
A Novel Fault-Tolerant Architecture for Tiled Matrix
Multiplication

Sandeep Bal∗, Chandra Sekhar Mummidi∗, Victor da Cruz Ferreira†, Sudarshan Srinivasan†, Sandip Kundu∗
∗University of Massachusetts, Amherst, USA

†Intel Corporation, Bengaluru, India

Abstract—General matrix multiplication (GEMM) is common
to many scientific and machine-learning applications. Convolution,
the dominant computation in Convolutional Neural Networks
(CNNs), can be formulated as a GEMM problem. Due to its
widespread use, a new generation of processors features GEMM
acceleration in hardware. Intel recently announced an Advanced
Matrix Multiplication (AMX®) instruction set for GEMM, which
is supported by 1kB AMX registers and a Tile Multiplication
unit (TMUL) for multiplying tiles (sub-matrices) in hardware.
Silent Data Corruption (SDC) is a well-known problem that
occurs when hardware generates corrupt output. Google and Meta
recently reported findings of SDC in GEMM in their data centers.
Algorithm-Based Fault Tolerance (ABFT) is an efficient mecha-
nism for detecting and correcting errors in GEMM, but classic
ABFT solutions are not optimized for hardware acceleration. In
this paper, we present a novel ABFT implementation directly
on hardware. Though the exact implementation of Intel TMUL
is not known, we propose two different TMUL architectures
representing two design points in the area-power-performance
spectrum and illustrate how ABFT can be directly incorporated
into the TMUL hardware. This approach has two advantages: (i)
an error can be concurrently detected at the tile level, which is
an improvement over finding such errors only after performing
the full matrix multiplication; and (ii) we further demonstrate
that performing ABFT at the hardware level has no performance
impact and only a small area, latency, and power overhead.

Index Terms—accelerator, matrix multiplication, abft, concur-
rent error detection, low power

I. INTRODUCTION

General Matrix Multiplication (GEMM) operations are
widespread in machine-learning and high performance com-
puting applications [1]. With its growing usage in various
applications and services machine-learning has become quite
pervasive [2]. Data center workloads are often dominated by
machine learning [3]. Though varied in computation models,
ML applications ranging from Convolutional Neural Networks
(CNNs), Recurrent Neural Networks, and Multi-Layer Percep-
tions (MLPs) all use GEMM at their core [4]. Thus GEMM
operations constitute lion’s share of computation in data centers
[5].

Given the prevalence of GEMM operations in modern com-
putation, CPU and GPU providers are workings towards hard-
ware acceleration to increase performance. As a case in point,
4th generation Intel Xeon processors include accelerators for
matrix operations enabled by the Advanced Matrix Extensions
(AMX) instruction set, which speeds up AI applications in data
centers. In AMX, a matrix is tiled into sun-matrices where the
elements of a sub-matrix can be packed into a 1kB register.
AMX architecture features 8 such registers. AMX architecture
includes a tiled matrix multiplication unit that accepts data from

two AMX registers (tiled matrices) producing a tiled matrix
output aligned for storing in an AMX register. The tiled matrix
multiplication unit (TMUL) can perform up to 1024 parallel
multiply and add operations, a significant improvement over
the usual sequential operations of a CPU. As a result, GEMM
is accelerated significantly [6]. Tiling a matrix so that each
tile’s data matches the target architecture’s register width is a
popular solution [6]. Matrix of any size can be split into tiled
matrices for faster computations [6].

Occurrences of silent data corruption (SDC) in data centers
have recently been reported by Google and Meta [7], [8].
The majority of the applications in their data centers involve
machine-learning workloads and recommendation models. Ma-
trix multiplications constitute the dominant kernel in these
workloads [4]. Detecting SDC during execution is crucial but
challenging [7]. In safety-critical systems SDC poses a major
threat to safety [9]. This motivates us to investigate the online
detection of execution errors in TMUL architecture.

There have been numerous studies in the past that have
tackled the problem of error detection in matrix multiplication.
Typically, these solutions involve redundant execution using
double or triple modular redundancy to detect or correct errors
in hardware [10]. We do not consider these solutions due to
their high overhead. In data centers with large fleet sizes and
high power consumption, such error detection techniques are
not ractical [11]. Algorithm-based fault tolerance (ABFT) has
been proposed as a low-cost alternative to hardware redundancy
for detecting matrix multiplications errors at run time [12].

