
PIMPR: PIM-based Personalized Recommendation
with Heterogeneous Memory Hierarchy

Tao Yang1,2, Hui Ma1, Yilong Zhao1, Fangxin Liu1, Zhezhi He1, Xiaoli Sun4 and Li Jiang1,2,3
1Shanghai Jiao Tong University, Shanghai, China, 2Shanghai Qi Zhi Institute, Shanghai, China

3MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University
4Zhejiang Institute of Science and Technology Information

Abstract—Deep learning-based personalized recommendation
models (DLRMs) are dominating AI tasks in data centers. The
performance bottleneck of typical DLRMs mainly lies in the
memory-bounded embedding layers. Resistive Random Access
Memory (ReRAM)-based Processing-in-memory (PIM) architec-
ture is a natural fit for DLRMs thanks to its in-situ com-
putation and high computational density. However, it remains
two challenges before DLRMs fully embrace ReRAM-based PIM
architectures: 1) The size of DLRM’s embedding tables can reach
tens of GBs, far beyond the memory capacity of typical ReRAM
chips. 2) The irregular sparsity conveyed in the embedding layers
is difficult to exploit in ReRAM crossbars architecture.

In this paper, we present a PIM-based DLRM accelerator
named PIMPR. PIMPR has a heterogeneous memory hierarchy—
ReRAM crossbar-based PIM modules serve as the computing
caches with high computing parallelism, while DIMM modules
are able to hold the entire embedding table—leveraging the data
locality of DLRM’s embedding layers. Moreover, we propose
a runtime strategy to skip the useless calculation induced by
the sparsity and an offline strategy to balance the workload of
each ReRAM crossbar. Compared to the state-of-the-art DLRM
accelerator SPACE and TRiM, PIMPR achieves on average 2.02×
and 1.79× speedup, 5.6×, and 5.1× energy reduction, respectively.

Index Terms—Recommendation System; PIM; Embedding; Ac-
celeration; Architecture Design.

I. INTRODUCTION

Deep learning-based recommendation models (DLRMs) are
broadly used in industry (e.g., Facebook, Netflix, Youtube,
etc.) [1], [2]. In these DLRMs, Embedding layers and fully
connected layers (FC layers) occupy the primary inference
time [3], [4]. As the advancement of DNN acceleration,
embedding layers become the bottleneck: 1) The embedding
layers include embedding tables consisting of item feature
vectors stored in a dense data structure. These embedding
tables (e.g., Facebook, Youtube, Amazon) range from tens of
MBs to several GBs (e.g., LastFM [4]: 78.2MB; Amazon TV
& Movie [5]: 1.81GB). This large amount of data put pressure
on both memory capacity and memory bandwidth [3], [4].
2) The embedding operation in embedding layers, including
lookup (gather) and pooling (reduction), exhibit a sparse and
irregular computation pattern, which is not friendly to typical
neural network accelerators.

This work was partially supported by the National Key Reserch and
Development Program of China (2018YFB1403400), National Natural Science
Foundation of China (Grant No. 61834006). The author Tao Yang is supported
by Wu Wen Jun Honorary Doctoral Scholarship, AI Institute, Shanghai Jiao
Tong University. Corresponding author: Li Jiang.

Near-Data Processing (NDP) architectures are proposed to
accelerate embedding operations and reduce the data move-
ment on traditional memory architecture [4], [6], [7]. Tensor-
DIMM [6] and RecNMP [7] deploy near-memory processing
elements (NMPEs) around specialized DIMMs to scale the ac-
celerator’s memory space up to tens of GBs. TRiM [8] proposes
to accelerate the embedding operation further by exploiting the
tree-like interconnect topology of DIMM-based memory. These
NDP solutions, however, still need to transfer a large amount
of data between the memories and the NMPEs, limiting the
overall computing parallelism and processing throughput [4],
[6], [8]. Moreover, energy consumption is always constrained
by the Power Usage Effectiveness (PUE) requirement in data
centers.

