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Abstract—With the ubiquitous IoT sensors and enormous real-
time data generation, data privacy is becoming a critical societal
concern. State-of-the-art privacy protection methods all demand
significant hardware overhead due to computation-insensitive
algorithms and divided sensor/security architecture. In this pa-
per, we propose a generic time-domain circuit architecture that
protects raw data by enabling a differentially-private compressed
sensing (DP-CS) algorithm secured by physical unclonable func-
tions (PUF). To address privacy concerns and hardware overhead
at the same time, a robust unified PUF and time-domain mixed-
signal (TD-MS) module are designed, where PUF enables private
and secure entropy generation. To evaluate the proposed design
against a digital baseline, we performed experiments based on syn-
thesized circuits and SPICE simulation and measured a 2.9× area
reduction and 3.2× energy gains. We also measured high-quality
PUF generation with TD-MS circuit with a inter-die Hamming
distance of 52% and a low intra-die Hamming distance of 2.8%.
Furthermore, we performed attack and algorithm performance
measurements demonstrating the proposed design preserves data
privacy even under attack, and the machine learning performance
has minimal degradation (within 2%) compared to the digital
baseline.

Keywords: privacy-preserving computation, compressed sens-
ing, mixed-signal computation, internet-of-things

I. INTRODUCTION

With the emergence of artificial intelligence and internet of
things (IoT), there is enormous raw data generation for real-
time applications, such as video streaming, VR/AR, surveil-
lance, and so on. However, the extensive data exchange also in-
troduces severe concerns for individual and public data privacy.
To simultaneously preserve privacy and enable computation,
great efforts have been made to develop diverse privacy-
preserving algorithms and systems, such as homomorphic en-
cryption [1], [2], data perturbation [3], [4], and partitioned
deep-learning [5], [6].

However, incorporating privacy protection into sensors is
challenging due to constrained in-sensor resources (e.g.,
power, area) and stringent performance requirements (e.g.,
latency, throughput). Firstly, most privacy-preserving algo-
rithms are costly: they either introduce tremendous compu-
tation/communication overhead (e.g., homomorphic encryp-
tion [7]) and/or require significant memory/processing re-
sources (e.g., federated learning [8]). Secondly, light-weight
algorithms, such as differentially-private compressed sensing
(DP-CS) [3], [4], are prone to various attacks, such as the
maximum a posteriori probability (MAP) estimate and/or least
mean square matrix inversion (LMI) [9], [10]. This additional
threat requires many security resources, such as a projec-
tion matrix repository. Most importantly, state-of-the-art digital

hardware architecture (shown in Fig. 1) for privacy protection
has separate sensing, data conversion, and data security (e.g.,
entropy generation) modules which is highly inefficient for
in-sensor implementation. The overhead is even worse when
the security specification, such as the number of challenge-
response-pairs (CRP) for the physically-unclonable-function
(PUF), is high.

To address the challenges and enable ”privacy-by-sensing”,
this paper proposes a generic time-domain mixed-signal data
perturbation hardware-software co-design framework. We sum-
marize the major contributions of the paper as the followings:

1) A light-weight PUF-secured differentially private com-
pressed sensing (DP-CS) framework for privacy preserv-
ing edge-cloud collaborative machine learning.

2) A mixed-signal circuit featuring a unified PUF and time-
domain multiplication-and-accumulation (MAC) mod-
ule for ultra-low-power, ultra-small-footprint private-by-
sensing implementation (as shown in Fig. 1).

3) Validated efficiency gain, robustness of PUF, attack re-
silience, and algorithmic performance via TSMC 65nm
pre-silicon implementation and SPICE simulation.

The remainder of the paper is organized as the following.
In Section II, we will briefly discuss state-of-the-art privacy-
preserving computation algorithms, especially the algorithm
fundamentals of DP-CS. In Section III, we will discuss the
proposed PUF-secured DP-CS framework featuring a secure
random projection matrix update. Further, in Section IV, the
proposed MS DP-CS architecture will be illustrated for the
proposed framework, and a detailed TD-MS circuit implemen-
tation will be discussed. Finally, we will compare hardware
effectiveness (e.g., area, energy) and accelerator algorithmic
performance (e.g., accuracy) with the digital baseline, discuss
the performance of our PUF design, carry out an attack analysis
and present the algorithmic performance in Section V.

