
AuxcellGen: A Framework for Autonomous
Generation of Analog and Memory Unit Cells

Sumanth Kamineni1, Arvind Sharma2, Ramesh Harjani2, Sachin S. Sapatnekar2, Benton H. Calhoun1
1University of Virginia 2University of Minnesota

Abstract—Recent advances in auto-generating analog and mixed-
signal (AMS) circuits use standard digital tool flows to compose
AMS circuits from a combination of digital standard cells and
a set of auxiliary cells (auxcells). Until now, generating auxcell
layouts for each new PDK was the last manual step in the flow
for auto-generating AMS components, which limited the available
auxcells and reduced the optimality of the auto-generated AMS
designs. To solve this, we propose AuxcellGen, a framework
to auto-generate auxcell layouts and performance models. Aux-
cellGen generates a parasitic-aware auxcell performance model
using a neural network (NN), auto-sizes and optimizes auxcell
schematics for a given design target, and auto-generates auxcell
layouts. The framework is demonstrated by auto-generating tri-
state buffer auxcells for PLLs and sense-amplifier auxcells for
SRAM across a range of user specifications that are compatible
with standard cell and memory bitcell pitch.
Keywords: cell-based layout automation, circuit optimization,
memory layout generation, surrogate modelling.

I. INTRODUCTION

Analog/mixed-signal (AMS) component generators attempt
to speed up system-on-chip (SoC) design by replacing the
conventional manual design of AMS with automatically gen-
erated versions. A fully-autonomous SoC (FASoC) generation
framework in [1] uses standard digital tool flows to produce
a suite of cell-based AMS generators for components such
as low-dropout regulators (LDOs), phase-locked-loops (PLLs),
and SRAM memory arrays [2]. The generators in [1] re-cast
AMS blocks as structures composed of unit cells, which are
either digital standard cells or auxiliary unit cells (“auxcells”)
that provide additional functionality unique to the specific
AMS block. This permits FASoC [1] to leverage mature digital
tool flows for automated layout generation, since the tool flows
use structure provided in Verilog to compose layouts from
cells by an automatic place and route (APR) process. Fig. 1(a)
shows a high-level AMS synthesis flow, which synthesizes the
design structure from Verilog and then uses APR of standard
cells and auxcells to generate the AMS layout. Leveraging
the digital tool flow is more flexible and process portable
than purely analog layout automation tools such as [3], which
require more porting effort.

Auto-generating auxcell layouts is a key remaining gap in
AMS synthesis that has until now remained a manual process.
The number of required new auxcell functions varies between
generators, depending on the specific analog component to
be built using the generator. For example, a PLL uses two
(e.g., tri-state buffer, switched capacitor), and a memory macro
utilizes six auxcell functions [2] (e.g., sense-amplifier, word-
line driver). Fig. 1(b) shows the impact and the usecase of

Figure 1: (a) The flow for synthesizing AMS circuits requires
auxcells. This work replaces manual auxcell design and layout with
auto-generated auxcells; (b) Usecase and the impact of the proposed

framework on the AMS synthesis and component generators.

the proposed framework. Auxcells synthesized along with
standard cells must match their height with the correct number
of standard cell routing tracks (e.g., 7.5 or 9 tracks) in the
standard cell library being used. For synthesizing memories,
the auxcells must pitch-match with the bitcells by aligning
with an integer number bitcell heights (for row-wise auxcells)
or widths (for column-wise auxcells).

Auxcells should be parameterizable to span the vast design
space of SoC design, enabling varying drive strength, device
type, and different operating voltages. Manual auxcell design
for a large set of cells is tedious and impractical, limiting
both porting time and optimality of generated designs, which
undermines the best trait of synthesizable analog generators.