As the countermeasure of the well-known “memory wall”,
ReRAM crossbar [9] emerges as a promising solution, owing
to its Computing-In-Memory (CIM) capability that has the po-
tential to solve the problem of bandwidth limitation completely.
To the best of our knowledge, one ReRAM-based accelerator
design for Personalized Recommendation has been proposed
and named REREC [10]. However, two main limitations be-
come the hurdle for REREC from being widely used in real
scenes:

• REREC can only work with small workloads. The em-
bedding tables of the production recommendation models
can reach tens of GBs, which is far beyond the memory
capacity of a typical ReRAM chip (e.g., 400 MBs of
ReRAM in REREC).

• REREC only supports the specific two recommendation
systems [11], [12] with inner-product operation as the
feature interaction method in embedding operations. How-
ever, for embedding operation in mainstream DLRMs, the
gather-reduction pattern is selected and studied widely
in acceleration designs nowadays [1], [2], [4], [6]–[8].
Compared with the inner-product operation, which is a
natural fit for regular-structured ReRAM crossbars, the
gather-reduction pattern exhibits an irregular and sparse
computational characteristic, posing greater challenges to
the acceleration design on ReRAM crossbars.

In this paper, we present a PIM-based DLRMs accel-
erator with a heterogeneous memory hierarchy. We exploit
ReRAM crossbars for the embedding operations on high-
access-frequency embedding items (fast path). The embedding
items of low access frequency are fetched from the dual-inline

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

C
at

eg
o
ry

 1

C
at

eg
o
ry

 N

FC

Sparse inputs

FC

FC

FC

B
o
tt

o
m

-F
C

 L
a

y
er

s

E
m

b
ed

d
in

g
 L

a
y

er
s

Dense inputs

T
o
p

-F
C

 L
a

y
er

sCTR output

Gather

Reduction

Gather

Reduction

Concatenate

Fig. 1: Architecture of DLRMs.

memory modules (DIMM) for computation (slow path). These
two combined fast and slow data paths work in a pipeline style
that can hide the access latency in DIMM. We then explicitly
propose runtime and offline strategies to exploit the irregular
sparsity and improve the embedding operations on ReRAM
crossbars. Our contributions could be summarized as follows:
• We present a PIM-based DLRMs architecture with a

heterogeneous memory hierarchy, exploiting the locality
in embedding layers, namely PIMPR. This architecture
reduces the bandwidth requirement. Meanwhile, the large
degree of parallelism and high energy efficiency charac-
teristics of ReRAM crossbars are leveraged.

• We optimize the throughput by a three-stage runtime
strategy to exploit the large sparsity in embedding layers,
and a K-partition heuristic-based offline mapping strategy
for load balance. A latency-matching pipeline is further
proposed to improve the inference throughput.

• Experiments on various industry datasets show that the
PIMPR brings 6.72× speedup and 36.2× energy efficiency
improvement over NDP recommendation system design
TensorDIMM [6].

II. BACKGROUND

A. Personalized Recommendation Models

Figure 1 shows a simplified architecture of the deep learning
personalized recommendation model (DLRM) [3]. The model
mainly comprises FC layers, embedding layers, and concate-
nation layers. DLRM receives a set of user characteristics
and the user’s past interactions as input vectors. The user
characteristics are dense inputs containing personal information
(e.g., age, gender, etc.). While the user’s past interactions
are sparse inputs, each non-zero indicates a preferred item in
the embedding table. Dense and sparse inputs are processed
by the bottom FC layers and embedding layers, respectively.
The embedding layer contains several embedding tables, each
containing all the item feature vectors in a category. During
inference, the gather operation collects the item feature vectors
looked up by sparse input. Next, the reduction operation merges
the item vectors by element-wise summation. Compared with
the FC layers with a highly regular computational pattern, the
embedding layer shows simple element-wise operations, but an
irregular access pattern [6].

