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Abstract—Fine-grained Visual Classification (FGVC) aims to
distinguish object classes belonging to the same category, e.g.,
different bird species or models of vehicles. The task is more
challenging than ordinary image classification due to the subtle
inter-class differences. Recent works proposed deep learning mod-
els based on the vision transformer (ViT) architecture with its self-
attention mechanism to locate important regions of the objects and
derive global information. However, deploying them on resource-
restricted internet of things (IoT) devices is challenging due to
their intensive computational cost and memory footprint. Energy
and power consumption varies in different IoT devices. To improve
their inference efficiency, previous approaches require manually
designing the model architecture and training a separate model for
each computational budget. In this work, we propose Token Adap-
tive Vision Transformer (TAVT) that dynamically drops out tokens
and can be used for various inference scenarios across many IoT
devices after training the model once. Our adaptive model can
switch among different token drop configurations at run time,
providing instant accuracy-efficiency trade-offs. We train a vision
transformer with a progressive token pruning scheme, eliminating
a large number of redundant tokens in the later layers. We then
conduct a multi-objective evolutionary search with the overall
number of floating point operations (FLOPs) as its efficiency
constraint that could be translated to energy consumption and
power to find the token pruning schemes that maximize accuracy
and efficiency under various computational budgets. Empirical
results show that our proposed TAVT dramatically speeds up
the GPU inference latency by up to 10× and reduces memory
requirements and FLOPs by up to 5.5 × and 13× respectively
while achieving competitive accuracy compared to prior ViT-based
state-of-the-art approaches.

I. INTRODUCTION

Recognizing discriminative local parts and features from
objects with subtle visual variation plays a crucial role in FGVC
task. Recently, inspired by successes in Natural Language
Processing tasks [1]–[3], transformer models have been intro-
duced into the computer vision domain and demonstrated high
performance in various vision tasks [4], [5]. Specifically, some
works have proposed ViT-based models for FGVC and resulted
in superior performance compared to traditional Convolutional
Neural Network approaches [6]–[10]. ViT splits an image into
a series of ordered patches and utilizes a self-attention mecha-
nism to capture important parts in the image that contribute
to image recognition [4]. One of the proposed frameworks
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generates overlapping patches with a sliding window to avoid
harming the local neighboring structures when splitting images
and introduces a patch selection module to focus on the
important local patches [6]. Another work introduces a patch
fusion module that aggregates important patches from early ViT
layers to extract low-level and middle-level information [7].
However, these models suffer from huge computational costs,
even more than the baseline ViT, which blocks their deployment
on resource-limited devices such as mobile phones and various
IoT devices. To design compact models specialized for FGVC,
a repeated neural network design process would take place and
result in enormous computational costs. According to [11], the
repeated process of designing and training to find a specialized
transformer model on modern tensor processing hardware could
cause 626,000 pounds of CO2 emission equivalent to that of
5 cars’ lifetime. Despite their exceptional performance, these
power hungry models pose a great hindrance to sustainable
systems. It is crucial to make the large-scale networks efficient
and sustainable to be deployed across various hardware with
different computational budgets and make them suitable for
real-world applications.

There have been efforts to reduce the computational cost
of ViT models at runtime by pruning the image patch to-
kens across the transformer layers [12]–[15]. Existing works
introduce additional probability measures either by reusing
a portion of the learnable parameters [13]–[15] or by intro-
ducing new modules to the ViT architecture to selectively
prune tokens [12]. However, these models are conceived for
certain scenarios where inference budget is known a priori.
In order to deploy these existing adaptive models on various
hardware, it is inevitable to go through a repetitive process of
designing and training compact version of the models suitable
to the deployment constraints. Less effort has been placed in
developing sustainable models that although trained just once
are suitable for diverse inference computational budgets by
selecting a subconfiguration from the original model that meets
the deployment constraints with optimal accuracy.

In this paper, we propose a framework capable of training the
Token Adaptive Vision Transformer (TAVT) that progressively
eliminates redundant image patch tokens to maximize accuracy
and minimize required computational resources. We conduct
a multi-objective evolutionary search to find a full Pareto-
frontier of image patch pruning schemes that provides optimal
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accuracy-efficiency trade-offs given any computational budget
constraint in the inference time.

The main contribution of this work includes:
• We introduce progressive dropout of the image patch

tokens based on attention scores for training a Token
Adaptive Vision Transformer to reduce the computational
cost of running inference on FGVC task without introduc-
ing additional parameters.