To solve this problem, we propose a framework called auxil-
iary cell generator (AuxcellGen) that automates the generation
of optimized and pitch-matched auxcell layouts. Function-
ally, AuxcellGen auto-generates auxcells by integrating: (1) a
parasitic-aware surrogate model of auxcell behavior, (2) a cir-
cuit optimizer that uses the surrogate model to optimize each
auxcell for its given user specification, and (3) a cell generator
to auto-generate the pitch-matched auxcell layouts. To the best
of our knowledge, AuxcellGen is the first framework that auto-
generates pitch-matched memory auxcells.

II. PROPOSED FRAMEWORK

In this work, we propose AuxcellGen, a technology-agnostic
framework to auto-generate auxiliary cells for AMS synthe-
sis flows [1] [2]. Fig. 2 presents a high-level overview of
the framework and the critical steps in auto-generating the

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

Figure 2: High-level flow of the Proposed AuxcellGen framework.

auxcells. For even a simple auxcell function, (e.g., a tri-
state inverter for a digitally controlled oscillator (DCO)), three
transistors with different widths, lengths, fin-counts, etc. create
a design space that is unwieldy to exhaustively simulate.
For more complicated auxcells (e.g., sense-amplifiers), the
design space is intractable for comprehensive simulation. To
solve this, we use a surrogate model to emulate an auxcell’s
performance across the design space as a function of input
parameters. Prior art [4] [5] demonstrated that NN-based mod-
eling evaluates circuit performance fast and accurately versus
SPICE simulation but does not consider layout parasitics,
which we find are significant. We describe a parasitic-aware
NN (PaNN) surrogate model that spans the design space and
includes layout parasitic effects without losing accuracy.

As illustrated in Fig. 2, we generate the PaNN model for
each auxcell type once-per-PDK by (a) simulating a sparse
set of randomly selected points in that auxcell’s design space
using template based SPICE simulation, (b) fitting a pre-
layout NN model (PreNN) to those pre-layout simulations,
(c) simulating post-layout auxcells (generated by our cell
generator) for a small subset of the pre-layout designs, and
(d) using transfer learning to generate a post-layout, PaNN
model for the auxcell type.

Once the PaNN model is generated for a given auxcell type,
the framework can reuse the model to create optimized auxcell
instances for any desired design point targets (right side of
Fig. 2). The framework uses the model to select the optimized
design of that auxcell type for a given design target. A genetic
algorithm (GA) explores the auxcell design space with the
PaNN model to select the optimal circuit parameters for a
given specification. Finally, the cell generator auto-generates
the auxcell layout for that particular instance of the auxcell,
producing a layout (.GDSII), SPICE netlists (.cdl), logical
(.lib, .db) and physical libraries (.lef), and output specification
file (.json). Next, we discuss the framework steps in detail.

A. PaNN Model Generation

Creating a PaNN model from only post-layout simulations
would be impractical, since they take twenty times longer than

pre-layout simulations. So, to achieve a highly accurate PaNN
model without a significant increase in training data generation
time, we generate the PaNN model in a two-step approach
by leveraging transfer-learning (TL). TL reuses a pre-trained
model (source model) to accelerate the training of a new model
(target model). A TL approach was used in [6] to create a
parasitic-aware surrogate model by adding extra linear input
and output layers on top of the schematic model, but only for
a limited set of layout sizes. We propose a TL technique that
considers the auxcell width and height as design parameters.
As described in Fig. 2 (a–d), we first create a PreNN model
and use it as a feature extractor for the PaNN model. We use a
multilayer perceptron (MLP) as the regression model for both
the PreNN and PaNN models, defined as

Y = f(WX + b) = f
(∑K

i=1 wixi + b
)