II. BACKGROUND AND RELATED WORKS

In this section, we discuss the background and related
works for in-sensor privacy protection, as well as algorithm
fundamentals for lightweight data perturbation methods, such
as differential privacy (DP) and compressed sensing (CS).

As mentioned in Section I, state-of-the-art privacy-preserving
methods, including homomorphic encryption and local feature
extraction, suffer from large computation and communication
overhead, making it impractical for IoT devices.

Meanwhile, data perturbation methods feature value alterna-
tion that prevents input recovery and maintains computational
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Fig. 1: Private-by-sensing is to embed privacy-compliance into resource-constrained sensors. The mixed-signal technique is a promising method for integrated
computation and embedded stochasticity. On the right hand side, a sensor is sensing constantly at time t0, t1, · · · . For each instance, the original data is projected
and protected.

capability of the original data. Differential Privacy (DP) [11] is
is a common data perturbation algorithm that guarantees that
with any input data sets, X1 and X2 differing in at most one
attribute, that for all possible outputs O ⊆ Range(A) of any
algorithm A, P [A(X1) ∈ O] ≤ eϵ · P [A(X2) ∈ O] holds,
where P [·] is the probability function, ϵ is the privacy budget
of the DP algorithm. With a user defined ε, a calibrated noise
vector P1×K then can be added to the original data, as shown
in [12], formulated by Y1×K = X1×K +P1×K , in which each
element of P1×K ∼ N (0, σ2

DP ) as shown in Fig. 1.
To reduce the noise at the required privacy budget, com-

pressed sensing is usually applied before noise injection.
Random projection (RP) is one of the compress algorithms
that projects high dimensional data into low dimension space
using a randomly generated matrix. The Johnson-Lindenstrauss
lemma [13] ensures that the projection preserves relative dis-
tance information between data points. The elements of the
random projection matrix (RN×K) are drawn from an i.i.d.
Gaussian distribution N (0, σ2

RP ) with σ2
RP = 1/K. Given

0 < λ < 1, a set X of m points in RN , and a K > 8 ln(m)/λ2,
there is a linear map f : RN → RK s.t. (1 − λ)∥u − v∥2 ≤
∥f(u)− f(v)∥2 ≤ (1+λ)∥u− v∥2 for all u, v ∈ X . As shown
in Fig. 1 given an N -dimensional data X1×N , the projection
X1×K = X1×NRN×K is directly matrix multiplication. The
simplicity of MAC operation makes RP a hardware-friendly
algorithm for private-by-sensing.

However several attacks have been proposed against random
projection such as MAP, LMI, and linear regression and com-
pressive sensing (LRCS) [9], [10], [14]. These known input-
output attacks only require the attacker to acquire a few records
to breach secured data, making it the most plausible way
of attack. This risk requires extra security measurements, for
example, periodic projection matrix updates. We will present
further experimental results in Section V.

III. PUF-SECURED DP-CS FRAMEWORK

As discussed in Section II, DP-CS is prone to known in-
put/output attacks suck as MAP, LMI, and LRCS attacks when
the projection matrix is compromised with a high volume of
input-output pairs. To mitigate this concern, we propose a PUF-
secured projection matrix generation/storage framework for
DP-CS algorithms, shown in Fig. 1. Beyond the conventional

DP-CS, the proposed algorithm features edge-cloud collabora-
tive challenge-response-based random matrix generation. On
the cloud side, a table with all feasible challenges for an
edge device will be stored. Before each task, the cloud will
issue a series of challenges to the sensor, and the sensor will
generate a unique projection matrix with a seed produced
by the embedded PUF. Since the PUF is securely stored
by the hardware fabrication variations, the projection update
process is secure against external privacy attackers and robust to
intermittent power supply for energy-constrained sensors. The
assumption in place is that only the cloud knows the challenge
and the cloud is a trusted third party and thus cannot be the
attacker.

Since PUFs encode entropy intrinsically, our system is also
reversible. In case of the system needing the original data, for
example a criminal is identified and the raw data is required,
as depicted in Fig. 1, the cloud can resent the challenges and
the exact same RN×K and P1×K are regenerated. With the
protected data Y1×K , the original data X1×N can be reverted
with minimum error. Since the PUFs uniquely encode the static
entropy, no one else other than the device who generated the
data can recover it.