• We apply a sandwich rule with an in-place distillation
training technique to make the model adaptive to arbi-
trary token drops and allows us to apply different token
drop schemes in the inference time without compromising
accuracy.

• We conduct a multi-objective evolutionary search on
TAVT model to automatically find optimal accuracy-
efficiency tradeoffs for various computational budgets
for efficient model deployment on various hardware. In
contrast to other adaptive token dropping techniques that
offer input dependent runtime efficiencies, the efficiency
savings obtained using this submodel configurations are
independent of the input.

Empirical results show that our proposed model significantly
cuts down computational and memory costs while achieving
superior performance on four popular fine-grained benchmarks
compared to the ViT baseline and state-of-the-art (SOTA)
models.

II. BACKGROUND

In this section, we review Vision Transformer and its self-
attention mechanism. Our framework uses the attention mech-
anism to decide which tokens to prune at each layer. Then we
briefly review existing transformer-based models on the FGVC
task.

A. Vision Transformer with self-attention

Vision Transformer is the first model that directly applies
the transformer architecture for the image classification task.
The model consists of a patch embedding layer and multiple
encoder layers. First, the model splits and converts input images
to sequences of non-overlapping image patches. Then, the
image patches are linearly projected into a d-dimensional latent
embedding space in the patch embedding layer and a position
embedding is added to the patch embedding to retain positional
information. An additional class token is added to extract image
representations by correlating with other image patches and fed
to the classification head. The sequence of embedded tokens is
fed to encoder layers. An encoder layer includes a multi-head
self-attention layer and a feed forward network that consists
of two fully connected layers for non-linear transformation.
The multi-head self-attention layer decomposes the scaled dot-
product attention to extract independent features from the input
sequence in parallel. Let x = (x1, x2, . . . , xT ) be a sequence
of T image patch embeddings where xt ∈ Rd. A self-attention
mechanism is defined as

SA(x) = Wo

T∑
t=1

αt(xt)Wvxt (1)

where

αt(xt) = softmax

(
x⊤
t W

⊤
q Wkxt√
d

)
(2)

Wo,Wv,Wq,Wk ∈ Rd×d are weights for linear transformation.
Then the multi-head self-attention is defined as

MSA(x) =
H∑

h=1

SAh(x) (3)

where H is a set of attention heads h and SAh is a decomposed
low-rank attention from the head h. All the representation
outputs from SAh are created from the same input and merged
to produce a single output. In our framework, the attention
score matrix α from (2) is utilized to select which tokens to
prune.

B. ViT on Fine-Grained Visual Classification
Recent works proposed ViT-based models and achieved

SOTA performance in FGVC [6]–[10]. TransFG is the first
work to extend the ViT into FGVC [6]. The framework gener-
ates overlapping patches to minimize local visual information
loss from splitting an input image to multiple patches and
introduces a Part Selection Module (PSM) before the last
transformer layer to select important tokens with discriminative
features based on the aggregated attention weights. Another
framework FFVT proposes Mutual Attention Weight Selection
(MAWS) module to select image patch tokens that are similar
to the class tokens to extract different levels of global and
local information in images [7]. However, the existing models
are computationally expensive, having quadratic compute costs
based on the input sequence length. Designing an efficient ViT
model is a crucial task to enable deploying the powerful models
on various hardware for real-world fine-grained applications.

III. TOKEN ADAPTIVE VISION TRANSFORMER

In this section, we describe the progressive token pruning
strategy based on the attention importance score to dropout
redundant tokens. We train the Token Adaptive Vision Trans-
former with the pruning strategy to make the final model robust
to arbitrary token drops at inference time. Fig. 1 shows how
tokens are progressively pruned throughout the encoder layers
according to the attention scores. Then we conduct a multi-
object evolutionary search on the trained model to find the
optimal token pruning scheme under the target computational
budgets.

A. Attention score for token pruning
To drop out the patch tokens based on the pruning schemes,

(2) is used as the importance scoring function for a sequence
of tokens. The equation measures the attention imposed by xt

on the other image patches x ∈ x. A patch token x with a
high importance value is likely to contain discriminative visual
features that have a strong local and global correlation with
other important tokens. These tokens with high scores influence
the final classification. The significance score of x is the overall
attention score aggregated over the heads. We identify the top-k
attentive tokens based on the significance score and retain the
highest value tokens based on the pruning scheme.
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Fig. 1. The overview of our proposed Token Adaptive Vision Transformer. The input sequence of image patch tokens are projected into the embedding space
and fed to the encoder blocks. The progressive token pruning based on attention scores show the number of selected token features are gradually decreased as
they pass to the next layer.