Various ABFT solutions for matrix multiplications have been
proposed in the literature [13] [14]. Recently, ABFT was
studied by NVIDIA for error detection in matrix multiplication
[15]. So far, ABFT has only been implemented as a software
solution. Given the emergence of hardware accelerators in
general and TMUL in particular, we investigate the cost/benefit
of implementing ABFT directly onto the hardware accelerator.

Our work in this paper makes the following contributions to
concurrent error detection in TMUL units:

• We propose two baseline designs for supporting AMX
multiplication instructions in hardware.

• We demonstrate that ABFT can be incorporated in the
hardware directly for fault-tolerant operation of tiled mul-
tiplication

• Based on experiments, we show that area, power and
latency overhead of our approach is less than 1.5%, 1.3%
and 7.7% for the first baseline design and less than 1.8%,
7.2% and 1% for the second baseline design, respectively.

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA 

	



• Our proposed modifications to the baseline designs does
not impact the frequency of the architecture.

• We implemented a simulation environment to demonstrate
the algorithm’s efficacy using fault injection experiments.

II. BACKGROUND

A. TMUL

To accelerate AI workloads, Advanced Matrix Extensions
(AMX) instructions were introduced [6]. AMX architecture in-
corporates a tile matrix multiply unit (TMUL) along with low-
latency, high-bandwidth memory access to accelerate GEMM
operation [6]. AMX features 1kB registers to hold tile data.
TMUL takes its operands from two source registers and pro-
ducing an output which is stored in a destination AMX register.
TMUL comprises a 2D array of processing elements (PE),
where each PE performs a multiply and add operation, also
known as fused multiply and adds (FMA) units as shown in
Figure 1.

CLK[k]

A[m+k][0], A[m+k-1][0], A[m+1][0], A[m][0],

CLK[k-1] CLK[2] CLK[1]

A[m+k][1],

A[m+k][k],

A[m+k-1][1], A[m][1],

A[m][k-1],

FMA0,0 FMA0,1 FMA0,N-1

PS0,0 PS0,1 PS0,N-1

FMA1,0 FMA1,1 FMA1,N-1

PS1,0 PS1,1 PS1,N-1

FMAK-1,0 FMAK-1,1 FMAK-1,N-1

C[:][0] C[:][1] C[:][N-1]

B[0][:N]

B[1][:N]

B[K-1][:N]

Fig. 1. TMUL unit

During TMUL execution, up to 1024 FMAs execute in
parallel drawing large amounts of power. To address this
power issue, the processor frequency is lowered during TMUL
operation and every core in the architecture will be instilled
with power controllers to facilitate this operation.

B. TMUL Architecture

The exact implementation of TMUL in 4th generation Xeon
has not been published. However, based on the available details,
in this section, we describe two baseline design choices. The
first baseline TMUL design is shown in Figure 2 is inspired
by the systolic array architecture published in [16]. We modify
this design to be applicable to tile-based matrix multiplications.
Further, although Intel’s proprietary TMUL unit is not revealed,
we approximate Intel’s TMUL design based on available in-
formation and produce our second baseline design as shown in

Fig. 2. Baseline Tiled Multiplication Unit Design 1

Figure 3 [6]. Based on the AMX register size and the supported
data types, the size of the TMUL can be inferred. Below we
illustrate basic TMUL operation between two matrices A and
B which produces C based on these dimensions.

A64×16 =


a0,0 a0,1 ... a0,15
a1,0 a1,1 ... a1,15

...
...

. . .
...

a63,0 a63,1 ... a63,15

 (1)

B16×64 =


b0,0 b0,1 ... b0,63
b1,0 b1,1 ... b1,63

...
...

. . .
...

a15,0 a15,1 ... a15,63

 (2)

C64×64 =


c0,0 c0,1 ... c0,63
c1,0 c1,1 ... c1,63

...
...