Despite the security and reversibility features, the state-of-
the-art PUFs, such as SRAM PUFs, introduce significant area
and power overhead. To address this issue, we propose a mixed-
signal circuit featuring a unified PUF and time-domain MAC
module.

Fig. 2: Proposed MS PUF-secured DP-CS architecture.

IV. MS DP-CS ARCHITECTURE

This section introduces a time-domain mixed-signal (TD-
MS) circuit technique for the proposed PUF-secured DP-CS
algorithm with low-power and small-area implementation.
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A. MS DP-CS Architecture

The MS architecture for proposed DP-CS is shown in Fig. 2.
There are two major functionalities: TD-MS parallel computa-
tion and PUF-enabled arbitrary-distribution-generation (ADG).
The TD-MS computation module directly interfaces with sen-
sors and projects original data with TD-MS multiplication-and-
accumulation (MAC) arrays. The projection matrix and random
vector are generated with ADG in run-time whose distributions
(e.g., standard deviation) are programmable.

At the time of the projection matrix update and cloud
challenge, a hardware-fingerprint sequence is generated by the
PUF (in the red dash box in Fig. 2) embedded in the TD-
MS MAC array (e.g., ring oscillator frequency variations). The
generated random number will act as the seed to enable a linear-
feedback shift register (LFSR)-based ADG whose distribution
is determined by the probability segmentation sets for the
uniformly-distributed LFSR output.

B. TD-MS Circuit Implementation

TD-MS computation has demonstrated its advantages of su-
perior computation efficiency, reduced interconnection, voltage
scalability and compatibility to pulse-modulated sensors (e.g.,
radar [15]) in various low-power applications (e.g., swarm
robotics [16], acoustic signal processing [17]).

1) TD-MS MAC array: A typical time-domain MAC array
encodes one operand of multiplication as the time pulse and
the other as the clock frequency, both proportional to the
operands’ magnitude. To give it the ability to handle signed
numbers, we use a sequential up-down counter triggered by
the pulse-enabled clock, and a result proportional to the vector
dot product is produced at the counter output. Specifically,
the circuit we implemented consists of a BDCO-bit digitally-
controlled oscillator (DCO) and an asynchronous 2BDCO-
bit up-down counter. The DCO is used to generate a clock
whose frequency is proportional to the magnitude of random
number r (represented by a thermometer code) from ADG
in the projection matrix. The BDCO-bit DCO is built with
a 3-stage ring oscillator and an AND gate for input pulse
enable. In each stage, there are 3 inverters in series. Its
frequency is governed by a controllable current mirror which
consists of M = 2BDCO − 1 foot transistors, as shown in
Fig. 3 (B). The thermometer code controls the foot transistors to
regulate frequency: oscillator frequency increases linearly with
the number of turned on foot transistors. There are also biasing
PMOSs whose gate voltage act as a biasing voltage to adjust the
frequency range. When a pulse sensor input enables the DCO,
the generated clock is going to trigger the up-down counter.
The counter is a typical asynchronous 2BDCO-bit counter with
an up-down counting selection. For K fully-parallel vector
multiplication threads, a TD-MS MAC array is formed with
shared input data. Because data is carried on a single wire,
the interconnection area is minimal. Further, at the output of
each thread, the data is already in digital representation, which
features seamless post-digital processing.

2) PUF: In the entropy generation phase, the proposed TD-
MS MAC array has DCOs which can be effectively reused for
the PUF with large challenge-response-pairs (CRP), as shown
in Fig. 3 (C). In the proposed TD-MS PUF challenge, C is
divided into CMSB for DCO selection and CLSB for foot
transistor selection. CMSB will choose two DCOs for count
racing, and CLSB will choose one specific foot transistor in
these DCOs, and the process variation between them will cause
a unique discharging current variation of ring oscillators and
further influence its frequency. The output of DCOs will trigger
a counter, and the one with a higher intrinsic frequency will
overflow in a shorter time, thus providing a binary output at the
output of a digital arbiter. With an increasing DCO MAC array
dimension, the number of CRPs increases quadratically. In a
K-parallel TD-MS MAC array with bit precision of BDCO,
there are K DCOs and O ∼ (K2) DCO pairs. Ideally, there
are around O ∼ (2BDCOK2) CRPs. Since the PUF mapping is
secure, the available challenge can be stored externally.

