
A Practical Remote Power Attack on Machine
Learning Accelerators in Cloud FPGAs
Shanquan Tian∗, Shayan Moini†, Daniel Holcomb†, Russell Tessier† and Jakub Szefer∗

∗Yale University, New Haven, CT, USA Email: {shanquan.tian, jakub.szefer}@yale.edu
†University of Massachusetts, Amherst, MA, USA Email: {smoini, dholcomb, tessier}@umass.edu

Abstract—The security and performance of FPGA-based accel-
erators play vital roles in today’s cloud services. In addition to sup-
porting convenient access to high-end FPGAs, cloud vendors and
third-party developers now provide numerous FPGA accelerators
for machine learning models. However, the security of accelerators
developed for state-of-the-art Cloud FPGA environments has not
been fully explored, since most remote accelerator attacks have
been prototyped on local FPGA boards in lab settings, rather than
in Cloud FPGA environments. To address existing research gaps,
this work analyzes three existing machine learning accelerators
developed in Xilinx Vitis to assess the potential threats of power
attacks on accelerators in Amazon Web Services (AWS) F1 Cloud
FPGA platforms, in a multi-tenant setting. The experiments
show that malicious co-tenants in a multi-tenant environment can
instantiate voltage sensing circuits as register-transfer level (RTL)
kernels within the Vitis design environment to spy on co-tenant
modules. A methodology for launching a practical remote power
attack on Cloud FPGAs is also presented, which uses an enhanced
time-to-digital (TDC) based voltage sensor and auto-triggered
mechanism. The TDC is used to capture power signatures, which
are then used to identify power consumption spikes and observe
activity patterns involving the FPGA shell, DRAM on the FPGA
board, or the other co-tenant victim’s accelerators. Voltage change
patterns related to shell use and accelerators are then used to
create an auto-triggered attack that can automatically detect
when to capture voltage traces without the need for a hard-wired
synchronization signal between victim and attacker. To address
the novel threats presented in this work, this paper also discusses
defenses that could be leveraged to secure multi-tenant Cloud
FPGAs from power-based attacks.

Index Terms—Cloud FPGA, FPGA Security, Hardware Accel-
erators, High-Level Synthesis, Machine Learning Security, Vitis

I. INTRODUCTION

FPGAs in the cloud offer low latency, high throughput and
energy efficiency for the acceleration of compute-intensive
applications. Numerous Cloud FPGA accelerators have been
demonstrated and commercialized, such as search engine ac-
celerators [1] and machine learning accelerators [2].

Public cloud providers, such as Amazon Web Services
(AWS) [3] and Alibaba Cloud [4], provide access to com-
mercial FPGAs in their data centers and have adapted Xilinx
development tools for building and running custom accelerators
on their platforms. Since February 2020, AWS has supported
the Xilinx Vitis development environment [5], a unified all-
in-one platform including Vivado and SDAccel, to reduce the
design effort of FPGA application development. With Vitis,
the top ports of the user’s logic are standardized, along with
the memory allocation, and data communication between the
accelerator modules and FPGA hardware shell.

FPGA multi-tenancy, in which multiple independent users
share logically isolated portions of the FPGA fabric at the same
time, is being actively explored by Cloud FPGA vendors and
researchers [6]. This approach has the potential to fully utilize
FPGA resources, increasing vendor profits.

Improved implementation tools have allowed for faster
hardware accelerator development cycles for Cloud FPGAs.
Machine learning accelerators, including domain-specific in-
struction set architecture (ISA) based accelerators, have been
developed. However, to date, the security of machine learning
accelerators in commercial public Cloud FPGAs (i.e. AWS
F1) has not been fully studied. Previous research has focused
on remote attack prototyping using local boards in laboratory
settings rather than state-of-the-art compute environments in
the cloud. Accelerators generated with the Vitis framework
typically exhibit a block-based structure that performs easily-
recognizable operations. For example, shells used by Cloud FP-
GAs often include standardized ports and protocols interfaced
to a user’s custom logic design. As this work shows, with more
standardized operations, a malicious co-tenant can still easily
detect and observe the operation of the victim user’s logic on
the same FPGA.

