
FPGA Acceleration of GCN in Light of the
Symmetry of Graph Adjacency Matrix

Gopikrishnan Raveendran Nair*1, Han-Sok Suh*1, Mahantesh Halappanavar3, Frank Liu2, Jae-sun Seo1, and Yu Cao1

1School of ECEE, Arizona State University, Tempe, AZ, USA
2Oak Ridge National Lab, Oak Ridge, TN, USA

3Pacific Northwest National Labs, Richland, WA, USA

Abstract—Graph Convolutional Neural Networks (GCNs) are
widely used to process large-scale graph data. Different from
deep neural networks (DNNs), GCNs are sparse, irregular, and
unstructured, posing unique challenges to hardware acceleration
with regular processing elements (PEs). In particular, the adja-
cency matrix of a GCN is extremely sparse, leading to frequent but
irregular memory access, low spatial/temporal data locality and
poor data reuse. Furthermore, a realistic graph usually consists
of unstructured data (e.g., unbalanced distributions), creating
significantly different processing times and imbalanced workload
for each node in GCN acceleration.

To overcome these challenges, we propose an end-to-end
hardware-software co-design to accelerate GCNs on resource-
constrained FPGAs with the features including: (1) A custom
dataflow that leverages symmetry along the diagonal of the
adjacency matrix to accelerate feature aggregation for undirected
graphs. We utilize either the upper or the lower triangular
matrix of the adjacency matrix to perform aggregation in GCN to
improve data reuse. (2) Unified compute cores for both aggregation
and transform phases, with full support to the symmetry-based
dataflow. These cores can be dynamically reconfigured to the
systolic mode for transformation or as individual accumulators for
aggregation in GCN processing. (3) Preprocessing of the graph in
software to rearrange the edges and features to match the custom
dataflow. This step improves the regularity in memory access
and data reuse in the aggregation phase. Moreover, we quantize
the GCN precision from FP32 to INT8 to reduce the memory
footprint without losing the inference accuracy. We implement our
accelerator design in Intel Stratix10 MX FPGA board with HBM2,
and demonstrate 1.3×-110.5× improvement in end-to-end GCN
latency as compared to the state-of the-art FPGA implementations,
on the graph datasets of Cora, Pubmed, Citeseer and Reddit.

I. INTRODUCTION

Graph Convolutional Neural Networks (GCNs) are the state-
of-the-art machine learning method to process the graphs.
GCNs take a high dimensional representation of graph data
and transform it into lower dimension representation, without
altering the graph structure [1], [2]. In general, GCNs consist
of two main operations: aggregation and transformation, as
shown in Figure 1. In feature aggregation, each node takes
the feature vector associated with its neighboring nodes and
aggregates them to produce a new feature vector. The feature

* These authors contributed equally and are co-first authors.
This work is partially supported by C-BRIC, one of six centers in JUMP, a

Semiconductor Research Corporation (SRC) program sponsored by DARPA. It
is also supported in part by the U.S. Department of Energy, through the Office
of Advanced Scientific Computing Research’s “Data-Driven Decision Control
for Complex Systems (DnC2S)” project.

Fig. 1. Data processing in GCN: (a) Input graph, (b) Transformation of two
nodes, and (c) Aggregation of a node.

transformation phase transforms the feature matrix of the nodes
to a new dimension, using a weight matrix. This operation is
similar to that in a multi-layer perceptron (MLP).

Acceleration of GCNs on hardware platforms is challeng-
ing due to its sparsity, randomness, and non-uniformity. The
adjacency matrix of a GCN is a sparse data structure leading
to irregular memory accesses, low spatial/temporal data locality
and reuse [2]. Consequently, execution time and memory access
patterns in aggregation are unpredictable and irregular [3].
On the other hand, feature transformation is a dense matrix
multiplication with regular memory access and high data reuse.
Therefore, GCN accelerators should be capable of handling
both the sparsity and irregularity of aggregation, and the dense
and regular computation in feature transformation [3].