The industry datasets for DLRMs exhibit two characteristics:
First, the number of items in an embedding table can reach
several million that occupy tens GBs of the memory space [4],

XB XB

XB XB

D
R

A
M

 b
u

ff
er

SFU

DIMM

DIMM

Concat

Buffer

S&H

ADC

Item1

Item2

PIM-PR

Controller

S&H

ADC

F
il

te
r

3

F
il

te
r

4

 high access

frequency

items

XB XB

XB XB

D
R

A
M

 b
u

ff
er

low access

frequency

items

Embedding Module

XB XB

XB XB

D
R

A
M

 b
u

ff
er

XB XB

XB XB

D
R

A
M

 b
u
ff

er

SFU
Bottom

FC

XB XB

XB XB

D
R

A
M

 b
u
ff

er

XB XB

XB XB

D
R

A
M

 b
u

ff
er

SFU
Top FC

FC Module

F
il

te
r

1

F
il

te
r

2

DIMM
ReRam-based

Engine

XB XB

XB XB

D
R

A
M

 b
u

ff
er

SFU

DIMM

DIMM

Concat

Buffer

S&H

ADC

Item1

Item2

PIM-PR

Controller

S&H

ADC

F
il

te
r

3

F
il

te
r

4

 high access

frequency

items

XB XB

XB XB

D
R

A
M

 b
u

ff
er

low access

frequency

items

Embedding Module

XB XB

XB XB

D
R

A
M

 b
u

ff
er

XB XB

XB XB

D
R

A
M

 b
u
ff

er

SFU
Bottom

FC

XB XB

XB XB

D
R

A
M

 b
u
ff

er

XB XB

XB XB

D
R

A
M

 b
u
ff

er

SFU
Top FC

FC Module

F
il

te
r

1

F
il

te
r

2

DIMM
ReRam-based

Engine

XB XB

XB XB

D
R

A
M

 b
u

ff
er

SFU

DIMM

DIMM

Concat

Buffer

S&H

ADC

Item1

Item2

PIM-PR

Controller

S&H

ADC

F
il

te
r

3

F
il

te
r

4

 Items of

high access

frequency

XB XB

XB XB

D
R

A
M

 b
u
ff

er

Items of low

access

frequency

Embedding Module

XB XB

XB XB

D
R

A
M

 b
u

ff
er

XB XB

XB XB

D
R

A
M

 b
u

ff
er

SFU
Bottom

FC

XB XB

XB XB

D
R

A
M

 b
u

ff
er

XB XB

XB XB

D
R

A
M

 b
u

ff
er

SFU
Top FC

FC Module

F
il

te
r

1

F
il

te
r

2

DIMM
ReRam-based

Engine

XB XB

XB XB

D
R

A
M

 b
u

ff
er

SFU

DIMM

DIMM

Concat

buffer

S&H

ADC

PIM-PR

Controller

S&H

ADC

F
il

te
r

3

F
il

te
r

4

 Items of

high access

frequency

XB XB

XB XB

D
R

A
M

 b
u

ff
er

Items of low

access

frequency

Embedding Engine

XB XB

XB XB

D
R

A
M

 b
u
ff

er

XB XB

XB XB

D
R

A
M

 b
u

ff
er

SFU
Bottom

FC

XB XB

XB XB

D
R

A
M

 b
u
ff

er

XB XB

XB XB

D
R

A
M

 b
u

ff
er

SFU
Top FC

FC Engine

F
il

te
r

1

F
il

te
r

2

DIMM
ReRAM-based

Engine

Fig. 2: PIMPR architecture overview.

[5], which exceeds the capacity of normal on-chip memory [4].
Besides, transferring this large amount of data puts much
pressure on bandwidth. Second, although each embedding table
consists of a large number of item vectors, only tens of vectors
interact with a user [5]. This character induces an extremely
sparse pattern of embedding operation.