(1)

where W = [w1, w2, ..., wN]T and b are the K-dimensional
weight vector, and the bias, respectively, learned from train-
ing. Defined in (2), X = [x1, x2, ..., xK]T is a K-
dimensional vector of auxcell circuit parameters such as
transistor width/length, device type, and layout size, and is
unique to each auxcell.
PreNN model generation: For a given auxcell, the PreNN,
fpre : Xm → Mpre maps the relation between the circuit
parameters and the pre-layout circuit performance metrics
(Mpre). Here, Xm is the vector X without the layout
parameters. To create the fpre model, AuxcellGen generates
the pre-layout training data by running SPICE simulations for
randomly selected samples from the auxcell parameter space.
Then the model is trained using the Keras Python library
to minimize the mean squared error (MSE) loss function
such that the model is accurate on the training data set and
generalized well on the validation data set.
PaNN model generation: After developing the PreNN model
fpre, the PaNN, fpos : X → Mpos maps the relationship
between the auxcell parameters and the post-layout perfor-
mance metrics (Mpos). First, the post-layout training data
is generated by: 1) selecting very few samples within the
design space, 2) generating the layouts for each sample using

the cell generator (detailed in section III), 3) extracting the
parasitic netlist, and running post-layout SPICE simulations
to measure the post-layout performance. Subsequently, fpre

is instantiated as the base model, and the post-layout training
data is run through it to record the outputs as the metrics
vector, Mpre. The Mpre vector and layout input parameters
(width and height of auxcells) are now the input features for
the PaNN model. The PaNN model is created using these
inputs in the same process as the PreNN model. Despite
training with very few post-layout samples, the PreNN model
achieves high performance accuracy, as the model is a mapping
between the Mpre → Mpos instead of a mapping between
high-dimensional input vector X → Mpos.

The NN models are unique to each auxcell type, and no
single model configuration works equally well for all auxcells.
Furthermore, numerous hyperparameter choices, such as the
number of hidden layers, nodes per hidden layer, and activation
functions, can be set during the training. Determining the best
model parameters and configuration for the given auxcell is an
optimization problem. We implement Bayesian optimization
(BO) [7] hyperparameter tuning to automatically determine the
best parameters and obtain the high-performance NN models
for the given auxcell. The entire process is automated using
Python and a set of auxcell design templates.

B. Optimized Auxcell Netlist Generation
The task of design-space searching for the parameter set that
satisfies the auxcell specifications can be generalized as a
constrained nonlinear programming problem as below:

minimize
X

f(X) = f(m1(X),m2(X), ...,mN (X))

subject to gi(X) = 0, i = [1, 2, ..., I]

hj(X) ≤ 0, j = [1, 2, ..., J]

x
(L)
k ≤ xk ≤ x

(U)
k , k = [1, 2, ...,K] ∀ x ∈ X

(2)
where f(X) is the objective function to be minimized, which
is a function of N circuit performance metrics mn(X).
The functions gi(X) and hi(X) formulate the equality and
inequality constraints, respectively, that must be satisfied by
the solution to the optimization formulation. In the case of
the auxcell optimization problem, mi(X), gi(X), and hi(X)
are the circuit performance metrics that must be minimized or
satisfied and will be estimated using the auxcell PaNN model.
For example, for sense-amplifier auxcell m(X) is the power,
g(X) is the cell height and h(X) is the delay to be satisfied.
x
(L)
i and x

(U)
i define the lower bound and upper bound of

the parameter xi ∈ X , respectively, which collectively set the
design space of the auxcell.

As defined by (2), auxcell optimization aims to minimize
the cost function f(X) by varying K parameters within the
parameter range and evaluating the N metrics and I × J
constraints using the PaNN model. For the auxcell design
space search, we chose a GA for single-objective functions
and NSGA-II for multi-objective functions, as their solutions
are independent of the objective function type and robust to
multiple constraints.

GA and NSGA-II are stochastic-based search metaheuristics
which borrow inspiration from natural biological evolution,
where fitter individuals survive. For given auxcell specifi-
cations, the GA starts by initializing the individuals of the
population P of a predefined size |P |. In the generation ti, the
population P undergoes the fitness evaluation and offspring O
generation through parental selection, crossover, and mutation,
where the individual’s fitness is calculated by evaluating f(X)
in (2). This process is repeated until the termination criterion
T is met. NSGA-II follows the general outline of a genetic
algorithm with a modified mating and survival selection. We
advise the readers to refer to [8] [9] for more details on GA.
Constraints Handling: We use a penalty parameter-less
(PPL) approach [10] that does not require any penalty pa-
rameters or weights for handling the constraints. The cost
function F (X) in this approach is given by the formulation
below, where fmax is the objective function value of the worst
feasible solution in the population. The PPL approach not only
results in better optimal solutions but is particularly viable to
the frameworks like AuxcellGen, which has to auto-generate
the different types of auxcells, and across a broad range of
specifications, without the user figuring out the best penalty
parameters or weights for handing the constraints.