As feature aggregation is unique to GCNs and presents
a major challenge, we propose a custom execution dataflow
to efficiently accelerate feature aggregation in this work. By
exploiting the symmetry of adjacency matrices in undirected
graphs, we utilize either the upper or the lower triangular
matrix to perform aggregation in GCN. Furthermore, we de-
velop a dynamically reconfigurable compute core to unify the
processing for aggregation and transformation. This approach
minimizes the balancing issues in workload and pipelining in
GCN operations.

The major contributions of this work are as follows:

• We propose a dataflow to accelerate feature aggregation by
exploiting the symmetry of the adjacency matrix. Such a
dataflow reduces redundant data movement and improves
data reuse.

• We design a dynamically reconfigurable compute core
and associated control logic to support the heterogeneous
workload across aggregation and transformation, as well

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA 

	



as the symmetry nature of feature aggregation.
• We design a preprocessing method to rearrange the edges

and features of the graph in order to match the data flow.
This step ensures more regular memory access and better
data reuse in the aggregation phase.

• We implement our design on Intel Stratix 10 MX FPGA
board with HBM2, and achieve significant improvement in
end-to-end latency: 1,101× and 202× over PyG [4] and
DGL [5] on CPUs, 13× and 17× over PyG and DGL on
GPUs, and 1.3×-110.5× over prior FPGA accelerators [6],
[7] on four graph datasets.

II. BACKGROUND AND MOTIVATION

A. GCN Operations

GCNs have a neighborhood aggregation scheme where the
features of neighbouring nodes are recursively transformed and
aggregated to generate a new representation for the target
nodes, which is commonly deployed in GCN [1], Graph-
Sage [8], and GAT [9]. In this work, we focus on the inference
of one the most popular model, GCN in [1].

Primary operations in the GCN include transformation and
aggregation, as shown in Fig. 1. The output of a layer (Xl)
can be represented as: Xl = ReLU(ÃX(l−1)W l). Ã is the nor-
malized adjacency matrix, given by Ã = D−1/2AD−1/2, where
D is the degree matrix of the graph. Here the transformation
operation can be represented by Xl′ = X(l−1)W l, and the
aggregation operation is represented by Xl = ÃX(l′).

In the transformation phase, the features (X) of the graph
nodes are multiplied with a weight matrix (W) to transform the
features. During aggregation, each node’s feature is aggregated
with the feature of its neighboring nodes to generate a new
representation. The output is then passed through an activation
function to produce the output of a layer in GCN. These
operations are repeated for all layers within a GCN.

B. Hardware Acceleration of GCNs

Recent works demonstrate effective hardware acceleration of
GCNs over CPUs and GPUs [3], [6], [7]. A GCN accelerator
should be able to manage both the dense transformation phase
and the sparse aggregation phase. To that end, design challenges
remain open on the following aspects:

1) Imbalanced workload: Existing works use separated
compute engines for transformation or aggregation [3], [6], [7].
Since the latency of these two stages are imbalanced, such
a design usually encounters pipeline stalls [6]. In [6], when
pipeline stalls occur, the generated output of a compute engine
has to be written back to external memory, at the cost of more
external memory accesses. To overcome this, we unify the
compute core, which can be dynamically configured into an
aggregation or transformation engine based on the computation
flow.

2) Data reuse under the symmetry: The randomness of ag-
gregation makes it difficult to ensure data reuse. Distinguished
from [3], [6], our hardware architecture exploits the symmetry
in the adjacency matrix to maximize data reuse: Given an
undirected graph, the upper half and the lower half of its

Fig. 2. The dynamically reconfigurable FPGA accelerator for GCNs.

adjacency matrix contain the same information and thus, in
principle, we only need one half of the adjacency matrix to
complete the aggregation phase. We further address this in data
pre-processing on software to match the custom dataflow.

3) GCN quantization: Previous works suffer from high
memory footprint due to large graph size and 32-bit floating
point data representation [3], [6], [7]. To that end, we adopt
quantization in GCN training to reduce data representation from
32-bit floating point to 8-bit fixed point. This solution helps
reduce memory requirement on FPGA, without sacrificing the
inference accuracy.