B. Training Token Adaptive Vision Transformer

To train our adaptive model to be used for different scenarios
with various computational budgets, we assign random token
drop schemes to the model during the training process. For each
iteration, we sequentially sample the number of retained patch
tokens ni+1 at the (i+1)-th layer within the range[(1−p)ni, ni]
where ni is the number of retained tokens in the previous
layer and p is the token dropout rate. This way, the tokens are
progressively pruned across the layers to reduce computational
costs. Additionally, we perform random layer skipping for each
iteration to make the model robust to the random token drop.

We applied the sandwich rule training technique introduced
by [16] to effectively train our adaptive model. First, we update
the model with the upper bound configuration where none
of the tokens are dropped but layers are skipped uniformly
at random. Second, we apply in-place distillation to update
the model with the lower bound with the maximum token
pruning configuration and other randomly sampled intermediate
pruning configurations to transfer the knowledge from the full
model to the sparse models with various pruning schemes. In
each iteration, both the full and sparse models are optimized
simultaneously to make the model adaptive to arbitrary token
drops at inference time. With the same number of training steps
as the baseline ViT, our approach results in a superior accuracy-
latency trade-off.

C. Evolutionary Search on Token pruning configurations

After training our Token Adaptive Vision Transformer, we
conduct a multi-objective evolutionary search to find the op-
timal token pruning scheme that maximizes accuracy and
efficiency for the target computational budgets. Evolutionary
search on our adaptive model requires a significantly less
computational cost since our model provides instant accuracy-
efficiency trade-offs without additional training and the search
process only takes inference on a small validation dataset
compared to a repeated design and training process to find
specialized models for limited scenarios.

First, we initialize the population of token pruning schemes
with constant drop ratios that are evenly spaced. That way,
the initial population is uniformly distributed between the
upper bound and the lower bound pruning configurations.
At each iteration, we evolve the population to only retain
configurations with the optimal accuracy-efficiency trade-offs
that lie on a new Pareto frontier. Then we apply mutation and
crossover to generate more population from the current optimal
configurations to find better trade-offs. A mutation transforms
an original pruning configuration (g1, · · · , gL) to (g′1, · · · , g′L)
where an arbitrary element gi for i-th layer in the original
pruning configuration (g1, · · · , gL) is updated to a new value
g′i sampled from the uniform distribution

(
g′i−1, gi+1

)
to retain

progressive pruning. A crossover randomly selects two pruning
configurations from the population and averages the pruning
values at each layer. In each evolution iteration, we maintain
nm mutated configurations and nc configurations from the
crossover. The final iteration will generate the furthest Pareto
frontier that consists of configurations with optimal accuracy-
efficiency trade-offs.

IV. EXPERIMENTS

We evaluate our framework for FGVC task and compare it to
the baseline ViT model and SOTA Transformer-based models.

A. Model and Datasets
We base our framework on the ViT model (ViT-B/16) that

is pre-trained on the Imagenet21K dataset [17]. The model
consists of an embedding layer and 12 encoder layers with
12 self-attention heads in each layer. The embedding layer is
pre-trained to process sequences of patches of size 16. We used
four widely used fine-grained benchmarks including CUB-200-
2011, Stanford Cars, Stanford Dogs, and NABirds datasets to
evaluate our method [18]–[21].

B. Evaluation metrics
We compare our approach to the baseline ViT model fine-

tuned with the four mentioned datasets and the two SOTA
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ViT-based models including TransFG and FFVT. We focus on
comparing the inference efficiency with three different metrics:
the overall memory usage, latency, and the number of floating
operations (FLOPs), which is independent of hardware and
could be used as a proxy for efficiency [22]. We measured both
the average GPU and CPU latency across the validation dataset
with a single Nvidia Tesla V100 GPU and a Intel i9-9980XE
(18 threads) CPU using Pytorch and APEX. The input images
with a batch size of 8 are fed to measure all three efficiency
metrics. The same setup is shared across all comparing models
and our proposed method for a fair comparison.