F (X) =

f(X), if feasible

fmax(X) +
∑I

i=1 gi(X) +
∑J

j=1 hj(X), otherwise

Once the optimized cell parameters are set, the design is
passed to the layout engine for layout auto-generation.

III. AUXCELL LAYOUT ENGINE

We now describe automatic layout generation for auxcells.
Based on a PDK abstraction for a given process, we define
the concept of a unit cell and then develop parameterized
layouts that implement transistor widths from the schematic
with an appropriate number of unit cells. We use user-specified
wider wires (or parallel wire connections in FinFET nodes) to
reduce interconnect/via resistances. The auxcell height/width
is selected considering geometric constraints, e.g., standard
cell height matching for a tri-state buffer auxcell for PLL and
bitcell pitch matching for memory auxcells.

A. Process Abstraction

A simplified process abstraction is vital to developing a
process-portable and DRC-clean layout engine. Our cell gen-
erator uses abstracted grids, as described in [11], for both the
FEOL and BEOL layers of a process to generate design-rule-
correct layouts. These abstract grids are described in simple
JSON files, allowing easy porting by simply modifying the
grid entries in the JSON file and adding/removing new layers
according to the process. More details can be found in [11].

B. Generating Auxcell Layouts

We define a library of commonly-used analog building-block
cells (e.g., inverters, differential pairs (DPs), current mirrors,
capacitor arrays, resistor serpentines, switches), or primitives,

Figure 3: Illustration of the cell generator on a simple DP example.

where the connectivity of the primitive is defined using SPICE
syntax, and a parameterized layout template for each primitive.
Auxcells may consist of one or more primitives, e.g., a tri-
state buffer for PLL and a sense-amplifier for a memory
array that uses inverter and switch primitives. We will use the
running example of a DP primitive cell, as shown in Fig. 3,
to illustrate each step. The connectivity of the primitive is
shown in Fig. 3(a): it consists of two transistors, A and B,
with drain terminals DA and DB, respectively, gate terminals
GA and GB, respectively, and a common source terminal S.
The parameters of the abstracted grids for the PDK, which are
used in the cell generator, are also shown.

1) Parameterized Unit Cells: A unit cell corresponds to
a transistor of a certain effective width and length (with a
parameterizable number of fins that define the effective width)
and series-connected FinFETs (which define the effective
length). The unit cell dimensions can be user-specified with a
defined default value. In analog circuits, device sizes are often
large and are built by combining multiple unit cells.

The unit cell layout is defined by a layout template, illus-
trated in Fig. 3(b). This template defines the features that make
up the cell, e.g., poly gate (cyan), fins (green), M1 (red), and
M2 (blue) metal tracks, defined on the process-independent
DR abstraction grids. The layout template interacts with the
DR abstraction (JSON file) to determine feature widths and
grid spacings to generate the layout of the unit cell, and
the use of gridding guarantees correct-by-construction DRC-
correct layouts. The M1 grids also define transistor terminal
locations for the cell routing module to connect the terminals.

The layout of a schematic transistor can then be parame-
terized according to the designer’s needs, using the unit cell
as a building block. Fig. 3(b) shows a unit cell template with
three fins, two M1 tracks, and three M2 tracks. This is used
to build the two parameterized cells shown in Fig. 3(c), both
parameterized to 5 fins and 4 M2 tracks, with the one at right
also parameterized to use a gate length of 2Lmin.