III. FPGA ARCHITECTURE AND DATAFLOW

A. Architecture Overview

Fig. 2 shows the architecture of the GCN accelerator. It
consists of six compute cores, a task scheduler, a reduction
engine, the DMA controller, off-chip HBM2 memory, and on-
chip buffers.

Each core in the accelerator supports the unified operation for
aggregation and transformation. It consists of a scheduler for
aggregation or transformation, an array of processing elements
(PEs), and a local buffer. The aggregation and transformation
scheduler generates corresponding control signals to the core.
The local buffer stores the partial results of computation and
feature data of nodes, which are reused by the PE array; it
is exclusive for each core. The PE array is organized into
R rows and C columns. They can work collectively as a
systolic unit for transformation, or as individual rows of PEs
for aggregation. Each PE is an 8-bit fixed point multiply-and-
accumulate unit. For all cores inside the compute engine, the
task scheduler generates control signals to enable either the
aggregation scheduler or transformation scheduler in each core;
the reduction engine accumulates the output produced across
multiple cores.

We use multiple on-chip buffers for various purposes. The
edge buffer contains the edge information of the graph in
compressed co-ordinate format (COO). It is also used as an
instruction buffer for the aggregation scheduler. Each core
has its own edge buffer allowing parallel edge access. The

!

!



feature buffer stores the node features for aggregation and
transformation. The weight buffer saves the weights for feature
transformation. It is a banked memory with the number of
banks equal to C in the PE array. The partial output buffer
stores the partial output generated in the previous iteration to
be consumed by the current iteration. The output buffer holds
the output generated from the core for reduction engine. It is
also a banked buffer with the number of banks equal to the
number of compute cores (M). The data flow is designed to
ensure that no inter-core communication is needed.

B. Symmetry of Adjacency Matrix

For an undirected graph, the upper and lower half of its
adjacency matrix contain the same information, i.e., it is
symmetric. Fig. 3(a) presents an example of the adjacency
matrix of an undirected graph with six nodes. For a large graph,
we need to partition the matrix into smaller tiles to fit into on-
chip memory. As shown in Fig. 3(a), the six nodes are grouped
into three vertex groups, V1, V2, and V3. The adjacency matrix
is organized into 2×2 tiles, as (V1, V1), (V1, V2), etc.

In an undirected graph, the ith row and ith column of the
adjacency matrix is the transpose of each other. This property is
true for the tiles as well, e.g., tile (Vi, Vj) and tile (Vj, Vi) are
the transpose of each other and contain the same information.
Therefore, we only need to compute one of them and can skip
the other, saving approximately half of the adjacency matrix in
computing as highlighted in Fig. 3(a).

The aggregation operation is then performed tile by tile.
For the tile (V1, V2), the features of the neighbors or source
vertex group V2 are added to the destination vertex group
V1 along the horizontal direction, as shown in Fig. 3(b). This
produces a partial output (PO) denoted as POV1. Similarly, for
the transpose pair (V2, V1), a partial output POV2 is produced.
Due to the symmetry, we only need to compute one tile from
a transpose pair. To compensate the horizontal aggregation
PO from the discarded tile, we conduct an aggregation in the
vertical direction in the selected transpose pair tile as shown
in Fig. 3(c), i.e., the features of V2 is getting added to V1.
For vertical aggregation, the source and destination vertices are
interchanged as compared to the horizontal aggregation. Thus,
except for the diagonal tiles, each tile produces two partial
outputs, one from the vertical aggregation and the other from
the horizontal aggregation. For the diagonal tiles there are no
transpose pairs as the transpose of a diagonal tile is the same.

Since the adjacency matrix is extremely sparse, it is stored
in the coordinate format (COO). This helps us skip zero entries
inside the adjacency matrix. In the COO format, each edge is
represented as (row, col, value). For horizontal aggregation, the
row entry becomes the destination node and col entries as its
neighbors, where for vertical aggregation the col entry becomes
the destination and row entries as its neighbors. Thus, without
any storage overhead, we can compute vertical and horizontal
aggregation using the COO format.

In summary, by using the symmetry property for aggregation,
we produce twice the number of outputs for non-diagonal tiles,
as compared to the normal aggregation, ensuring more edge
data reuse for the same set of edge inputs.