We show that malicious co-tenants are able to insert on-
chip sensors, such as time-to-digital converters (TDCs), into
a state-of-the-art development framework, allowing for remote
power attacks in a public cloud environment. Although power-
based attacks have been previously demonstrated [7]–[9], we
specifically focus on the AWS F1 platform and accelerators
generated using the Xilinx Vitis framework. The regular inter-
face structure of these designs make them an inviting target for
security attacks. The specific contributions of this work include:

• Design of a practical power trace collection scheme that
can be inserted into a Vitis project to collect voltage trace
signatures in Cloud FPGAs.

• Collection of power signatures of the FPGA shell and
accelerators, providing the first security analysis of designs
generated using Vitis tools on AWS F1.

• Analysis of three existing, typical, Vitis “victim” accelera-
tor modules. Power traces are captured using an “attacker”
accelerator module to identify different voltage patterns,
or fingerprints, related to operation of the shell, DRAM,
and the accelerator modules.

• Demonstration of a new auto trigger mechanism for
triggering the capture of power traces based on FPGA
shell or accelerator activity.

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA 

	



Host

FPGA Shell

Kernel ...Kernel

PCIe

Create Vitis
Kernels

Vitis Link &
Create Bitstream

Fig. 1: Xilinx Vitis design flow in AWS F1 FPGA-accelerated
instances. Custom modules are “linked” along with the FPGA shell
to generate the bitstreams and AFIs.

• Discussion of potential defenses for securing multi-tenant
accelerators in Cloud FPGAs.

II. BACKGROUND

This section provides background on Cloud FPGAs, Xilinx
Vitis tools, and accelerators used for evaluation.

A. Cloud FPGAs and AWS F1 Instances

This work focuses on AWS F1 instances which include
virtual machines with access to Xilinx UltraScale+ VU9P
FPGAs. The design tools are provided in the aws-fpga
repository [10], including adapted Xilinx scripts targeting an
AWS F1 platform. Although AWS currently only supports
single-tenant configurations in which each user is given access
to the full FPGA, multi-tenant FPGA use is actively being
explored by the research community [6]. The use of multi-
tenancy allows for improved resource utilization and FPGA
sharing [11]. Multi-tenancy can be achieved by assigning each
user’s logic to its own, fixed reconfigurable region, or multiple
users’ designs can be compiled together for optimal resource
allocation.

B. Xilinx Vitis Flow in Cloud FPGAs

Figure 1 shows the Vitis design flow on AWS F1. HLS
and RTL modules created by designers are encapsulated as
“kernels” with a standard interface, including clock and reset
signals, AXI4-based control and data ports. Developers do not
need to instantiate port connections. Vitis generates the control
logic to handle the communication between the FPGA shell
(SH) and kernels, links all modules using the link command,
and performs compilation and synthesis of the whole design.
On AWS F1, the final awsxclbin file generated by the syn-
thesis and implementation process can be used to program the
FPGAs. As kernels are created and encapsulated before linking
with the FPGA shell, logical isolation between the signals of
different kernels is expected unless otherwise specified.

C. Three ML Accelerators Used for Evaluation

Xilinx Vitis provides a library of templates to help developers
design accelerators for different algorithms. In our experiments,
we adopted the Vitis systolic array [12] and vector addition [13]
accelerator templates, since matrix multiplication and vector
processing present heavy computational workloads in many
convolutional neural network models. Since developers often

256

Sample

CLK …
…

CARRY8 Inst0 CARRY8 Inst31

Hamming 
Weight

8

Compare
& Store

Global Time
32

Threshold
32

TDC traces
& 

Timestamp
BRAM

Co
nt

ro
l

Fig. 2: Diagram of the Compressed TDC RTL Kernel. The control
module includes the trigger logic and additional functions. The Vitis
standard kernel ports are not shown.

write their own accelerators rather than using template code,
a domain-specific ISA based accelerator. the Versatile Tensor
Accelerator (VTA) [14], was evaluated and analyzed. VTA
is an open-source hardware accelerator for machine learning
(ML) algorithms, implemented using C++ and OpenCL. The
analyses of both custom accelerator and Vitis templates provide
important perspectives on the security of machine learning
accelerators in Cloud FPGAs.