C. Experimental Setup

For data preparation, we performed the data augmentation
used by TransFG and FFVT. We applied random cropping for
training and center cropping for testing to have 448×448 size
input images and adopted extra color augmentation. We fine-
tune the pre-trained ViT-B/16 model for the four fine-grained
benchmarks without any token pruning to have the baseline
ViT models. We used SGD optimizer to optimize the network
with a momentum of 0.9 and applied the cosine annealing
scheduler. The initial learning rate is set to 0.03 except 0.003
for Stanford Dog benchmark and the batch size is set to 16.
Then we further fine-tuned the baseline ViT model on our token
adaptive framework with a token drop rate set to 0.2. The same
training setup for training the baseline ViT model was used
to train our adaptive model. We fine-tuned with 2 randomly
sampled intermediate token pruning configurations in addition
to upper and lower bound configurations to apply the sandwich
training technique.

To find the accuracy-efficiency Pareto frontier of token
pruning configurations for different compute budgets, we run
30 iterations of evolutionary search with 30 mutation config-
urations with a mutation probability of 0.5 and 30 crossover
configurations populated on each iteration.

For training SOTA ViT-based models, we followed the repos-
itories of TransFG and FFTV from the authors to configure
training on fine-grained datasets.

V. RESULTS AND ANALYSIS

In this section, we evaluate the experiments and compare the
performance of our method to the other ViT-based models. We
further analyze the pruning results in terms of the accuracy-
efficiency trade-offs.

A. Pareto Frontier

We used the four fine-grained benchmarks to investigate the
effect of the proposed framework on the accuracy-efficiency
trade-off. Fig. 2 shows Pareto front curves of the proposed
adaptive model trained on the four benchmarks. Each point in
the Pareto curves corresponds to a submodel from the original
configuration with a specific token pruning scheme. It is notice-
able in the CUB-200-2011, Stanford Car, and NABirds Pareto
curves that the sparse model with certain token drop schemes
has even higher accuracy with significantly less number of
floating point operations compared to the full model, which
corresponds to the rightmost point on the Pareto curve. As we

try to reduce the compute cost (FLOPs), our models trained
with the token pruning scheme remove unnecessary distracting
tokens leading to boosting the accuracy. Beyond a certain
point, token pruning starts to drop essential information as well
showing the trend toward lowering accuracy consequently.
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Fig. 2. Pareto frontier curves of accuracy to GFLOPs on four standard fine-
grained benchmarks.

B. Maximizing efficiency gain

We compared our adaptive model with the baseline ViT and
the two SOTA ViT-based models: TransFG and FFVT. Table I,
II, III, and IV show the accuracy and efficiency of the models
on four different fine-grain benchmarks. To validate that our
proposed framework could find token pruning configurations
that maximize both accuracy and efficiency, we searched two
pruning configurations for each model that maximize accuracy
and efficiency respectively. TAVTp denotes the performance
model with the pruning scheme that achieves the highest
accuracy. TAVTe denotes the most efficient model within 1
percent of the baseline ViT model accuracy. For all benchmarks,
our performance model achieves higher accuracy and higher
efficiency compared to the baseline ViT model.

TABLE I
COMPARISON OF DIFFERENT METHODS ON CUB-200-2011 DATASET

Model Acc latency(ms) FLOPs Mem usage (Gb)
TransFG 91.6 671 5.70x 21.1

FFVT 91.5 160 0.93x 8.96
VIT 90.6 134 / 2232⋆ 1.00x 9.41

TAVTp 91.1 63 / 850⋆ 0.43x 3.8
TAVTe 89.8 50 / 623⋆ 0.33x 2.9
p is the performance model. e is the efficiency model. ⋆ on CPU

On CUB-200-2011 benchmark, our performance model
achieves 0.5% higher accuracy while requiring only 43% of
the number of floating operations from the baseline ViT. Other
efficiency metrics show linear correlations with FLOPs. Our
model is 2× and 2.6× faster on GPU and CPU respectively,
and reduces the memory usage by 2.5× compared to ViT.
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Our efficiency model is 2.7× and 3.6× faster on GPU and
CPU respectively, and only requires 33% of the number of
floating operations (FLOPs) from ViT with only a minor loss
of accuracy. In Table II, our efficiency model is 2.3 × faster
with 41% of FLOPs compared to ViT within 1 percent of
the ViT model accuracy on Stanford Dogs benchmark. In
Table III, our performance model achieves 1% higher accuracy
while requiring 47% of FLOPs from ViT on Stanford Cars
benchmark. NABirds benchmark from Table IV also shows
both performance and efficiency models significantly reduce
memory usage and FLOPs while achieving competitive accu-
racy.