Fig. 3. Aggregation with tiles: (a) Adjacency matrix with compute tiles
highlighted; (b) Symmetry on a pair of transpose tiles with the direction of
aggregation; (c) Vertical and horizontal aggregation on a tile.

C. Custom Data Flow based on Tiles

Fig. 4 presents the dataflow of GCN acceleration based on
the symmetry property. FT input is the input required for trans-
formation and FA input for aggregation. Tile i represents the
adjacency matrix of tile in the COO format and Vi represents
the features of the corresponding vertex group.

We perform feature transformation first followed by feature
aggregation, to reduce the amount of computations [2]. For
Iteration 1 in Fig. 4(b), the inputs are Tile 1 and features of
V1. It produces a transformation output FTOV1. This output
is then reused as the input for aggregation and produces one
partial output POV1. Since it is a diagonal tile, only horizontal
aggregation output is produced.

For Iteration 3 which is a non-diagonal tile, we have both
vertical aggregation and horizontal aggregation. There is no
transformation operation for Tile 3 as the feature inputs re-
quired for horizontal aggregation are the output of transforma-
tion of Tile 1 and feature the input for vertical aggregation is
the transformation output of Tile 2. Thus, for a non-diagonal
tile, we have only aggregation but no transformation. The
aggregation of Tile 3 produces two sets of output POV2 and
POV1. Here POV1 and POV2 is accumulated on top of the
POV1 and POV2 from the previous iteration.

In Iteration 5, the aggregated output for vertex group V2
(OV2) is produced, and by the end of Iteration 6, the complete
aggregated output for vertex group V1(OV1) and V3(OV3) is
produced. As shown in Fig. 4(b), the order of computation is
selected to maximize input reuse. By computing the diagonal
tiles first and then the non-diagonal tiles in the same row, we
ensure maximum data reuse of the output from the diagonal
tiles. The process continues until all tiles are computed.

D. Mapping Dataflow to Hardware

1) Transformation: For transformation, the core is reconfig-
ured into the systolic module. Each core has a PE array of R
rows and C columns. Thus, each core can handle R rows of the
feature matrix and C columns of the weight matrix. We have
M such cores operating in parallel.

Fig. 5(a) shows the dataflow for transformation. Weights are
fed from the top and is pushed to the systolic module, and
features are fed from the left and pushed to the right in every
cycle. To access data parallelly in every cycle, we have a feature
matrix with banks set to R and weight matrix with banks set
to C. For M parallel cores, we have M on-chip feature buffers.
Since weights are the same within a GCN layer, we only need

!

!



Fig. 4. Custom dataflow based on symmetric tiles: (a) Adjacency matrix with tiles numbered according to the order of execution; (b) Dataflow with input and
output at each iteration step.

Fig. 5. Dataflow on FPGA: (a) Mapping of transformation into the PE array; (b) The adjacency matrix tile showing the interval partition; (c) Edge buffer for
core 1 and mapping of edges from the buffer to the core; (d) Layout of node features inside a banked on-chip memory.

one weight buffer and the data is broadcasted to all cores. The
FT scheduler generates the address to read data from the feature
buffer and the weight address. Since all M cores produce output
at the same time, we have the output buffer with M banks to
enable parallel output writes. The peak parallelism we achieve
here is M×R×C.

2) Aggregation: At the tile level, to improve the regularity
in memory access and data reuse in the aggregation phase, we
further partition each tile into smaller intervals. For example,
if we have three cores, the destination nodes and its associated
edges in each tile is equally split into three sets, as shown in
Fig. 5(b). The edges in each set represented in the COO format
is populated inside the edge buffer of each core.

For horizontal aggregation, the neighbors or source nodes of
a tile are the same for all cores. Since all the cores compute
in parallel, accessing the features of all the source nodes for
aggregation will result in a memory bottleneck. Therefore we
use a banked on-chip memory to store the source nodes. As
the maximum number of parallel read requests equals to the
number of cores, the number of banks for the on-chip memory
is then set to the number of cores. Each consecutive source
node feature is statically mapped into a unique bank as shown
in Fig. 5(d). The edges fed into each core’s edge buffer are
arranged in the ascending order of source nodes. This increases
the probability of multiple edges with the same source nodes or
with the next source nodes to be computed one after the other.
To exploit data reuse and locality in this data flow, whenever a
core makes a read request to a specific address location, features
of the source nodes at that address location across all banks are
fetched and moved to that core’s local buffer.