D. Threat Model

A variety of attacks have been demonstrated on Cloud
FPGAs. The attacks can be broadly classified into disruptive
attacks [15] and information leakage attacks, which include
thermal attacks [16], cross-talk based attacks [17] and power
or voltage based attacks [18].

In this work, we assume a victim and an attacker can be
co-tenants on a multi-tenant FPGA, and thus share hardware
resources, including the power distribution network (PDN).
Although FPGA “antivirus” programs can check bitstreams for
malicious circuits [19], e.g. ring oscillators (ROs) or time-to-
digital converters (TDCs), such protections can be bypassed
by clever attackers who develop ROs or TDCs that are not
easily detected [20]. We assume that a malicious user is able
to load their design onto a Cloud FPGA and collect side-
channel information, in our case voltage traces from a TDC-
based voltage sensor kernel we developed.

III. REMOTE ATTACKS ON CLOUD FPGA ACCELERATORS

This section first presents an overview of our Compressed
TDC RTL Kernel (CTRK), then describes our system imple-
mented in the AWS F1 environment.

A. Practical Power Trace Measurement on AWS F1

To perform power attacks in a Cloud FPGA environment,
we use a Compressed TDC RTL Kernel (CTRK) to capture
extended power traces.

1) Compressed TDC RTL Kernel (CTRK): As shown at the
top of Figure 2, our TDC sensor is implemented using 32
CARRY8 carry chain logic elements. The clock signal traverses
multiple carry chain elements during a clock cycle and sets
these flip-flop outputs to 1. The Hamming weight of the 256-bit

!

!



output sample can be used to measure the traversal time of the
clock signal. This value is correlated with the voltage levels
across the FPGA’s PDN as higher voltage results in reduced
carry chain element delay and samples with a higher Hamming
weight.

The Compressed TDC RTL Kernel (CTRK) captures and
stores only “interesting” data (e.g. voltage drops above a certain
threshold) and stores only the 8-bit Hamming weights of each
sample. Since random noise accounts for the biggest variation
in TDC traces and informative drops are sparse, we skip the
collection of uninformative random fluctuations and only store
TDC values lower than a pre-determined threshold, along with
corresponding timestamps. CTRK operation contains two steps:
Step-1 CTRK execution without other active accelerators or

with the other accelerators being idle. Based on this
data, the threshold Tave for Step 2 is computed, where
Tave equals the average of the TDC traces.

Step-2 Collection of extended (long-term) TDC traces when
the accelerators are running. Only TDC samples below
Tave and timestamps are stored in memory.

CTRK implementation is shown in Figure 2. The sampling
rate of the 32 CARRY8 carry chain logic elements is set to 5
clock cycles. The Global Time module is a counter with
one increment every 10 clock cycles. For a clock frequency of
125 MHz, the 32-bit Global Time counter, which can be
expanded if needed, covers ∼ 2.5 minutes in one run which is
more than sufficient for the tested victim modules’ operation
duration. The threshold can be set to 256 (maximum value)
during Step 1, so the CTRK captures all the samples, and the
data collected can be then used to choose a proper threshold
to skip uninformative traces in Step 2. Once the threshold
is selected, the Compare & Store module stores the 8-bit
samples below that threshold, along with the timestamp for
each value, in the Block RAMs (BRAM in the figure).

2) Threshold for CTRK: The size of Block RAMs for TDC
outputs and timestamps is tunable in our design to accommo-
date different needs and monitoring environments. The value
of the CTRK threshold depends on the allocated Block RAM
space and the desired trace monitoring duration, since the
sampling speed is faster when the threshold is bigger. When the
threshold increases, the TDC traces of larger Hamming weights
and smaller voltage drops are recorded, thus the sampling speed
increases as they are more common. To achieve the desired
duration and collect as much information as possible, we tune
the threshold carefully such that the Block RAM is almost filled
and traces cover the duration of the run of the victim module
that the attacker is trying to monitor.