. . .
...

c63,0 c63,1 ... c63,63

 (3)

1) Baseline TMUL 1:
a) Design: The first baseline design is shown in Figure

2. It has 1024 multiplier units denoted by [i, j]. They are
distributed across 16 rows and 64 columns. Each column has
a dedicated tree adder to generate an output. The tree adders
consist of 16 basic adders divided into four stages.

b) Operation: In the first 64 clock cycles, B16×64 is
serially loaded column-wise into the multiplier units. A64×16

is transposed (AT
64×16) and shifted right row-wise. In the 65th

cycle, the first column of the AT
64×16 is loaded in the first

column of the multiplier array units from [0, 0] → [63, 0] and
multiplied with the first column of B16×64, element-wise. In
the 65th clock cycle, the first element of the output is also
produced and offloaded by adding all the 16 partial products
in the tree adder. In the subsequent cycles, the following
columns of AT

64×16 are loaded in the multiplier array units on
a one-column per cycle basis. It takes 64 clock cycles to load

!

!



Fig. 3. Baseline Tiled Multiplication Unit Design 2

AT
64×16 completely into the array structure while multiplying

with B16×64. From the 129th cycle, offloading of the AT
64×16

matrix begins. The first column of the AT
64×16 leaves the last

column [0, 63] → [15, 63] of the multiplier unit, leaving behind
its output element. It takes 64 more cycles to drain AT

64×16 and
generate the complete results by the 192nd clock cycle.

2) Baseline TMUL 2:
a) Design: Our second baseline design is shown in Figure

3. It has 1024 FMA units denoted by [i, j]. They are distributed
across 16 rows and 64 columns as well.

b) Operation: For this architecture, B16×64 is serially
shifted into the multiplier units for the first 64 clock cycles.
AT

64×16 is arranged in a systolic array data flow at the input.
In the 65th cycle, a0,0 of AT

64×16 is loaded in the FMA unit
[0, 0] and multiplied to b0,0 of B16×64. In the 66th cycle, the
partial sum from FMA unit [0, 0] moves down to the FMA
unit [1, 0] along with a0,0 of AT

64×16 being forwarded to FMA
unit [0, 1], where the next partial sum is generated. Meanwhile,
a1,0 is loaded in the FMA unit [0, 0] and a0,1 from the second
row of AT

64×16 is loaded in the FMA unit [1, 0]. This data flow
continues until the 129th clock cycle, when a0,0 of AT

64×16 is
unloaded from the FMA unit [0, 63]. The combined process of
loading and unloading of AT

64×16 in systolic data flow continues
till the 192nd clock cycle. At the 193th clock cycle, c0,0 of the
output tiled matrix C64×64 is generated downwards from the
FMA unit [15, 0]. This systolic data flow process of loading
and unloading AT

64×16 and offloading C64×64 lasts until the
320th clock cycle, when the final element c63,63 of C64×64 is
generated from the FMA unit [15, 63].

C. Traditional ABFT for GEMM

ABFT for GEMM checks the correctness of the operation by
checking reduced output values. In GEMM ABFT technique,
column checksum for input matrix A of dimension nxm, RCj =∑n−1

i=0 (aij) and row checksum for input matrix B of dimension
mxp, CCi =

∑p−1
j=0(bij) are appended to them respectively,

where i and j are the row and column indices respectively.
These augmented matrices multiplied with GEMM generate an
extended output matrix C of dimension (n+1)×(p+1). Next,
the row checksum and column checksum of output matrix C

is computed for the first n rows and the first p columns and
compared against the last row and last column of the matrix
C. In an error-free operation, the following identities must hold
true:

Cnj =
n−1∑
i=0

Cij (4)

Cip =

p−1∑
j=0

Cij (5)

Cnp =
n−1∑
i=0

Cip =

p−1∑
j=0

Cnj (6)

Since GEMM basic operations such as partial products and
summations are commutative and associative, any mismatch in-
dicates an error, while the location of the erroneous element(s)
can be found from the indices of the mismatched rows and
columns.

D. Modified ABFT for GEMM

To optimize the above, a modified ABFT technique only
computes the input checksum from the column of one of the
matrices and checks against the column checksum of the output
matrix. This modification reduces the number of summation
operation that needs to be performed, overall. In modified
GEMM ABFT technique, column checksum for input matrix A
of dimension nxm, RCj =

∑n−1
i=0 (aij) is appended to A matrix,

where i and j are the rows and column indices respectively.
This augmented matrix is then multiplied to unchanged B in
GEMM which generates an extended output matrix C of di-
mension (n+1)×(p). Further, the column checksum of output
matrix C is computed for the first n rows and compared against
the last row of the output matrix C. In an error-free operation,
the following identities must hold true:

Cnj =
n−1∑
i=0

Cij (7)

Cnp =

p−1∑
i=0

Cip (8)

Again, since modified GEMM basic operations such as par-
tial products and summations are commutative and associative
as well, any mismatch will indicate an error, whereas in this
case, the location of the erroneous element(s) will not be
apparent. Since we are focusing on error detection and not a
correction in the GEMM operation, this trade-off is justified.
It also reduces the total number of computations, the power,
and hardware overhead making it more suitable for hardware
implementation.