B. Architecture for Recommendation Models

Near-Data-processing (NDP) architectures have been pro-
posed to accelerate the embedding layers of DLRM. Ten-
sorDIMM [6] and RecNMP [7] propose to use specialized
DIMM based NDP designs. Multiple DIMMs are required
to improve the overall throughput of these two designs due
to the low bandwidth of commodity DIMMs. SPACE [4]
employs a high bandwidth 3D-stacked DRAM (HBM) and
places the near memory processing elements on the logic die.
The memory bandwidth, however, is still the main limiting
factor for high throughput. By doubling the HBM modules,
SPACE can achieve a 1.8× performance improvement.

ReRAM-based accelerator featured by high density, fast read
access, and low leakage power [9] has become a promising
solution for deep learning networks. One ReRAM-based ac-
celerator for special personalized recommendation models fea-
tured by using inner-product operation as the feature interaction
method has been proposed and named REREC [10]. However, it
still suffers from losing general support for widely used gather-
reduction pattern in embedding operations and the tremendous
embedding tables in industrial scenarios.

III. DESIGN DETAILS IN PIMPR

A. Overall Architecture of PIMPR

Fig. 2 shows the overall architecture of PIMPR. PIMPR has
a heterogeneous memory hierarchy, with the ReRAM-based
engine serving as the computing cache and DIMMs assisting in
expanding storage capacity. A central controller is responsible
for loading the inputs and generating instructions to control the
whole computation process. From a functional point of view,
PIMPR can be further split into an FC engine and an embedding
engine. The FC engine consists of the bottom FC part and the
top FC part. Each part contains crossbars and Special Functions
Units (SFUs). SFUs include Shift-and-Add units (S&A) and
scalar Arithmetic and Logic Units (sALU) to further process

!

!

Google Maps Amazon CDs & Vinyl LastFMAmazon Kindle Store

Fig. 3: Access frequency distribution of each item in different
categories of datasets.

Embeddding

1

a20

1

Item 1

Item 2

Item 3

It
e
m

 1

It
e
m

 2

It
e
m

 3

Embedding

Embedding = Item 1 + Item 3

f1,1 f1,2 f1,3

f2,1 f2,2 f2,3

f3,1 f3,2 f3,3

Output

w1,1 2,1 3,1

1,2 2,2 3,2

1,3 2,3 3,3

(a) (b)

w w

w w w

w w wOutput=FC(Embedding)

e1

e2

e3

Output Input

Embedding

o2o1 o3

Filter1 Filter2

Filter3 Filter4

Fig. 4: Implementing embedding layer on ReRAM crossbars.

the partial results from the crossbars. Each FC layer’s filter is
mapped to a column of the crossbar cells and vector-multiplied
with input features via each bitline. In the embedding engine,
besides the ReRAM crossbars and SFUs, we include DIMM
chips featured by large storage capacity assisting the ReRAM
crossbars in storing the whole embedding tables.

1) Item access locality: As shown in Figure 3, we show
the distributions of access frequency of each item in various
industry datasets, which indicates a strong locality: A large
proportion of accesses for an embedding table come from a
small portion of items (the statistical analysis shows that 90%
of the total access frequency comes from the top 6.2% of
the items with high access frequency in these four datasets,
averagely). Note that the items with high access frequency also
exhibit temporal locality, i.e., these “hot” items are changed and
updated at a very slow pace.

2) Heterogeneous memory hierarchy: The item access lo-
cality motivates us to cache the item feature vectors with the
highest access frequency (denoted as H vectors) on ReRAM
crossbars and store the rest of the item feature vectors (denoted
as L vectors) in DIMMs. By principle, we cache as many
H vectors as possible in ReRAM. Thus the proportion of
H vectors depends on the capacity of the ReRAM module
in PIMPR. During the inference of the embedding layers,
the gather and reduction operations of these H vectors carry
out locally on crossbars (detailed in Sec III-A3). Afterward,
PIMPR loads the partial sums from buffers in ReRAMs and
the L vectors from DIMMs, then sums them up through SFUs
to derive the final embedding results.