B. System Diagram

Figure 3 shows a system diagram of a hardware architecture
implemented on AWS F1. As introduced in Section II-B, Vitis
encapsulates the TDC kernel and accelerators (VTA, systolic
array or vector addition) and generates a top-level module of
the user’s custom logic (CL) to control and coordinate the
kernels. We assume the CL module generated by Vitis provides
logical isolation between the signals of different kernels. As

FPGA
Shell

Compressed TDC 
RTL Kernel

Accelerator Module 
(Systolic, Vadd, VTA)

PCIeCL
Top

Custom Logic

PCIS

DDR

OCL

M

M

M

S

S

S

FPGA

Fig. 3: Overview of the experimental setup on AWS F1. Only some
of the SH-CL ports are listed for brevity.

shown in Figure 3, the custom logic communicates with the
FPGA shell through interfaces provided by AWS. The PCIe
Slave (PCIS) interface is used for inbound PCIe transactions
from the host computer to the FPGA. DDR interfaces with
the DRAM DDR4 controllers on the FPGA board, and OCL
interacts with the AWS OpenCL runtime library for OpenCL
Kernel accesses [21]. Figure 3 does not show all the ports
between the CL and the shell [22].

Our experiments were conducted on the CentOS-based
FPGA Developer AMI 1.9.1 (Xilinx tools 2020.1) on an
f1.2xlarge instance. The FPGA bitstreams were built using
the official aws-fpga toolkit with the FPGA shell version
v04261818 [10]. The three accelerators were evaluated sep-
arately, each time by running accelerator module together with
the CTRK on the FPGA. For each experiment, the collected
TDC traces covered the whole process of running the FPGA
accelerator from the host computer. To further our understand-
ing about host computer and FPGA accelerator interactions, we
added logic into the CL to monitor the first transaction times
of PCIS, DDR, OCL ports for write and read operations.

There were two steps for each evaluation. First, the proper
threshold for CTRK was determined by running preliminary
collections, as discussed in Section III-A2. Then, the acceler-
ator module ran in parallel with the configured CTRK. The
compressed TDC traces and port monitoring results are shown
in Figures 4, 5, 6 and 7. Please note that for an actual attack,
there would be no access to the ports of the shell or the victim.
The logic for port monitoring is only used during development
to help with understanding the voltage fluctuations recorded
by the TDC with respect to the operations in the FPGA. The
experimental results of the auto-triggered attack are described
in Section IV-B.

IV. EVALUATION OF TYPICAL ACCELERATORS IN CLOUD
FPGAS

This section presents the evaluation results for the three
victim accelerators on AWS F1. The clock frequency was set
to 125 MHz in all experiments.

A. Power Traces Analysis
The TDC outputs in all experiments are normalized, in which

x = (x− µ)/σ, x are the TDC samples, µ is the mean and σ
is the standard deviation.

!

!



−5 −4 −3 −2 −1 0 1 2

Relative Time (Clock Cycles) ×108

−8

−6

−4

−2

0

N
or

m
a
li
ze

d
C
o
m

p
re

ss
ed

T
D

C
O

u
tp

u
ts

ComputationPCIS, SH ⇒ CL
DDR, CL ⇒ SH OCL, SH ⇒ CL

OCL, CL ⇒ SH
DDR, SH ⇒ CL

TDC Trace

Port Start Time

(a)

(b)
0 5000 10000 15000 20000 25000 30000

Clock Cycles

− 6

− 4

− 2

0

2

4

No
rm

al
iz

ed
TD

C
O

ut
pu

ts

Fig. 4: (a) The voltage trace of sample execution of the VTA
accelerator module in AWS F1. The readouts from compressed TDC
and the relative time is normalized. (b) The zoom-in figure of the
accelerator computation which happens exactly at the same time as
the big drop in (a). Please note that the magnitude of x-axis is 108,
and the TDC trace in the small figure only covers ∼ 104.

1) VTA: Figure 4 shows the TDC trace overview of the
VTA accelerator computation on AWS F1. Due to the design of
CTRK, the trace only shows voltage drops below the threshold.
Because a timestamp (clock cycle) is stored for each sample,
the full voltage trace can be reconstructed with the voltage
changes shown at correct times on the x-axis. In addition to the
normalization of the TDC outputs, the relative time is adjusted
by setting the kernel computation start time to 0.

The duration of the accelerator computation is very short
compared to the whole overview, as shown in the zoom-in
window in Figure 4. The x-axis magnitude is 104 in Figure 4b
and 108 in Figure 4a, so the TDC trace details in the latter look
like a single drop in the former at time 0 (details are shown in
Figure 9).