TABLE II
COMPARISON OF DIFFERENT METHODS ON STANFORD DOGS DATASET

Model Acc latency(ms) FLOPs Mem usage (Gb)
TransFG 90.6 672 5.70x 21.1

FFVT 91.3 162 0.94x 8.79
VIT 90.5 144 / 2359⋆ 1.00x 9.41

TAVTp 90.8 129 / 2051⋆ 0.89x 8.41
TAVTe 89.6 61 / 789⋆ 0.41x 3.62
p is the performance model. e is the efficiency model. ⋆ on CPU

TABLE III
COMPARISON OF DIFFERENT METHODS ON STANFORD CARS DATASET

Model Acc latency(ms) FLOPs Mem usage (Gb)
TransFG 92.4 671 5.70x 21.1

VIT 92.1 134 / 2214⋆ 1.00x 9.41
TAVTp 93.1 87 / 1228⋆ 0.60x 5.27
TAVTe 91.6 51 / 640⋆ 0.34x 2.96
p is the performance model. e is the efficiency model. ⋆ on CPU

Furthermore, compared to the SOTA models, our perfor-
mance model is substantially more efficient with a minor
drop in accuracy. In Table I, our model is 10X faster with
13X fewer FLOPs and 5.5X less memory usage with only
0.5% accuracy drop compared to TransFG on CUB-200-2011.
Compared to FFVT, which does not use overlaying patches,
our model is 2.5× faster requiring 2× fewer FLOPs and 2.4×
less memory usage with only 0.4% accuracy drop. For Stanford
Dogs benchmark in Table II, our performance model achieves
0.2% higher accuracy while requiring only 15% of FLOPs and
40% of memory usage from TransFG. In Table III, our model
outperforms the SOTA models on Stanford Cars benchmark
as well. With a minor accuracy drop, our performance model
is 7.7× faster and requires 9.5× and 4× smaller number of
FLOPs and memory usage respectively compared to TransFG.
For NABirds in Table IV, our performance model is 9×
faster and improves memory usage and FLOPs by 4.7× and
11× respectively with only 0.5% accuracy drop compared
to TransFG. With a drastic reduction in memory usage, our
efficiency models could be deployed on a Raspberry Pi 4 with
4GB RAM or a low-profile Nvidia GTX 1650 GPU with 4GB
RAM.

C. Token drop distribution and visualization

We further analyze the token pruning configurations and
visualize how tokens are progressively pruned out throughout
the layers. Fig. 3 shows how many tokens are retained in each
layer based on the optimal token pruning configurations that

TABLE IV
COMPARISON OF DIFFERENT METHODS ON NABIRDS DATASET

Model Acc latency(ms) FLOPs Mem usage (Gb)
TransFG 90.6 674 5.70x 21.1

VIT 89.7 136 / 2258⋆ 1.00x 9.41
TAVTp 90.1 74 / 1092⋆ 0.51x 4.45
TAVTe 88.8 55 / 639⋆ 0.33x 2.96
p is the performance model. e is the efficiency model. ⋆ on CPU

maximize efficiency within 1 percent of the baseline ViT model
accuracy on the four benchmarks. About half of the tokens are
pruned from the first 3 layers on all the benchmarks. There is
also an extreme pruning on the last layer where only 6 and 4
tokens are retained for Stanford Car and NABirds benchmarks
respectively.
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Fig. 3. The token length configuration of TAVTp with the maximum efficiency
gains on the fine-grained benchmarks.

To further analyze the behavior of the progressive token
pruning applied in our model, we visualize the pruning pro-
cedure in Fig. 4. We show the pruning results after each layer
where the red masks represent the dropped tokens. We find
that our progressive token pruning scheme can gradually prune
out distractor tokens such as backgrounds and local features
that do not contribute to the fine-grained objects. Our adaptive
model can focus on the objects and local distinctive features of
the fine-grained objects in the images. This suggests that our
model can hierarchically capture discriminative local parts and
features from objects in the image which contribute most to the
fine-grained classification.

