:
FA8650-18-2-7862) and in part by the NSF (A#: 1764000). The views and
conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of Air Force Research Laboratory and DARPA or
the U.S. Government.

REFERENCES

[1] P. Mantovani et al., “Agile SoC development with Open ESP,” in Proc.
of the Intl. Conf. on Computer-Aided Design (ICCAD), 2020.

[2] A. Amid et al., “Chipyard: Integrated design, simulation, and implemen-
tation framework for custom SoCs,” IEEE Micro, vol. 40, no. 4, pp.
10–21, 2020.

[3] C. Heinz et al., “The TaPaSCo open-source toolflow,” Journal of Signal
Processing Systems, vol. 93, no. 5, pp. 545–563, 2021.

[4] B. Seyoum et al., “Automating the design flow under dynamic partial
reconfiguration for hardware-software co-design in FPGA SoC,” in Pro-
ceedings of the 36th Annual ACM Symposium on Applied Computing,
2021, pp. 481–490.

[5] K. Vipin et al., “Mapping adaptive hardware systems with partial re-
configuration using CoPR for Zynq,” in NASA/ESA Conf. on Adaptive
Hardware and Systems (AHS), 2015, pp. 1–8.

[6] C. Beckhoff et al., “Go ahead: A partial reconfiguration framework,”
in 2012 IEEE 20th International Symposium on Field-Programmable
Custom Computing Machines. IEEE, 2012, pp. 37–44.

[7] Y. Xiao et al., “Reducing FPGA compile time with separate compilation
for FPGA building blocks,” in 2019 International Conference on Field-
Programmable Technology (ICFPT). IEEE, 2019, pp. 153–161.

[8] M. Pagani et al., “A linux-based support for developing real-time appli-
cations on heterogeneous platforms with dynamic fpga reconfiguration,”
in 2017 30th IEEE International System-on-Chip Conference (SOCC).
IEEE, 2017, pp. 96–101.

[9] A. Bucknall et al., “Build automation and runtime abstraction for partial
reconfiguration on xilinx zynq ultrascale+,” in 2020 International Con-
ference on Field-Programmable Technology (ICFPT). IEEE, 2020, pp.
215–220.

[10] L. P. Carloni, “The case for embedded scalable platforms,” in Proc. of
the Design Automation Conf. (DAC), 2016, pp. 1–6.

[11] Xilinx, “Vivado Design Suite User Guide: Dynamic Function eX-
change,” https://www.xilinx.com/support/documentation/sw manuals/xilinx2019
2/ug909-vivado-partial-reconfiguration.pdf, 2020.

[12] E. G. Cota et al., “An analysis of accelerator coupling in heterogeneous
architectures,” in Proc. of the Design Automation Conf. (DAC), Jun. 2015,
pp. 202:1–202:6.

[13] Cobham Gaisler, “Leon3 processor,” www.gaisler.com/index.php/products/
processors/leon3.

[14] F. Zaruba et al., “The cost of application-class processing: Energy and
performance analysis of a Linux-ready 1.7-GHz 64-Bit RISC-V core in
22-nm FDSOI technology,” IEEE Trans. on VLSI Systems, 2019.

[15] “NVDLA Deep Learning Accelerator,” https://github.com/nvdla/.
[16] Xilinx, “Vivado Design Suite User Guide: Partial Reconfigura-

tion,” https://www.xilinx.com/support/documentation/sw manuals/xilinx2018 1/
ug909-vivado-partial-reconfiguration.pdf, 2018.

[17] B. Seyoum et al., “FLORA: floorplan optimizer for reconfigurable areas
in FPGAs,” ACM Trans. Embed. Comput. Syst., vol. 18, no. 5s, Oct.
2019. [Online]. Available: https://doi.org/10.1145/3358202

[18] L. Guo et al., “Rapidstream: Parallel physical implementation of fpga
hls designs,” in Proceedings of the 2022 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, 2022, pp. 1–12.

[19] K. Barker et al., “PERFECT (power efficiency revolution for embedded
computing technologies) benchmark suite manual,” Pacific Northwest
National Laboratory and Georgia Tech Research Institute, 2013.

!

!


	Select a link below
	Return to Previous View
	Return to Main Menu