Figure 4a labels the transaction start times of the CL ports,
including PCIS, DDR and OCL. Near time −2 × 108, at the
instance of the first big trace drop, port PCIS starts moving data
from SH to CL and DDR moves data from CL to SH. Since
PCIS is used to send data from the host computer to the FPGA
board, and DDR is used to control FPGA board DRAM, we
can infer that the CL Top control logic reads data from the
host computer and stores it in the DRAMs. Subsequently, the
DDR (SH to CL direction) and OCL ports start transfers at the
same time as accelerator computation starts, indicating that the
accelerator starts running and reads data from DRAMs at this
time.

2) Systolic Array and Vector Addition: The TDC traces for
the systolic array and vector addition are shown in Figure 5. For
the systolic array in Figure 5a, the traces and labels are similar
to the VTA experiment, except that the time scale is much
smaller. In Figure 5b, the informative voltage traces cannot be
distinguished from noise as vector addition consumes fewer
resources than matrix multiplication for the same input, and
does not generate noticeable voltage drops.

3) Comparison: Figure 6 shows a comparison of preparation
times, that is, the time interval between the start of SH-CL

−2 −1 0 1 2 3 4
Relative Time (Clock Cycles) ×106

−4

−3

−2

−1

0

N
or

m
al

iz
ed

C
om

pr
es

se
d

T
D

C
O

u
tp

u
ts

ComputationPCIS
DDR OCL

OCL
DDR

TDC Trace

Port Start Time

(a) Systolic Array

−6 −4 −2 0 2 4
Relative Time (Clock Cycles) ×107

−5

−4

−3

−2

−1

0

1

N
or

m
al

iz
ed

C
om

pr
es

se
d

T
D

C
O

u
tp

u
ts

TDC Trace

Port Start Time

(b) Vector Addition

Fig. 5: Compressed TDC voltage traces for systolic array and vector
addition modules. (a) For the systolic array, the big voltage drops
correspond with the data movement activities between the shell and
custom logic. (b) The TDC traces for the vector addition module does
not demonstrate any large drops. The arrows label the start time of
ports, which are the same as in (a).

VTA
16x16, 16x16

Systolic Array
16x16, 16x16

Vector Addition
16x16, 16x16

107

108

109

P
re

p
.

D
u

ra
ti

on
(C

lo
ck

C
yc

le
s)

1.9e+08

1.3e+06 1.5e+06

Fig. 6: Comparison of preparation time for different accelerators. The
preparation time is the time between when the first DDR and PCIS
activity occurs, and the time when the voltage drop due to the start of
accelerator occurs.

port activity, e.g., DDR and PCIS activity, and accelerator
computation for the three accelerators considering the same
input data size. VTA requires a much longer time than the
systolic array and vector addition modules, although they have
input matrices of the same size. As shown in Figure 7, VTA
preparation times change with different input sizes, but they
are all much longer than the other accelerators in Figure 6. The
preparation time is also related to the data matrix shape and
not just the total data size. For example, the preparation time
of input data (8x256, 256x256) is shorter than (16x32, 32x32).
The comparison suggests that the system-level structure of the
accelerator execution environment, its logic flow, and its data
structures play major roles in execution efficiency. As shown,
sometimes bigger data actually takes less time to move to the
DRAM on FPGA. Experiments were repeated multiple times to
confirm the times shown in Figure 6 and Figure 7 are consistent.

B. Auto-Triggered Remote Attacks on AWS F1

The design of the auto trigger takes into account that the two
TDC trace drops, induced by the start of SH-CL communication
or accelerator computation, are distinguishable from the idle
state and other activities, as shown in Figure 4. Figure 8
shows the process of an auto-triggered TDC trace collection.

!

!



16x16
16x16

16x32
32x32

16x64
64x64

16x128
128x128

16x256
256x256

8x256
256x256

107

108

109

P
re

p
.

D
u

ra
ti

on
(C

lo
ck

C
yc

le
s)

1.9e+08

1.8e+09 2.1e+09 2.2e+09 2.5e+09

2.1e+08

Fig. 7: The preparation time for different input data sizes of VTA.