2) Primitive cell layouts: The cell generator automatically
creates layouts for primitive cells (inverters, DPs, current
mirrors, differential loads, capacitor arrays, resistors, and
switches) which are constructed from unit cells; the auxcells,
in turn, are built using primitives.
Aspect ratio: The cell generator is parameterized to generate

primitives in different aspect ratios. However, the aspect ratio
of primitives is determined from geometry constraints from
designs, e.g., in a tri-sate buffer auxcell for PLL, the heights
are fixed to match standard cell row height, and in memory
designs, the width is selected based on bitcell pitch.
Placement: Based on a user-specified placement scheme that
includes geometric constraints (common-centroid, symmetry,
matching), the unit cells that make up a transistor are placed
in an array on the DR abstraction grid to achieve the specified
aspect ratio(s). For example, in a sense-amplifier auxcell for
memory design, inverter and footer switch primitives should
be placed symmetrically, and NMOS/PMOS transistors of the
two inverter primitives must be matched to minimize offset.
Furthermore, NMOS (PMOS) transistors of inverters, in a
sense-amplifier auxcell can be placed in common-centroid
fashion for matching, using a method based on [12]. For
example, when the size of each transistor, A and B, in Fig. 3
corresponds to one unit cell, a total of two unit cells are
required for the DP, and these cells are placed as shown in
Fig. 3(d).
Cell routing: Based on the netlist connections, routing is
performed as follows: as the M1 and poly grids (i.e., S/D/G
terminals) of all devices are exposed, first, an M2 track is
selected to connect the terminals, and thereafter, vias are
dropped at the intersections to M1 (i.e., at S/D grids). For
the DP in Fig. 3, vias are dropped at the first M2 track to the
sources of A and B, as shown by the black squares in Fig. 3(d).
M2 tracks are used to connect transistors in a row, and M3
tracks, orthogonal to M2, are used to connect transistors across
rows. Low-resistance connections, implemented as parallel
wires in FinFET technologies due to width quantization, can
be used as shown in Fig. 3(e) which uses two wires to connect
the source nodes (black vias in the two lower M2 tracks).
Coloring rules: Other than enforcing basic DR checks, handled
by PDK abstraction, the cell generator also respects coloring
rules for metal layers. This is shown in Fig. 3(f) where the
colors C1 and C2 for the M2 layer are alternately assigned to
tracks. Finally, DRC-clean GDSII and LEF files are generated.

IV. RESULTS AND DISCUSSION

We now present the results of AuxcellGen by auto-generating
a PLL tri-state buffer and an SRAM sense-amplifier.

Figure 4: (a) Schematic of the tri-state buffer auxcell. (b) Standard-cell-compatible layout of the tri-state buffer. (c) The frequency and
phase noise results comparison between the pre-layout simulations, post-layout simulations and NN models. (d) Schematic of the
sense-amplifier auxcell. (e) Layouts of the sense-amplifier auxcell with 2X, 4X, and 8X bitcell pitches. (f) Sense-amplifier delay

comparison between the pre-layout simulations, post-layout simulations, and NN models.

A. PaNN modeling and Layout Generation:

The PaNN model training data for the two example cells was
generated by running SPICE simulations across three 16-core
CPU machines with 16-parallel jobs per machine. The data is
split into 60:40 ratio between training and testing data sets.
Tri-state buffer: Figure 4(a) shows the schematic of the tri-
state buffer. Following the steps outlined in section II-A, the
PaNN model is created which maps eight design parameters
(the number of fins (nfin) and the number of fingers (nfg) for
each transistor) to four design metrics (frequency (Freq), phase
noise (PN), figure of merit (FoM), and power). The PreNN
model is created with 2500 design samples and the PaNN
model with 100 post-layout samples. The hyperparameter
tuning with BO mentioned above resulted in the 3-hidden layer
MLP with 200 nodes per layer, ReLU activation function, and
0.394% testing MSE loss. With parallel runs, it took 2.6 hours
to generate pre-layout training data, with each sample taking
5 minutes, and 1.04 hrs for post-layout training data, with
each sample taking 30 minutes. The layout engine generates
the layouts, with each sample taking only 15 seconds for the
complete layout. Figure 4(b) shows the tri-state buffer layout
for the 10-track STD cell height, and Figure 4(c) demonstrates
the frequency and phase-noise results for various tri-state
buffer designs. It is evident from the figure that there is an
average difference of 15–30% between the pre-layout and
post-layout simulation results, confirming the importance of
including layout effects for accuracy. Moreover, the figures
show that the proposed TL-based parasitic-aware NN model
closely matches the results from simulations.
Sense-amplifier: Figure 4(d) shows the schematic of the