3) Implementing DLRMs on crossbar: For embedding lay-
ers, Take a simple embedding operation with three item feature
vectors stored in the embedding table shown in Figure 4(a)
as an example. We write each dimension of an item feature
vector on a row of the crossbars (the dimensions of the
item feature vectors are hundreds of thousands in production
recommendation models [4], and we store a vector to the same
row of several crossbars). Then we gather the chosen items
by inputting “1” in corresponding wordlines. Thus, we can
achieve the reduction result by quantizing the analog signals in
each bitline. As for FC layers, we use the “weight stationary”
computational design as in [13] shown in Figure 4(b).

ReRAM

CrossbarsReRAM

CrossbarsReRAM

CrossbarsReRAM

CrossbarsReRAM

CrossbarsReRAM

CrossbarsReRAM

Crossbar

1

0

0

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

1

0

1

0

0

0

1

0

0

S&H C
ro

ss
b

ar
1 0

1

1

0

1

0

0

0

0

0

0

0

1

1

0

0

0

0

1

0

0

0

0

0

0

0

0

Delete the execution on

the inactive crossbar

Merge to the left

1

0

0

0

1

0

1

0

0

1

0

1

1

1

0

1

0

1

1

0

0

Clock

0 1 3 4 52
Clock

0 1 3 4 52

S&H C
ro

ss
b

ar
2

S&H

V0 V1 V2 V3 V4 V5

CU on crossbar1 CU on crossbar2 CU on crossbar3 Useless CU

S&H

S&HS&H

1

0

0

0

0

0

0

1

1

0

0

0

q0 q1

ReRAM

Crossbar
ReRAM

Crossbar

S&H

ADC

Item1

Item2

ReRAM

Crossbar
ReRAM

CrossbarReRAM

Crossbar

Predictor

crossbar

Embedding

crossbar

sALU

LNZD

SA

SA

S&HS&H

0

0

0

0

0

0

SA

S&A

1

0

0

1

0

0

0

1

0

0

0

0

0

0

0

1

1

0

0

1

0

0

0

1

0

0

0

0

0

0

0

1

L
ea

d
in

g
 N

ze
ro

 D
et

ec
t

q0
q1
q2
q3
q41 1

Unit operation

state vectors

0 0

0 0

q5
q6

q9

q7
q8

q10
q10
q10
q11
q12
q13

q0
q1
q2
q3
q4
q5
q6
q7

q9
q8

q10
q10
q10
q11
q12
q13

Unit operation

state vectors of

crossbar 0

Iteration 1Iteration 2

Execution

sequence

SFU

Split the

vector offset

crossbar 0

crossbar 1

crossbar 2

Predict

useless CUs

Move reserved

CUs to the front

Execute the CUs

sequentially

S&H

ADC

Item1

Item2

(a) (b)

S&H

S&HS&H

1

0

0

0

0

0

0

1

1

0

0

0

V0 V1

SA

SA

S&HS&H

0

0

0

0

0

0

SA

1 1 CU state vector

0 0

0 0

crossbar 0

crossbar 1

crossbar 2

S&H

ADC

Item1

Item2

Item3

S&H

ADC

Item4

Item5

Item6

S&H

ADC

Item7

Item8

Item9

S&H

ADC

S&H

ADC

S&H

ADC

CU state vector

CU state vector

Predictor crossbar Embedding crossbar

sALU

LNZD

S&A

1

1

0

1

0

0

0

1

0

0

0

1

0

0

1

0

0

0

1

0

0

0

0

0

0

0

1

L
ea

d
in

g
 N

ze
ro

 D
et

ec
t

V0

V1

V2

V3

V4

V5

V6

V9

V7

V8

V10

V0

V1

V2

V3

V4

V5

V6

V7

V9

V8

V10

V11

V12

V13

V14

V15

CU state vector of

crossbar 0

Iteration

0

Iteration

1

Execution sequence

SFU

Split

Offset

of

nonzeros

0V11

(a) (b)