…Long-term
TDC Trace

Time

Start First Drop
(SH-CL Ports)

Second Drop
(Acc. Comput.)

𝑇" 𝑇# 𝑇$
End

Captured TDC Trace

Fig. 8: The measurement process for auto trigger mechanism. The
trace waveform is not actual data.

At the beginning, the auto trigger starts monitoring the TDC
fluctuations and detects the first drop (the start of SH-CL
communication) after an unknown duration T0. It again detects
the second drop (the start of accelerator computation) after T1

and then takes measurements for T2. In this case, the two big
drops can be detected by selecting correct thresholds.

For example, in Figure 4, the auto trigger threshold can be
set as the corresponding TDC output to the normalized value
−4 to recognize the starting time of CL ports and accelerator
computation. For each experiment, the attacker needs to test
different threshold values to set the TDC trigger correctly until
the attack succeeds.

The evaluation result is shown in Figure 9b. The data
collected with the auto trigger is highly similar to the data
collected with the hard-wired trigger (Figure 9a). Using the
similar reconstruction method described in [23], the power
traces collected with the auto trigger mechanism are sufficient
to reveal the matrix multiplication parameters. To the best of
our knowledge, this is the first, auto-triggered attack that is
performed on a public Cloud FPGA platform (i.e. AWS F1),
and does not require a hard-wired trigger between the victim
and attacker.

V. RELATED WORK AND DISCUSSION

A. Related Work

Previous research has explored information leakage through
thermal, cross-talk, and power side-channels [24]–[28]. These
works, however, have presented very specific attacks on spe-
cific accelerators or modules. Our work takes a more generic
approach. We focus on three distinct accelerators implemented
in Cloud FPGAs.

0 5000 10000 15000 20000 25000 30000

Relative Time (Clock Cycles)

−6

−4

−2

0

2

4

N
or

m
a

li
ze

d
T

D
C

O
u

tp
u

ts

(a) Hard-wired trigger

0 5000 10000 15000 20000 25000 30000

Relative Time (Clock Cycles)

−4

−3

−2

−1

0

1

2

3

N
or

m
a

li
ze

d
T

D
C

O
u

tp
u

ts

(b) Auto trigger

Fig. 9: The TDC measurements collected using hard-wired trigger
and auto trigger.

Our work significantly expands upon recent side channel
attacks in multi-tenant FPGAs. Boutros et al. [29] demonstrated
that model redundancy and FPGA timing margins make ML
fault injection difficult. Moini et al. [7] extracted machine
learning (ML) input data by sensing FPGA voltage fluctuations
with TDCs. This work used a simple custom-made neural
network with binary parameters, facilitating input extraction.
Hua et al. [30] determined the ML algorithm model parame-
ters by observing off-chip accesses to DRAM. This approach
requires tight control of algorithm implementation and bus-level
observability. The previous approaches were either executed
on local FPGAs and not on commercial cloud platforms, or
triggered using hard wires to determine when the side-channel
attack should start.

B. Discussion

1) Security Defenses: Based on our evaluation, it is possi-
ble to use power-based voltage sensors to monitor on-FPGA
voltage traces for an extended time. This monitoring provides
an overview of the FPGA hardware execution process. We
also demonstrate an automatic triggering mechanism. To defend
against such attacks, an active fence circuit to generate power
draw [31] could be added to confuse the attacker. In particular,
since the two big voltage drops are induced by the start of
SH-CL communication and accelerator computation, the active
fence circuit should generate random power draws that are as
deep as the drops we observe in normal kernels, thus confusing
attackers about when to trigger their data capture.

2) Performance Observations: Voltage monitoring on
Cloud FPGAs is challenging. Built-in functions for live
power consumption metrics provided by cloud vendors, i.e.
fpga-describe-local-image in AWS F1, are inade-
quate as they are coarse-grained measurements that are re-
freshed every few seconds by design. Our work offers a
practical runtime performance observation tool since CTRK
has the ability to evaluate and monitor custom accelerators
in Cloud FPGA settings. With CTRK, the voltage traces for
the execution of custom accelerators can be captured from the
start of host computer transactions to the end of accelerator
computation. As shown in Figures 6 and 7, the preparation
time required before a kernel starts can be compared using three
accelerators with different input sizes. The results suggest that
logic code designs and data structures make a significant impact

!