SRAM sense-amplifier auxcell with seven transistors and eight
nfin/nfg design parameters. The PaNN model is created by
mapping these eight parameters to three design metrics (offset,
delay, and power). The PreNN model is created with 2000
design samples and the PaNN model with 240 (60 samples
for each 2X, 4X, 8X, and 16X bitcell pitch) samples. The
hyper-parameter tuning with BO generated a 2-hidden layer
MLP with 198 nodes per layer, ReLU activation function, and
1.84% testing MSE loss. The parallel jobs took 10.25 hours to
generate pre-layout training data, with each sample taking 15
minutes for 1000 Monte-Carlo (MC) points and 22.5 hrs for
post-layout training data, with each sample taking 4.6 hours.
The layout engine generates the layouts, with each sample
taking only 45 seconds for the complete layout. Compared
to the manual layout, the 4X auto-generated layout differs by
6.9% and 4.2% in the area and the performance, respectively.
The area difference is primarily due to the placement of
the primitives at the top level. With oxide sharing between
primitives, this difference will be further reduced significantly,
yielding auto-generated layouts close to the manual layouts in
terms of area and performance. Figure 4(e) shows the sense-
amplifier layouts for 2X, 4X, and 8X bitcell pitches. The
Figure 4(f) demonstrates the delay results for various sense-
amplifier designs with different bitcell pitches with an average
difference of 35–50% between the pre-layout and post-layout
simulation results. More importantly, the delay value for the
same design but with a different bitcell pitch varies drastically.
Therefore, it is essential to create the PaNN model with
layout size (bitcell pitch for the sense-amplifier) parameters
and capture the parasitics across the layout sizes. The figure

depicts that a single sense-amplifier PaNN model predicts the
delay across the bitcell pitches with accuracy close to the post-
layout simulations, re-iterating the efficiency of the proposed
TL technique-based PaNN model generation.

Figure 5: (a) The Pareto optimal frontiers of the PLL Tri-state
buffer (b) The Pareto optimal frontiers of the SRAM sense-amplifier

for same design constraints, but with different bitcell pitches

B. Auxiliary cells optimization

Once the auxcell parasitic-aware NN models are created for
the given PDK and the auxcell type, the framework is ready to
generate the auxcells for various user-specified specifications.
We use the pymoo framework [13] to implement the GA and
NSGA-II algorithms. Based on our experiments, an initial pop-
ulation size of 100 with stopping criteria of 400 generations
can generate optimal results for the auxcells.
Tri-state buffer Optimization: The optimization goal for the
PLL tri-state buffer auxcell is to minimize the power (P)
and maximize the FoM with constraints on the frequency
(Freq), phase-noise (PN), and cell height (H). The objective
function is f(X) = w1P (X) − w2FoM(X) (The negative
sign in the second term is used because FoM is negative
and is to be maximized), subject to Freq(X) ≥ Freqtarget,
PN(X) ≤ PNtarget and H(X) = Htarget constraints, where
w1 and w2 are the weight coefficients. For Freqtarget ≥ 5
GHz, PNtarget ≤ 128 dB, and Htarget = 10 units, the Pareto-
Optimal frontier (POF) of the AuxcellGen-generated tri-state
buffer is shown in Fig. 5(a).
Sense-amplifier Optimization: The optimization goal for the
SRAM sense-amplifier auxcell is to minimize the offset (Off)
and power (P) with constraints on the delay (D) and cell
height (H). The objective function for the auxcell is f(X) =
w1P (X) + w2Off(X), subject to D(X) ≤ Dtarget and

H(X) = Htarget constraints. For Dtarget ≤ 10 ns and
Htarget = 4 units, the Pareto-Optimal frontier (POF) of the
AuxcellGen-generated sense-amplifier is shown in Fig.5(b).
The experiment is repeated by changing the Htarget = 16 units,
and new POF can be observed as shown in Fig. 5(b).