III. PROPOSED TILED-ABFT ARCHITECTURE FOR GEMM

In this section, we extend the baseline architectures described
earlier in Section II. The extensions will facilitate concurrent
error detection by implementing ABFT at the hardware level
of the previous architectures. We call these extensions Fault
Tolerant tiled-Multiplication Unit or FTMU. In the following

!

!



subsections, we discuss the two FTMU designs proposed in
this paper.

A. FTMU for baseline design 1
a) Design: Figure 4 represents the FTMU architecture for

the first baseline design. In addition to the core architecture, we
add two extra units. One is called the Input Checksum (IC) unit
and the other is the Output Checksum (OC) unit. The IC unit
consists of 16 basic adders to compute the input checksums, one
for each of the 16 rows of the multiplier unit. Similarly, the OC
consists of 64 basic adders to compute the output checksums,
one for each of the 64 tree adder units. Additionally, we propose
adding interconnects at the base of each multiplier unit to load
B16×64 in 1 clock cycle. This would reduce the number of
clock cycles by 63.

0, 0 0, 1 0, 63
+

1, 0 1, 1 1, 63

15, 0 15, 1
15, 
63

+
+

+
+

+
+

IC Unit

i, j Mul Unit

OC Unit

+

+

+

Fig. 4. Fault-Tolerant Tiled Multiplication Unit Design 1

b) Operation: To illustrate the operation, we refer to
equations (1), (2), and (3). Apart from loading B16×64 in
the multiplier units in 1 clock cycle through the interconnects,
the core GEMM operation remains the same as previously
discussed in Section II. In addition to that, when the columns
of AT

64×16 are loaded in the baseline 1 architecture at the input,
each element ai,0 → ai,15 are added and stored in the registers
0 → 15 of IC on a per-clock basis. These registers run from top
to bottom in IC unit. This operation is performed in parallel
to loading and adding AT

64×16 in the architecture and for all
the columns of AT

64×16. Further, when the elements of C64×64

are offloaded, the OC unit adds and stores the elements of
each column in the registers. This happens in parallel to the
offloading of C64×64. For example, the elements c0,i → c63,i
are added and stored on a per-clock basis in the ith register
of OC. Due to the interconnects, the final output C64×64 is
computed in 129th clock cycle instead of 192nd as discussed
earlier. Finally, from 128th → 130th clock cycle, the final IC
will be multiplied with each column of B16×64 on a per clock
basis to generate the OCinput. In an error-free computation OC
and OCinput are equal.

B. FTMU for baseline design 2

a) Design: Figure 5 shows the proposed FTMU design 2
for the second baseline design. Similar to the FTMU design 1,
we add two extra units apart from the core architecture here as
well. They are the Output Checksum (OC) unit and the Input
Checksum (IC) unit. Once more, the IC unit uses 16 basic
adders, one for each of the 16 rows of the multiplier unit—to
compute the input checksums. A basic adder for each of the
64 columns for FMA units makes up the OC.

0, 0 0, 1 0, 63

1, 0 1, 1 1, 63

15, 0 15, 1
15, 
63

+ + +
IC Unit

i, j FMA Unit

OC Unit

+

+

+

+

Fig. 5. Fault-Tolerant Tiled Multiplication Unit Design 2

b) Operation: The fundamental elements of the second
FTMU design’s GEMM operation are the same as those that
were covered in Section II. Additionally, each value from
ai,0 → ai,15 is added and stored in the registers 0 → 15 of the
IC each clock cycle when the columns of AT

64×16 are loaded in
the FTMU design 2 at the input in a systolic data flow. Once
more, the IC’s registers are arranged from top to bottom. This
operation takes place concurrently with the loading of AT

64×16

in the architecture and for all of its columns. Additionally,
the OC unit adds and saves the elements of each column in
the registers after offloading the C64×64 elements. This occurs
concurrently with the unloading of C64×64. For instance, the
elements c0,i and c63,i are inserted and stored in the OC’s ith

register on a per-clock basis. During the 319th → 321st clock
cycle, the OCinput will be produced by multiplying the final
IC by each column of B16×64 on a per clock basis. OC and
OCinput are identical in a computation that is error-free.