!



on overall performance. The preparation process is closely
related to the characteristics of accelerator designs and the
Vitis link mechanism. This optimization investigation will be
addressed in future work.

VI. CONCLUSION

This paper provided a power side channel security analysis
of three existing accelerators developed in Xilinx Vitis tools,
and deployed on the AWS F1 Cloud FPGAs that have more
stable power and are more difficult to perform attacks compared
to local FPGAs. We presented a TDC-based extended power
trace collection mechanism that captures power traces for the
duration of the machine learning inference process of the target
co-tenant victim. A practical, automatically triggered remote
power attack was also presented, which allowed for triggering
the power trace collection without need for a hard-wired
connection between the victim and attacker. Our results showed
that malicious users can create voltage sensors as RTL kernels
within state-of-the-art compute environments on AWS F1, and
collect power traces to steal information, such as matrix shapes
used in the machine learning models executed by the co-tenant
victim. In addition, our run-time performance observations
provided an new evaluation of the three machine learning
accelerators and showed varying performance overheads based
on the design of the accelerators.

REFERENCES

[1] Microsoft Research , “Project Catapult,” https://www.microsoft.com/
en-us/research/project/project-catapult/, 2021, Accessed: 2022-03-20.

[2] Amazon Web Services, “Aws powers f1 insights,” https://aws.amazon.
com/f1/, Accessed: 2022-03-20.

[3] ——, “Amazon EC2 F1 Instances,” https://aws.amazon.com/ec2/
instance-types/f1/, Accessed: 2022-03-20.

[4] Alibaba Cloud, “Elastic compute service: Instance type families,” https:
//www.alibabacloud.com/help/doc-detail/25378.html, 2019, Accessed:
2022-03-20.

[5] V. Kathail, “Xilinx Vitis unified software platform,” in Proceedings of
the 2020 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, 2020, pp. 173–174.

[6] Z. István, G. Alonso, and A. Singla, “Providing multi-tenant services with
FPGAs: Case study on a key-value store,” in 2018 28th International Con-
ference on Field Programmable Logic and Applications (FPL). IEEE,
2018, pp. 119–1195.

[7] S. Moini, S. Tian, J. Szefer, D. Holcomb, and R. Tessier, “Remote
power side-channel attacks on BNN accelerators in FPGAs,” in Design,
Automation and Test in Europe Conference, ser. DATE, February 2021.

[8] A. S. Rakin, Y. Luo, X. Xu, and D. Fan, “Deep-Dup: An adversarial
weight duplication attack framework to crush deep neural network in
multi-tenant FPGAs,” in Usenix Security Conference, 2021.

[9] Y. Zhang, R. Yasaei, H. Chen, Z. Li, and M. A. A. Faruque, “Stealing
neural network structure through remote FPGA side-channel analysis,”
IEEE Transactions on Information Forensics and Security (TIFS), vol. 16,
pp. 4377–4388, Aug. 2021.

[10] Amazon Web Services, “Official repository of the AWS EC2 FPGA hard-
ware and software development kit,” https://github.com/aws/aws-fpga,
2019, Accessed: 2022-03-20.

[11] O. Knodel, P. R. Genssler, F. Erxleben, and R. G. Spallek, “FPGAs
and the cloud–an endless tale of virtualization, elasticity and efficiency,”
International Journal on Advances in Systems and Measurements, vol. 11,
no. 3-4, pp. 230–249, 2018.

[12] Xilinx Vitis, “Vitis Example Systolic Array,” https://github.com/Xilinx/
Vitis Accel Examples/tree/master/cpp kernels/systolic array, 2020, Ac-
cessed: 2022-03-20.

[13] ——, “Vitis example vector addition,” https://github.com/Xilinx/Vitis
Accel Examples/tree/f72dff9eea45a76e9ee0713774589624e2b52c9f/
cpp kernels/simple vadd, 2020, Accessed: 2022-03-20.

[14] T. Moreau, T. Chen, Z. Jiang, L. Ceze, C. Guestrin, and A. Krishnamurthy,
“VTA: an open hardware-software stack for deep learning,” arXiv preprint
arXiv:1807.04188, 2018.