For vertical aggregation, the destination and source nodes
are interchanged and each set of the source nodes is unique
to a core. Therefore, a separate on-chip memory is set up for

each core to store the features for vertical aggregation. In the
case of vertical aggregation, each core produces an aggregated
partial output for the same destination nodes, which needs to
be combined to from the final output. We use a reduction
engine which adds up the partial output from each core into
a single output. Moreover, the reduction engine computes the
output from the previous tile while the current tile is being
executed, thereby hiding its latency. The edges are fed into the
core sequentially. For each edge, it takes 4 clock cycles for the
PE to compute. In each clock cycle, the aggregation scheduler
fetches a new edge from the edge buffer and decodes the data to
check whether it is a configuration instruction or an edge data.
For each edge, the aggregation scheduler checks the PE status
within the core for the availability of a free PE row. If all PE
rows are busy, then aggregation of that corresponding core will
be stalled until a PE row becomes available, or else the edge is
assigned to a free PE row and its status is updated. To compute
vertical and horizontal aggregation for non-diagonal tiles, the
scheduler checks if two PE rows are free; if not, aggregation
of that corresponding core will be stalled until two PE rows
become available.

To improve the compatibility of input data to the custom
flow, we further develop pre-processing codes using PyG [4].
The pre-processing codes accept the number of cores and tile
size as input and generate the edges in order at the tile level
following the custom dataflow. The generated output is then
used to populate the main memory. The DMA module along
with the top level scheduler will move the data tile by tile per
the computation order.

IV. RESULTS

A. Experimental Setup
We implement our design in Verilog and use the Intel

Stratix10 MX board with HBM2 as our target platform. The

!

!



TABLE I
CHARACTERISTICS FOR FOUR DIFFERENT GCN DATASETS.

Cora Citeseer Pubmed Reddit
Nodes 278 3327 19717 232965
Edges 10556 9228 88651 114,615,892

X0 1433 3703 500 602
X1 128 128 128 128
X2 7 6 3 41

Layers 2 2 2 2

FPGA has 8Gb of HBM2 memory, 2,073k logic elements, 702k
ALMs, 134Mb of M20K memory, 11Mb of MLAB memory
and 3,960 DSPs. We use Intel Quartus 19.4 to map the design to
FPGA. We use 8-bit fixed-point precision to represent weights
and features, and 32-bit to represent each edge in COO format.

We fix our design parameters, including the number of rows
of PE array in a core to 10 and the number of columns of
PE array to 66. Thus a single core will use 660 DSPs and
we can have 6 such cores totalling the DSP count to 3,960
on the FPGA board. Increasing the number of columns in a
PE array will result in higher parallelism along the feature
dimension; increasing the number of rows of a PE array will
increase the number of nodes that can be computed in parallel.
On the other hand, if the size of a column or a row is too
big, it will negatively impact such parallelism. Therefore, in
our design across the 6 cores, we select our total array as
60×66 to ensure a balanced parallelism. The tile size we use
to partition the graph is set to 1,020. The impact of the tile size
on the design are studied and reported in [6]. Similar to that,
we select the smallest tile size to highlight the speedup from
the symmetry-based acceleration. We measure the end-to-end
latency of a two-layer GCN for the four widely used datasets:
Cora, Citeseer, PubMed, and Reddit. The details of the datasets
are shown in Table I.

B. Quantization of GCN Algorithms

To reduce the memory footprint, we experiment GCNs with
lower precision. Fig. 6 presents the accuracy of the GCN for
four different datasets with various bit precision values for both
weights and features. We use the GCN structure in [1] and Deep
Graph Library (DGL) [5] with PyTorch in this experiment. The
accuracy drop is negligible for all datasets when we move
from 32-bit floating point to 8-bit fixed-point precision. The
difference between the baseline accuracy and accuracy at 8-bit
is less than 3% for all four datasets. Beyond 8-bit, the accuracy
rapidly drops for all datasets. Thus we adopt 8-bit quantization
for weights and features since it provides comparable accuracy
with 32-bit precision.