IV. RESULTS

This section describes the results showing the effectiveness
of the hardware-based ABFT presented in this paper and the
overhead of the two proposed designs. We discuss the results
from an area-power-performance standpoint for the two differ-
ent designs. First, we describe the basic experimental setup.
Next, describe the implementation and justification for our
design choices. We then describe results from fault-injection

!

!



experiments to study the efficacy of FTMU designs. Finally,
we present the power, performance, and area overhead of the
proposed FTMU designs.

A. Experimental Setup and Implementation

The experiments were run on an Intel® Core™ i7-4790
processor with a clock speed of 3.60 GHz. The machine runs on
an x86 architecture with 8 CPUs having 4 cores and 2 threads
per core. It is equipped with 32K L1d cache, 32K L1i cache
256K L2 cache, and 8192K L3 cache.

TABLE I
FPGA EXPERIMENTATION SETUP

Tool Vivado 2017.2
Hardware Description Language Verilog
Board Vendor Xilinx
Board Display Name Artix-7 AC701 Evaluation Platform
Part xc7a200tfbg676-2
Version Latest

As shown in Table I, we ran an experiment on Xilinx Vivado
2017.2 for FPGA studies of the proposed architectures. We
targeted the latest version of the Artix-7 AC701 Evaluation
Platform to implement the hardware components in Verilog.

Table II presents the number of FPGA components used for
each of the hardware components of our proposed architecture
such as look-up tables, slices, input-output buffers, registers,
flip flops, etc.

We implemented our hardware design components previ-
ously implemented in Xilinx in Cadence Virtuoso. We used the
synthesis tool Synopsys Design Compiler Version E - 2010.12-
SP5-2. We used the NCSU Devices FreePDK45 library which
uses 45-nanometer technology to implement the designs. We
wrote TCL scripts to automate our design programs (Table III).

Table IV shows the power and performance of the hardware
components used in our proposed architecture implemented in
FPGA. The basic adder is designed to add two 8-bit integer
numbers. The baseline and the baseline FTMU architectures
require adding 16 8-bit integers in one cycle. The basic adder
adds 16 8-bit integers in 110 nanoseconds. To improve the
performance, a tree adder performs the same operation in
24 nanoseconds. Further, each multiplication operation in an

TABLE II
FPGA CELLS USED

Cells Used
Basic Adder 8 LUTs - 2 Slices – 24 IOBs
Tree Adder 64 LUTs - 19 Slices – 136 IOBs
Pipelined Tree Adder 100 LUTs - 29 Slices – 137

IOBs – 40 Registers – 40 Flip Flops
– 1 BUFGCTRL

Wallace Tree Multiplier 77 LUTs - 23 Slices – 32 IOBs
Array Multiplier 114 LUTs - 34 Slices – 32 IOBs

TABLE III
ASIC EXPERIMENTATION SETUP

Synthesis Tool Synopsys Design Compiler
Version E - 2010.12-SP5-2
Library NCSU Devices FreePDK45
Technology 45 nanometer
Scripting Tool TCL

TABLE IV
FPGA POWER AND DELAY

Dynamic
Power (W)

Leakage
Power (W)

Delay
(ns)

Basic Adder 5.3 0.2 7.3
Tree Adder 11.4 0.2 24.0
Pipelined Tree Adder 11.5 0.2 12.0
Wallace Tree Multiplier 13.6 0.2 12.8
Array Multiplier 14.8 0.2 22.6

TABLE V
ASIC POWER AND DELAY

Area
(µm2)

Dynamic
Power
(µW )

Leakage
Power
(µW )

Delay
(ns)

Basic Adder 34.1 16.1 0.4 2.6
Tree Adder 487.0 374.0 0.006 3.7
Pipelined Tree Adder 668.0 241.0 0.008 2.1
Wallace Tree Multiplier 342.0 253.5 0.005 5.0
Array Multiplier 323.5 269.0 0.005 24.8

array multiplier takes 22.6 nanoseconds. Instead, a Wallace-
Tree multiplier is used which performs in 12.8 nanoseconds.
To make the proposed design more balanced, the tree adder
is further pipelined into two stages. The pipelined tree adder
performs 16 8-bit additions in 12 nanoseconds. The FTMU 2
and baseline 2 design’s fused multiply-add unit, on the other
hand, uses a basic adder and an array multiplier.