C. Entropy Generation

The distributions of projection matrix and random noise are
both strong functions of data sensitivity and privacy budget.
As such, an ultra-low-power run-time reconfigurable LFSR-
based ADG is proposed for versatile privacy protection. After
a response is generated by the embedded PUF, it will serve
as the seed for the LFSR whose output is a uniformly dis-
tributed pseudo-random number U . Meanwhile, the ADG is
comprised of an array of comparators, each assigned with a pre-
determined segmentation segi. It outputs a thermometer code
for desired distribution by comparing U and segi. The adjacent
segmentation can be determined by computing the integral of
a specific distribution function, and the distance between them
is proportional to the probability, with a Gaussian distribution
example shown in Fig. 3 (D). The number of comparators scales
with a granularity of stochastic sampling. Although we only use
Gaussian distributed numbers in this paper, the proposed LFSR-
based ADG is general to provide an arbitrary distribution.

V. HARDWARE/ALGORITHM EVALUATION

In this section, we will discuss the hardware and algorithm
experimental results of the proposed TD-MS DP-CS accelerator
and digital baseline. All the circuits are implemented and
simulated with TSMC 65nm low power (LP) technique across
a wide power supply dynamic range at room temperature.
The digital components are synthesized by Synopsys Design
Compiler for the power and area, and the analog components
are simulated with Synopsys HSpice for the power and Cadence
Virtuoso for the area.

A. Hardware overhead

To evaluate the performance of the proposed TD-MS accel-
erator, we implement a digital baseline. Given the limitations of
IoT devices, the following baseline was chosen to simplify the
baseline circuit, thus making a fairer comparison. All the circuit
implementations share the same technology node, system clock
frequency (40MHz), bit-precision (4-bit), power supply range

!

!



Fig. 3: Proposed TD-MS/PUF unit. (A) Entropy generation phase and time domain mixed-signal computation phase of the proposed MS DP-CS flow. (B)
Proposed digitally-controlled oscillator (DCO) based time-domain mixed-signal (TD-MS) MAC. (C) Architecture of proposed DCO-based physical unclonable
function (PUF). (D) Proposed LFSR-based ADG circuit.

(0.6V-1.2V), computation/stochastic data flow, and functional-
ity. In the digital version, a 4-bit switched capacitor ADC is
included to interface with the sensor, and the acquired data
is shared across K parallel digital stochastic DP-CS threads.
Within each DP-CS thread, both designs consist of a 4-bit
MAC unit, and a 12-bit LFSR. We use a conventional 0.5kB
single-port SRAM to map and store uniform random numbers
to programmed distributed numbers. The LFSR output will act
as the address to access pre-stored values, and, as such, it can
emulate arbitrary stochastic distribution by adjusting the stored
values. Meanwhile, we use a similar RO-based PUF, which can
generate the same number of CRPs in the baseline for a fair
comparison. From Fig. 4 (A), we observe that the proposed
TD-MS design consumes significantly less (3.2×) energy than
digital, and the major cause of significant energy expenditure of
baseline is the SRAM (46%). From Fig. 4 (B), we can find that
because of the reusing of DCO for both computation and PUF,
it achieves a significant area saving (2.9×). And the overall
power-performance-area (PPA) gain is 9.4×.

Fig. 4: Measured energy consumption/operation and area for single thread MAC
operations (VDD = 1V ). (A) Measured energy consumption per operation and
breakdown. (B) Measured area and breakdown.

B. Performance of PUF

The source of PUF is the fabrication imperfection during
the chip manufacturing process, such as critical dimension
variations. There are two major factors: first is intrinsic random-
ness, which gives rise to the independent random distribution
of the critical dimension. The other is introduced by the
specific manufacturing procedure, which usually imposes a
spatial correlation to the random distribution and is called

systematic variation. It can be shown that the independent
random variation follows a normal distribution, and we denote
its standard deviation σrnd. The systematic variation follows
a multivariate normal distribution, which the elements of the
covariance matrix has analytic form for location index i and
j, Σi,j = σ2

sys · ρi,j where the ρi,j = 1 − 1.5 ∗ dist/th +
0.5 ∗ dist3/th3 is a spatial-correlation function of the distance
dist between two locations i and j, with a correlation threshold
th = 0.1 as discussed in [18] and [19]. The overall variation for
a specific MOSFET can be expressed by σ2

total = σ2
sys+σ2

rnd.
This difference in critical dimension ultimately gives different
threshold voltages to all the MOSFETs in one die.