C. Speedup with the Symmetry Property

In this section, we compare the performance of two im-
plementations, one with the symmetry property and the other
without. Fig. 7 presents the number of tiles that need to be
computed for the four datasets under the baseline case without
the symmetry property and with the symmetry property. Our
method requires up to 50% less compute tiles to complete end-
to-end GCN computation. The reduction is more pronounced

Fig. 6. Quantization of the GCN models. 8-bit is selected before experiencing
any accuracy loss.

Fig. 7. The symmetry property effectively helps reduce the number of compute
tiles in GCN acceleration.

for larger datasets. Furthermore, we set up a same implemen-
tation on FPGA, except the symmetry flow is not adopted. For
Cora, the end-to-end latency without the symmetry property is
108.81µs. The adoption of the symmetry is 1.7× faster than
that.

D. Comparison with State-of-the-Art Results

We compare our work with the state-of-the-art graph learning
frameworks PyG [4] and DGL [5]. We also compare our design
with the state-of-the-art FPGA implementations ASAP2020 [7]
and BoostGCN [6]. We synthesize our design at 220MHz.
The resource utilization on the FPGA board is summarized
in Table II. Table III summarizes the comparison with the
latest GCN accelerators, with Table IV evaluates the hardware
resources across multiple design. Our resource is close to that
in BoostGCN [6].

Compared to PyG and DGL, our work achieves up to 1,101×
and 202× improvement in end-to-end latency in CPU and up to
13× and 17× in GPU implementations, respectively. Despite
the vast difference in computing resources, our FPGA design

TABLE II
RESOURCE UTILIZATION OF FPGA FOR DIFFERENT DATASETS.

Dataset ALMs RAMs(MB) DSPs
Cora 257208 (36.6%) 5.23 (28.86%) 3960 (100%)

Citeseer 243624 (34.67%) 6.12 (33.77%) 3960 (100%)

Pubmed 300288 (42.73%) 6.34 (34.98%) 3960 (100%)

Reddit 292441 (41.59%) 15.96 (88.06%) 3960 (100%)

!

!



TABLE III
COMPREHENSIVE EVALUATION OF EXECUTION TIME FOR DIFFERENT DATASETS ACROSS DIFFERENT IMPLEMENTATIONS.

Datset PyG-CPU PyG-GPU DGL-CPU DGL-GPU HyGCN [3] ASAP2020 [7] BoostGCN [6] Our Work Over [6]
Cora 17.1ms 945µs 12.7ms 1.1ms 21µs 3.5ms 76.5µs 62.77µs 1.20x

Citeseer 22ms 1.5ms 17ms 1.2ms 300µs 11.1ms 125.8µs 100.37µs 1.25x
PubMed 229ms 3.4ms 22ms 1.3ms 640µs 9.5ms 1140µs 882µs 1.28x
Reddit 81s out of mem 3.2s 390ms 289ms 598.7ms 98.1ms 73.51ms 1.33x

TABLE IV
HARDWARE RESOURCE USED BY VARIOUS DESIGNS.

CPU GPU HyGCN [3] ASAP2020 [7] BoostGCN [6] Ours
Compute
Resources

Intel Xeon Gold5120 CPU
28 cores and 56 threads

Titan Xp
3840 cores

32 SIMD cores
8 systolic module

128/256 accumulators
24x24 systolic array

294k ALMs
3840 DSPs

292k ALMs
3960 DSPs

Frequency 2.20GHz 1405MHz 1GHz 250MHz 250MHz 220MHz

Memory 20.8MB cache
48KB L1 cache
3MB L2 cache

24MB N/A 18MB 18MB

achieves significant speedup over both the CPU and GPU
implementations. These results confirm that CPUs and GPUs
are more suitable for dense computations with regular memory
access. On the other hand, the regular structure in CPUs and
GPUs limits their capability in managing the heterogeneous and
irregular nature of GCN computations.