Similarly, Table V describes the power-performance-area of
the hardware components in 45-nanometer technology. The
two-stage pipelined tree performs the addition of 16 8-bit
integer operations in 2.1 nanoseconds. It outperforms a basic
adder performing the same operation in 39 nanoseconds. On
the other hand, the Wallace-Tree multiplier multiplies two 8-bit
integers in 5 nanoseconds compared to 22.6 nanoseconds of an
array multiplier. Hence, FTMU design 1 uses a Wallace-Tree
multiplier and two-staged pipelined tree adder. On the other
hand, there is no change in FTMU design 2 utilizing basic
adder and array tree multiplier circuits for their FMA units.

Further, to establish FTMU’s concurrent error detection
capability, we run an experiment in a simulated environment
in C++ Version 11. The details are discussed in the following
subsection.

B. Fault Injection Experiment

We performed a fault injection experiment on two 64×16
and 16×64 matrix inputs with random 8-bit integer numbers.
The errors are simulated by randomly selecting an element in
the TMUL array and injecting an error in a randomly selected
bit place. These experiments were run for 1000 inputs with and
without errors. Our proposed tiled-ABFT approach was able
to successfully detect errors in all the erroneous tiled matrix
multiplication operations and did not have any false positives in
the error-free runs. This is expected as ABFT guarantees 100%
error detection for integers. The fault injection experiment also
validates our overall implementation.

C. Analysis and Overhead

Table VI shows the power-performance-area-latency over-
head of FTMU design 1 over the baseline design 1 implemented

!

!



TABLE VI
FTMU DESIGN 1 OVERHEAD

Baseline 1 FTMU 1 Overhead (%)
Power (mW) 2500 2532 1.3
Performance (ns) 56 56 0
Area (mm2) 385.4 391.6 1.5
Latency (cycles) 129 130 7.7

TABLE VII
FTMU DESIGN 2 OVERHEAD

Baseline 2 FTMU 2 Overhead (%)
Power (mW) 2359 2528.8 7.2
Performance (ns) 219.2 219.2 0
Area (mm2) 360 366.4 1.8
Latency (cycles) 320 321 1

in 45-nanometer technology. The table shows that the power
overhead is only 1.3% for the FTMU design 1 along with an
area overhead of 1.5%. It also shows that there is a negligible
latency overhead of 7.7% due to one extra clock cycle for the
output checksum whereas there was no performance overhead
observed.

Similarly, Table VII shows that for baseline design 2, the
power and area overhead to implement the FTMU design 2 in
hardware is 7.2% and 1.8%, respectively. Again, there is an
overhead in latency of 1% with no performance overhead.

D. Fault Diagnosis

FTMU 1 and 2 designs compare column checksum. Thus, we
can diagnose the faulty column. However, since row checksum
is not implemented in the hardware, the diagnostic resolution
is limited to faulty column only. We cannot diagnose the faulty
PE. For repeatable errors, this limitation can be addressed by
choosing target inputs for multiplication as described below.
We assume a single fault model as ABFT is not equipped to
deal with all possible multiple faults.

The modified ABFT technique was described in Section II
and Section III which helps locate the faulty column through
input checksums (IC) and output checksums (OC). To diagnose
the faulty PE, we iteratively replace every individual row one
at a time with zeroes and run the FTMU operation until the IC
and OC are equal. This will help identify the faulty row. Thus,
with faulty column and row information, we can identify the
faulty PE which lies at the intersection of faulty row and faulty
column.

V. CONCLUSION

GEMM is the most common operation in machine learning
and HPC applications. Consequently, CPU and GPU manu-
facturers are implementing hardware accelerators to accelerate
GEMM using a tiled matrix multiplier. Recent publications
from Meta and Google document the prevalence of hardware
errors in data centers. This motivates us to study online error
detection in TMUL hardware. We implement ABFT directly
into TMUL hardware because it blends well with the data flow
architecture. Our proposed FTMU design 1 implementation of
ABFT is shown to have a low overhead of only 1.3%, 1.5%, and
7.7% for power, area, and latency, respectively. Additionally,

it is demonstrated that our suggested FTMU design 2 imple-
mentation of ABFT has a low overhead of just 7.2% percent,
1.8% percent, and 1% percent for power, area, and latency,
respectively. Also, using fault-injection experiments, they were
shown to detect all errors in integer operations. There has been
no compromise in terms of performance for either of the FTMU
designs presented in this paper.