To evaluate the performance, we use HSpice to simulate
our circuit. First we generate the threshold voltage variation
according to the aforementioned distribution, and for each die
we set σrnd = 0.05Vth and the ratio between systematic varia-
tion and random variation be σsys/σrnd = 0.6 as discussed in
[20]. A response is recorded by giving the circuit a predefined
challenge. Furthermore, we simulate the response from a 15-
stage ring oscillator PUF. The uniqueness and the stability of
the PUF are measured by fractional Hamming distance (fHD)
and the 0-1 bias by fractional Hamming weight (fHW), which
are the corresponding Hamming distance/weight normalized by
the length of the response. The results are shown in Fig. 5.

Fig. 5: Y axis is the number of occurrence, DCO is our design and RO is
the baseline, (A) Uniqueness. (B) Stability when VDD changes 10%. (C) 0-1
Bias. (D) Summary of the average performance.

From Fig. 5 (A), we can see our design is at the same
level in terms of uniqueness as the baseline. Note that all the
response results we report here are raw outputs from PUF with

!

!



no post-processing. This leads to instability when the supply
voltage changes, as depicted in Fig. 5 (B), where there are
always some bits that flip from 0 to 1 and vice versa. However,
we can mitigate the problem by adding error correction or a
majority voting mechanism. Due to the spatial correlation of
the variation distribution, we notice the bias of our design is
further off center, i.e., 0.5, in Fig. 5 (C). This indicates that the
systematic variation will inevitably influence some dies, making
those dies unsuitable for use as a PUF.

C. Attack analysis on DP-CS
The following experiments are based on the MNIST and

Fashion-MNIST dataset. MNIST and Fashion-MNIST is a
handwritten number database and a fashion image database
respectively, each containing 70000 images. Each image has
28× 28 pixels of 4-bit grayscale information.

Firstly, we examine the attacks on random projection. The
first attack method utilized was the aforementioned maximum
a posteriori probability (MAP) attack, however, given the
N = 28 × 28 dimension of the input images, this method
did not converge to a result. The next algorithm for attacking
the data uses the method of least mean square matrix inversion
(LMI) to linearly regress input/output pairs that the attacker has
access to [10]. The assumptions include that the attacker has
the protected data vector, yRP ∈ RK , following the equation
yRP = xR, with R ∈ RN×K as the random projection matrix
and x ∈ RN as the input vector. The attacker also has p
known input/output pairs that use the same projection matrix
R. These pairs are corresponding rows of the known input
matrix, Xp ∈ Rp×N , and known output matrix, Yp ∈ Rp×K .
The LMI attack was capable of producing images containing
some protected data with as little as 5 known input/output pairs,
however, these images were not a clear reconstruction, and only
contained small pieces of the original image. The attack also
performed with inconsistent behavior and results that did not
improve as the number of pairs in the training data increased,
thus making it less desirable for further testing.

Therefore, the third attack method shown below utilizes the
same assumptions as before, and linearly regresses the known
input/output pairs to recreate the random projection matrix R.
From here, the algorithm assumes the recreated matrix of R
to be the true matrix and uses single-pixel imaging (SPI) to
output the original image from a protected data point that is
not within the known input/output training set. This attack has
been referred to as linear regression and compressive sensing
(LRCS) [14]. In particular, SPI via compressive sampling is
required for the CS encryption. SPI is capable of recreating
high-quality images from smaller measurements using the inner
products between the protected data and the random projection
matrix that originally protected the data [21].

The algorithm recreates R using Xp and Yp through linear
regression, and the output is R̂p ∈ RN×K . In particular, the
columns of R̂p, R̂p(:, i) as the ith column, are individually
computed with the equation XpR̂p(:, i) = Yp(:, i). By calling
the least squares regression function on Xp and Yp(:, i), the
best fit for R̂p(:, i) is returned. This algorithm is repeated for

all K columns to form R̂p. R̂p is then used along with the
protected data being attacked, yRP , where yRP /∈ Yp , by the
SPI function to return the best recovery of x, x̂ ∈ RN .