[15] T. La, K. Pham, J. Powell, and D. Koch, “Denial-of-service on FPGA-
based cloud infrastructure-attack and defense,” IACR Transactions on
Cryptographic Hardware and Embedded Systems (TCHES), vol. 2021,
no. 3, pp. 441–464, 2021.

[16] S. Tian and J. Szefer, “Temporal thermal covert channels in cloud FP-
GAs,” in ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays (FPGA), 2019.

[17] I. Giechaskiel, K. Eguro, and K. B. Rasmussen, “Leakier wires: Exploit-
ing FPGA long wires for covert- and side-channel attacks,” ACM Transac-
tions on Reconfigurable Technology and Systems (TRETS), vol. 12, no. 3,
pp. 1–29, Sep. 2019.

[18] S. Moini, S. Tian, D. Holcomb, J. Szefer, and R. Tessier, “Power side-
channel attacks on BNN accelerators in remote FPGAs,” IEEE Journal
on Emerging and Selected Topics in Circuits and Systems, vol. 11, no. 2,
pp. 357–370, 2021.

[19] T. M. La, K. Matas, N. Grunchevski, K. D. Pham, and D. Koch, “FP-
GADefender: Malicious self-oscillator scanning for Xilinx UltraScale+
FPGAs,” ACM Transactions on Reconfigurable Technology and Systems
(TRETS), vol. 13, no. 3, pp. 1–31, 2020.

[20] I. Giechaskiel, K. B. Rasmussen, and J. Szefer, “Measuring long wire
leakage with ring oscillators in cloud FPGAs,” in International Confer-
ence on Field Programmable Logic and Applications (FPL), 2019.

[21] Amazon Web Services, “AWS shell interface specification,”
https://github.com/aws/aws-fpga/blob/master/hdk/docs/AWS Shell
Interface Specification.md, 2022, Accessed: 2022-03-20.

[22] ——, “AWS FPGA custom logic ports,” https://github.com/aws/aws-fpga/
blob/master/hdk/common/shell v04261818/design/interfaces/cl ports.vh,
2022, Accessed: 2022-03-20.

[23] S. Tian, S. Moini, A. Wolnikowski, D. Holcomb, R. Tessier, and J. Szefer,
“Remote power attacks on the Versatile Tensor Accelerator in multi-tenant
FPGAs,” in 2021 IEEE 29th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM). IEEE, 2021, pp.
242–246.

[24] O. Glamočanin, L. Coulon, F. Regazzoni, and M. Stojilović, “Are cloud
FPGAs really vulnerable to power analysis attacks?” in 2020 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
2020, pp. 1007–1010.

[25] M. Jagielski, N. Carlini, D. Berthelot, A. Kurakin, and N. Papernot,
“High accuracy and high fidelity extraction of neural networks,” in
29th {USENIX} Security Symposium ({USENIX} Security 20), 2020, pp.
1345–1362.

[26] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against machine learning,” in
Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security, 2017, pp. 506–519.

[27] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing
machine learning models via prediction APIs,” in USENIX Security
Symposium (USENIX Security), 2016, pp. 601–618.

[28] F. Schellenberg, D. R. Gnad, A. Moradi, and M. B. Tahoori, “An
inside job: Remote power analysis attacks on FPGAs,” in 2018 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
2018, pp. 1111–1116.

[29] A. Boutros, M. Hall, N. Papernot, and V. Betz, “Neighbors from Hell:
Voltage attacks against deep learning accelerators on multi-tenant FP-
GAs,” in International Conference on Field-Programmable Technology
(FPT), 2020.

[30] W. Hua, Z. Zhang, and G. E. Suh, “Reverse engineering convolutional
neural networks through side-channel information leaks,” in 2018 55th
ACM/ESDA/IEEE Design Automation Conference (DAC). IEEE, 2018,
pp. 1–6.

[31] J. Krautter, D. R. Gnad, F. Schellenberg, A. Moradi, and M. B. Tahoori,
“Active fences against voltage-based side channels in multi-tenant fpgas,”
in 2019 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). IEEE, 2019, pp. 1–8.

!

!


	Select a link below
	Return to Previous View
	Return to Main Menu