We also achieve up to 110.5× improvement compared
to ASAP2020 [7]. ASAP2020 uses a two-phase graph pre-
processing, by removing the edge connections of high degree
nodes and merging common neighbours together, and then use
graph reordering algorithms to improve data locality.

We achieve up to 1.3× improvement over BoostGCN [6].
The speedup increases as the dataset size increases. This is
because as the graph gets bigger, the reduction in the number of
compute tiles from the symmetry property is more pronounced.
BoostGCN employs sparse feature transformation which skips
zero elements in the feature vectors during transformation. For
Cora, Citeseer and Pubmed, it stores the entire input feature
matrices on the memory. BoostGCN also partitions the graphs
with a tile size of 4,096 for Cora, Citeseer, and Pubmed,
and 16,384 for Reddit. For Reddit, BoostGCN reports a 21%
reduction in external memory access for the tile size of 16,384
over the tile size 1,024.

One thing we can further improve is the implementation of
double buffering, i.e., the ping-pong strategy to hide the latency
in data movement from off-chip memory. Both ASAP2020 and
BoostGCN use this strategy for acceleration. They also use
dedicated cores for transformation and aggregation. Compared
to ASAP2020 and BoostGCN, our improvement mainly comes
from the reconfigurable core architecture, which helps over-
come the pipeline stall, and the design with the symmetry
property, which enables us to produce the same number of
outputs by using approximately half the number of compute
tiles. In the future, we plan to add double buffering since we
still have enough memory resource.

Finally, we evaluate our result with HyGCN [3], a ASIC
based implementation in TSMC 12nm CMOS. It has 4,096
32-bit fixed-point multipliers and 512 32-bit fixed-point ALUs
running at 1 GHz, as compared to our FPGA design with
3,960 DSPs and at 220MHz. Despite having a vast difference in

terms of computing resources and frequency, our FPGA design
outperforms HyGCN for Citeseer and Reddit, by 3× and 3.9×,
respectively. This is because HyGCN does not consider the
inherent property of the graph, such as the symmetry property,
which limits its performance for bigger datasets.

V. CONCLUSION

Sparse feature aggregation is the primary bottleneck in the
acceleration of GCNs. In this paper, we leverage the symmetry
property of the adjacency matrix in an undirected graph to
accelerate feature aggregation, achieving end-to-end GCN ac-
celeration. We propose a custom dataflow based on the symme-
try property and design a hardware accelerator architecture to
support the dataflow. We pair this architecture with a software-
based pre-possessing method to maximize data locality and
to reduce memory access. Our design achieves up to 1,101×,
17×, 110.5× improvement over CPU, GPU and other FPGA
implementations. Further improvement can be achieved through
the implementation of double buffering and lower-precision in
PE design.

REFERENCES

[1] Thomas N Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

[2] Tong Geng et al. Awb-gcn: A graph convolutional network accelerator
with runtime workload rebalancing. In IEEE/ACM MICRO, 2020.

[3] Mingyu Yan et al. Hygcn: A GCN Accelerator with Hybrid Architecture.
In HPCA. IEEE, 2020.

[4] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning
with pytorch geometric. arXiv preprint arXiv:1903.02428, 2019.

[5] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song,
Jinjing Zhou, Chao Ma, Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He,
George Karypis, Jinyang Li, and Zheng Zhang. Deep graph library: A
graph-centric, highly-performant package for graph neural networks. arXiv
preprint arXiv:1909.01315, 2019.

[6] Bingyi Zhang et al. Boostgcn: A framework for optimizing GCN inference
on FPGA. In IEEE FCCM, 2021.

[7] Bingyi Zhang et al. Hardware acceleration of large scale GCN inference.
In IEEE ASAP, 2020.

[8] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation
learning on large graphs. Advances in neural information processing
systems, 30, 2017.

[9] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Lio, and Yoshua Bengio. Graph attention networks. arXiv preprint
arXiv:1710.10903, 2017.

!

!


	Select a link below
	Return to Previous View
	Return to Main Menu