1

0

0

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

1

0

1

0

0

0

1

0

0

S&H

0

1

1

0

1

0

0

0

0

0

0

0

1

1

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

1

0

1

0

0

1

0

1

1

1

0

1

0

1

1

0

0

Clock

0 1 3 4 52
Clock

0 1 3 4 52

S&H

S&H C
ro

ss
b
ar

3

V0 V1 V2 V3 V4 V5

CU on crossbar1 CU on crossbar2 CU on crossbar3 Useless CU

Predict

useless CUs

Move reserved

CUs to the front

Execute the CUs

sequentially

(a) (b)

Item1

Item2
Item3

Item4

Item5

Item6

Item7

Item8
Item9

C
ro

ss
b
ar

1
C

ro
ss

b
ar

2

S&H

S&HS&H

1

0

0

0

0

0

0

0

1

0

0

0

V0 V1

SA

SA

S&HS&H

0

0

0

0

0

0

SA

1 1

CU state

vector

0 0

0 0

C
ro

ss
b
ar

 1

crossbar 1

crossbar 2

S&H

ADC

Item1

Item2

Item3

Item4

Item5

Item6

Item7

Item8

Item9

CU state vector

CU state vector

Predictor

crossbar

Embedding

crossbar

sALU

LNZD

S&ALeading Nzero Detect

V0V1V2V3V4Vn

V0V1V2V3V4V5V6V7

V9 V8V10V11V12V13V14V15

CU state

vector of

crossbar 0

It
er

at
io

n
 0

It
er

at
io

n
 1

E
x
ec

u
ti

o
n
 s

eq
u
en

ce

SFU

Split

Offset of

nonzeros

(b)

S
&

H

S
A

Item hit vector

S&H

0

0

0

1

0

SA

0 1

S
&

H

S
A

S&H

1

0

1

0

0

0

SA

1 0

S
&

H

S
A

1

1

0

0

0

1

0

0

0

1

1

1

1

T0T1

x

x

x

S&H

ADC

S&H

ADC

S&H

ADC

S&H

ADC

S&H

ADC

S&H

ADC

Item4

Item5

Item6

1

1

0

x

x

x

S&H

ADC

S&H

ADC

Item7

Item8

Item9

1

0

1

x

x

x

S&H

ADC

S&H

0

0

0

1

1

0

SA

0 1

S
&

H

S
A

S&H

1

0

1

0

0

0

SA

1 0

S
&

H

S
A

1-bit

DAC

 Read a column each

time (one-hot)

1

1

1

1

1

1

1

1

1

1

C
ro

ss
b
ar

 2
C

ro
ss

b
ar

 3

10

101

1

1000

0

10000

000000

(a)

1

0

0

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

1

0

1

0

0
0

1

0

0

S&H C
ro

ss
b

ar
1 0

0

0

0

1

0

0

0

0

0

0

0

1

1

0

0

0

0

1

0

0

0

1

0

1

0

0

1

0

1

1

1

0

1

0

1

Clock 0 1 3 42 Clock 0 1 3 42

S&H C
ro

ss
b

ar
2

S&H C
ro

ss
b

ar
3

V0 V1 V2 V3 V4

CU on

crossbar1

CU on

crossbar2

CU on

crossbar3
Useless CU

Predict

useless CUs

Move reserved

CUs to the front

Execute the CUs

sequentially

(a) (b)

Item1

C
ro

ss
b

ar
3

Item2

Item3

Item4

Item5

Item6

Item7

Item8

Item9

Fig. 5: Comparison between (a) the base design and (b) the
design using runtime strategy.

4) Advantages of our architecture: First, the demand for
the bandwidth of DIMMs is dramatically reduced. Second,
the dominating embedding operations are executed through
the high-parallel energy-efficient ReRAM crossbars. This fast
data path contributes the most computation. Third, compared
with the typical main-memory & cache & PEs architecture [7]
wherein the operands must be dynamically loaded from the
main memory to the cache, PIMPR directly loads the data
from DIMMs to SFUs. This slow data path can avoid writing
the ReRAM crossbars, which incurs large latency, and power
consumption issues.