Fig. 6: (A) Recovered images from the LRCS attack for MNIST (top 4 rows)
and Fashion-MNIST (bottom 4 rows) datasets. (B) The average PSNR of 200
recovered images across p (MNIST). (C) The average PSNR of 200 recovered
images across p (Fashion-MNIST).

This LRCS algorithm consistently performed better as the
number of input/output pairs in the training data increased.
Notice in Fig. 6 (A) that before DP there is a significant
amount of information from the attack with only 10 known
pairs (column 3) when compared to the original data (column
1), and the image quality improves moving to 100 known pairs
(column 4). It requires more than this significant amount of
training data (100+ pairs), however, for the attacked image
clarity to reach the quality of the device reconstructed image,
where the true RP matrix (R) is known by the attacker (column
2). After DP-CS, with 0.2 epsilon privacy budget (column 5) the
image in most cases is unrecognizable, and with a 0.8 epsilon
privacy budget (column 6), there is slightly more information
presented in the recreated image, but overall has a significantly
reduced image quality, especially in the more detailed Fashion-
MNIST data. This result exhibits the benefit of DP and how
the addition of noise lowers the effectiveness of the LRCS
attack. Furthermore, the effectiveness of the LRCS attack for
both the MNIST and Fashion-MNIST dataset was quantified in
Fig. 6 (B) and Fig. 6 (C) respectively by using the peak signal-
to-noise ratio (psnr) between the attacker reconstructed and
original image. The red line of both plots represent the average
device reconstructed image psnr if the the true RP matrix and
noise added is known and the SPI algorithm is used from
there. While the value from the MNIST dataset can usually be
recognized in many attack recreations given enough training
data, the Fashion-MNIST images show that the proposed DP-
CS algorithm can protect details of more complex data from
an LRCS attack with any DP privacy budget, even after a
significant amount of input/output pairs are compromised, as
viewed in Fig. 6 (A).
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D. Algorithm evaluation
To test the impact of the parameters, we quantize each

pixel into a 4-bit representation and compare the results across
different privacy budgets and protected data dimensions. To
evaluate the performance of the DP-CS, we use k-means
clustering to test the effectiveness of the algorithm. For k-means
clustering, we do 0-1 clustering. All the images with labels 0
and 1 are used as input data. All experimental results are the
average of 50 times.

Minimal performance degradation, within 2%, is observed
despite the hardware non-linearity, as presented in Fig. 7.
When changing the ϵ from 0.1 to 1.0 and K from 128 to
768, the accuracy increases as the dimension gets larger, and
the accuracy decreases as ϵ gets smaller when we are adding
more noise to the data. However, a bigger K means more
data needs to be transmitted, and by decreasing K the data
size proportionally decreases with K over the original input
vector length. A larger ϵ also gives less protection over data
privacy, and the increased amount of data retrieved after an
attack seen between Fig. 6 (A) columns 5 and 6 further shows
this decrease in protection. A trade-off can be achieved by
choosing a combination of K and ϵ depending on the scenario
and the need for edge-cloud collaboration.

Fig. 7: Measured (A) MNIST 0-1 digit classification accuracy across privacy
budget ϵ. (B) Accuracy across protected data dimension K.

VI. CONCLUSION

This paper presents a hardware/algorithm co-design
for “private-by-sensing”. On one hand, the PUF-secured
differentially-private compressed sensing greatly enhanced
the projection matrix update procedure. On the other hand,
the proposed in-sensor mixed-signal DP-CS architecture and
time-domain circuit implementation demonstrate advanced
power, energy, and area efficiency. Compared with the
digital baseline (digital-AGD), the proposed TD-MS DP-CS
accelerator measures 3.2× energy reduction, 2.9× area
savings with VDD = 1V , and the number of threads is 128.
An attack analysis further shows the data privacy is well
preserved. Algorithm accuracy on clustering demonstrates
the effectiveness, despite moderate hardware non-linearity, of
proposed privacy preserving edge-cloud collaborative machine
learning.
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