To measure the accuracy of the proposed optimization using
the PaNN model, we generated the layouts for each POF point
using the cell generator, and the performance was measured
by running the post-layout simulations. As shown in Fig.5
the post-layout simulation results for both the auxcells match
closely with optimization results, with an average error of
6.4% for the tri-state buffer auxcell and an average error of
7.2% for the sense-amplifier.

V. CONCLUSION

In this paper, we proposed a framework to auto-generate
the optimized layouts for the analog and memory auxcells.
We developed a TL-based parasitic-aware modeling technique
to model the layout parasitics considering the layout sizes
effectively. The framework fills the gap in the AMS synthesis
flow and enables the generation of a wide variety of AMS
designs.

VI. ACKNOWLEDGEMENT

This work was funded in part by Defense Advanced
Research Projects Agency (DARPA) under agreement no.
FA8650-18-2-7844 and as part of the ALIGN project, under
NIWC Contract N660011824048.

REFERENCES

[1] T. Ajayi, et al., “An open-source framework for autonomous SoC design
with analog block generation,” in Proc. IFIP/IEEE VLSI-SOC, pp. 141–
146, 2020.

[2] S. Kamineni, et al., “MemGen: An open-source framework for au-
tonomous generation of memory macros,” in Proc. CICC, pp. 1–2, 2021.

[3] B. Xu, et al., “MAGICAL: Toward fully automated analog ic layout
leveraging human and machine intelligence: Invited paper,” in Proc.
ICCAD, pp. 1–8, 2019.

[4] G. İslamoğlu, et al., “Artificial neural network assisted analog ic sizing
tool,” in Proc. SMACD, pp. 9–12, 2019.

[5] G. Wolfe and R. Vemuri, “Extraction and use of neural network models
in automated synthesis of operational amplifiers,” IEEE T. Comput. Aid.
D., vol. 22, no. 2, pp. 198–212, 2003.

[6] J. Liu, et al., “From specification to silicon: Towards analog/mixed-
signal design automation using surrogate nn models with transfer
learning,” in Proc. ICCAD, pp. 1–9, 2021.

[7] P. I. Frazier, “A tutorial on Bayesian optimization,” arXiv preprint
arXiv:1807.02811, 2018.

[8] G. Alpaydin, et al., “An evolutionary approach to automatic synthesis
of high-performance analog integrated circuits,” IEEE T. Evol. Comput.,
vol. 7, pp. 240–252, 2003.

[9] R. Martins, et al., “LAYGEN II—automatic layout generation of analog
integrated circuits,” IEEE T. Comput. Aid. D., vol. 3, no. 1, pp. 1641–
1654, 2013.

[10] K. Deb, “An efficient constraint handling method for genetic algorithms,”
Computer Methods in Applied Mechanics and Engineering, vol. 186,
no. 2, pp. 311–338, 2000.

[11] T. Dhar, et al., “ALIGN: A system for automating analog layout,” IEEE
Des. Test, vol. 38, no. 2, pp. 8–18, 2020.

[12] A. K. Sharma, et al., “Performance-aware common-centroid placement
and routing of transistor arrays in analog circuits,” in Proc. ICCAD,
pp. 1–9, 2021.

[13] J. Blank and K. Deb, “pymoo: Multi-objective optimization in python,”
IEEE Access, vol. 8, pp. 89497–89509, 2020.

	Select a link below
	Return to Previous View
	Return to Main Menu