VI. ACKNOWLEDGMENTS

This research was funded in part by a grant from the National
Science Foundation and Intel Corporation.

REFERENCES

[1] F. W. Note, J. Huang, and R. A. van de Geijn, “Blislab: A sandbox for
optimizing gemm,” 2016.

[2] S. Raschka, J. Patterson, and C. Nolet, “Machine learning in python: Main
developments and technology trends in data science, machine learning,
and artificial intelligence,” Information, vol. 11, no. 4, p. 193, 2020.

[3] M. Naumov, J. Kim, D. Mudigere, S. Sridharan, X. Wang, W. Zhao,
S. Yilmaz, C. Kim, H. Yuen, M. Ozdal et al., “Deep learning training in
facebook data centers: Design of scale-up and scale-out systems,” arXiv
preprint arXiv:2003.09518, 2020.

[4] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter perfor-
mance analysis of a tensor processing unit,” in Proceedings of the 44th
annual international symposium on computer architecture, 2017, pp. 1–
12.

[5] E. Georganas, K. Banerjee, D. Kalamkar, S. Avancha, A. Venkat, M. An-
derson, G. Henry, H. Pabst, and A. Heinecke, “High-performance deep
learning via a single building block,” arXiv preprint arXiv:1906.06440,
2019.

[6] “Intel® architecture instruction set extensions and future features,” 2021.
[Online]. Available: https://www.intel.com/content/dam/develop/external
/us/en/documents/architecture-instruction-set-extensions-programming-r
eference.pdf

[7] H. D. Dixit, S. Pendharkar, M. Beadon, C. Mason, T. Chakravarthy,
B. Muthiah, and S. Sankar, “Silent data corruptions at scale,” arXiv
preprint arXiv:2102.11245, 2021.

[8] P. H. Hochschild, P. Turner, J. C. Mogul, R. Govindaraju, P. Ranganathan,
D. E. Culler, and A. Vahdat, “Cores that don’t count,” in Proceedings of
the Workshop on Hot Topics in Operating Systems, 2021, pp. 9–16.

[9] G. Li, S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer,
and S. W. Keckler, “Understanding error propagation in deep learning
neural network (dnn) accelerators and applications,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2017, pp. 1–12.

[10] M. Franklin, “A study of time redundant fault tolerance techniques for
superscalar processors,” in Proceedings of International Workshop on
Defect and Fault Tolerance in VLSI. IEEE, 1995, pp. 207–215.

[11] J. G. Koomey, “Worldwide electricity used in data centers,” Environmen-
tal research letters, vol. 3, no. 3, p. 034008, 2008.

[12] K.-H. Huang and J. A. Abraham, “Algorithm-based fault tolerance for
matrix operations,” IEEE transactions on computers, vol. 100, no. 6, pp.
518–528, 1984.

[13] G. Bosilca, R. Delmas, J. Dongarra, and J. Langou, “Algorithm-based
fault tolerance applied to high performance computing,” Journal of
Parallel and Distributed Computing, vol. 69, no. 4, pp. 410–416, 2009.

[14] A. Roy-Chowdhury and P. Banerjee, “Algorithm-based fault location
and recovery for matrix computations,” in Proceedings of IEEE 24th
International Symposium on Fault-Tolerant Computing. IEEE, 1994,
pp. 38–47.

[15] S. K. S. Hari, M. B. Sullivan, T. Tsai, and S. W. Keckler, “Making
convolutions resilient via algorithm-based error detection techniques,”
IEEE Transactions on Dependable and Secure Computing, vol. 19, no. 4,
pp. 2546–2558, 2021.

[16] B. Asgari, R. Hadidi, and H. Kim, “Proposing a fast and scalable
systolic array for matrix multiplication,” in 2020 IEEE 28th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM). IEEE, 2020, pp. 204–204.

!

!


	Select a link below
	Return to Previous View
	Return to Main Menu