VI. CONCLUSION

In this paper, we propose Token Adaptive Vision Transformer
(TAVT), a framework that progressively drops image patch
tokens. Our adaptive model can switch among different token
drop configurations at runtime, providing instant accuracy-
efficiency trade-offs. Our approach can significantly reduce
computational effort while maintaining competitive accuracy
compared to the SOTA ViT-based models for Fine-grained
image classification. The multi-objective evolutionary search on
TAVT model to automatically find optimal accuracy-efficiency
trade-offs for various computational budgets allow the model to
be deployed on various hardware without additional tuning or
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Fig. 4. Visualization of the progressive token pruning. Our model focuses on the objects and captures local discriminative features successfully in different
images from various categories.

training. Furthermore, our model drastically reduces the overall
memory usage, which allows inference on resource restricted
devices and embedded systems.

REFERENCES

[1] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional transformers for language understanding,”
in Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1, Minneapolis, MN, Jun. 2019, pp. 4171–4186.

[2] A. Vaswani et al., “Attention is all you need,” Advances in neural
information processing systems, vol. 30, 2017.

[3] T. Brown et al., “Language models are few-shot learners,” Advances in
neural information processing systems, vol. 33, pp. 1877–1901, 2020.

[4] A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers
for image recognition at scale,” in International Conference on Learning
Representations, 2021.

[5] Z. Liu et al., “Swin transformer: Hierarchical vision transformer using
shifted windows,” in Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision (ICCV), October 2021, pp. 10 012–10 022.

[6] J. He et al., “Transfg: A transformer architecture for fine-grained recog-
nition,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 36, no. 1, 2022, pp. 852–860.

[7] J. Wang, X. Yu, and Y. Gao, “Feature fusion vision transformer for fine-
grained visual categorization,” in BMVC, 2021.

[8] H. Zhu et al., “Dual cross-attention learning for fine-grained visual cate-
gorization and object re-identification,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022, pp. 4692–
4702.

[9] Y. Zhang et al., “A free lunch from vit: adaptive attention multi-scale
fusion transformer for fine-grained visual recognition,” in ICASSP 2022-
2022 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2022, pp. 3234–3238.

[10] X. Liu, L. Wang, and X. Han, “Transformer with peak suppression and
knowledge guidance for fine-grained image recognition,” Neurocomput-
ing, vol. 492, pp. 137–149, 2022.

[11] E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy consid-
erations for modern deep learning research,” Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 34, no. 09, pp. 13 693–13 696,
Apr. 2020.

[12] Y. Rao et al., “Dynamicvit: Efficient vision transformers with dynamic
token sparsification,” Advances in neural information processing systems,
vol. 34, pp. 13 937–13 949, 2021.

[13] H. Yin et al., “A-vit: Adaptive tokens for efficient vision transformer,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022, pp. 10 809–10 818.

[14] Y. Tang et al., “Patch slimming for efficient vision transformers,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022, pp. 12 165–12 174.

[15] Y. Liang et al., “Not all patches are what you need: Expediting vision
transformers via token reorganizations,” in International Conference on
Learning Representations, 2022.

[16] J. Yu and T. S. Huang, “Universally slimmable networks and improved
training techniques,” in Proceedings of the IEEE/CVF international
conference on computer vision, 2019, pp. 1803–1811.

[17] T. Ridnik, E. Ben-Baruch, A. Noy, and L. Zelnik-Manor, “Imagenet-21k
pretraining for the masses,” arXiv preprint arXiv:2104.10972, 2021.

[18] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie, “The caltech-
ucsd birds-200-2011 dataset,” 2011.

[19] J. Krause, M. Stark, J. Deng, and L. Fei-Fei, “3d object representations
for fine-grained categorization,” in 4th International IEEE Workshop on
3D Representation and Recognition (3dRR-13), Sydney, Australia, 2013.

[20] A. Khosla, N. Jayadevaprakash, B. Yao, and L. Fei-Fei, “Novel dataset
for fine-grained image categorization,” in First Workshop on Fine-Grained
Visual Categorization, IEEE Conference on Computer Vision and Pattern
Recognition, Colorado Springs, CO, June 2011.

[21] G. Van Horn et al., “Building a bird recognition app and large scale
dataset with citizen scientists: The fine print in fine-grained dataset
collection,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2015, pp. 595–604.

[22] G. Kim and K. Cho, “Length-adaptive transformer: Train once with
length drop, use anytime with search,” in Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume
1: Long Papers). Online: Association for Computational Linguistics,
Aug. 2021, pp. 6501–6511.

!

!


	Select a link below
	Return to Previous View
	Return to Main Menu