5) Analysis of the low-efficiency problem induced by sparsity
in embedding operations: The base execution process (denoted
as Base design) of embedding operation on PIMPR is shown
in Figure 5(a). In this figure, each row of the crossbars stores
one item feature vector. V0 - V4 are user interaction vectors.
Each “1” in the vector means the user interacts with the
corresponding item. During inference, the three crossbars can
execute one input vector’s gather and reduction operation in
one cycle. Thus, it takes five cycles to complete the embedding
operation for all five users. However, we observed that for many
cycles there was no item interaction with the user on some bars.
Here, we denote the computation on a crossbar in one cycle as
a computation unit (CU). And the CUs with no item interacting
with the user are denoted as useless CUs. These useless CUs
occupy an extremely high proportion in real-world situations.
Take the Amazon CDs & Vinyl dataset containing 1944316
item feature vectors [5] as an example. We store the item feature
vectors of the top 5.6% access frequency on 128×128 ReRAM
crossbars. In this case, the useless CUs account for 94.7%.
This high proportion of useless CUs results in extremely low
efficiency in the base design.

6) Runtime strategy overview: We propose the runtime
strategy to improve the computing efficiency as shown in
Figure 5(b). Specifically, the runtime strategy is composed of
three phases: 1) predict the useless CUs (Prediction Phase). 2)
move the reserved CUs to the front in the timeline (Skipping
Phase). 3) execute the reserved CUs sequentially on each cross-
bar (Execution Phase). Using this strategy, only three cycles
are needed to finish the total embedding operations. Besides,
as we can predict useless CUs, the crossbars and the peripheral
circuit (e.g., DACs) can be turned off in corresponding cycles
to reduce energy consumption.

!

!

ReRAM

CrossbarsReRAM

CrossbarsReRAM

CrossbarsReRAM

CrossbarsReRAM

CrossbarsReRAM

CrossbarsReRAM

Crossbar

1

0

0

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

1

0

1

0

0

0

1

0

0

S&H C
ro

ss
b

ar
1 0

1

1

0

1

0

0

0

0

0

0

0

1

1

0

0

0

0

1

0

0

0

0

0

0

0

0

Delete the execution on

the inactive crossbar

Merge to the left

1

0

0

0

1

0

1

0

0

1

0

1

1

1

0

1

0

1

1

0

0

Clock

0 1 3 4 52
Clock

0 1 3 4 52

S&H C
ro

ss
b

ar
2

S&H

V0 V1 V2 V3 V4 V5

CU on crossbar1 CU on crossbar2 CU on crossbar3 Useless CU

S&H

S&HS&H

1

0

0

0

0

0

0

1

1

0

0

0

q0 q1

ReRAM

Crossbar
ReRAM

Crossbar

S&H

ADC

Item1

Item2

ReRAM

Crossbar
ReRAM

CrossbarReRAM

Crossbar

Predictor

crossbar

Embedding

crossbar

sALU

LNZD

SA

SA

S&HS&H

0

0

0

0

0

0

SA

S&A

1

0

0

1

0

0

0

1

0

0

0

0

0

0

0

1

1

0

0

1

0

0

0

1

0

0

0

0

0

0

0

1

L
ea

d
in

g
 N

ze
ro

 D
et

ec
t

q0
q1
q2
q3
q41 1

Unit operation

state vectors

0 0

0 0

q5
q6

q9

q7
q8

q10
q10
q10
q11
q12
q13

q0
q1
q2
q3
q4
q5
q6
q7

q9
q8

q10
q10
q10
q11
q12
q13

Unit operation

state vectors of

crossbar 0

Iteration 1Iteration 2

Execution

sequence

SFU

Split the

vector offset

crossbar 0

crossbar 1

crossbar 2

Predict

useless CUs

Move reserved

CUs to the front

Execute the CUs

sequentially

S&H

ADC

Item1

Item2

(a) (b)

S&H

S&HS&H

1

0

0

0

0

0

0

1

1

0

0

0

V0 V1

SA

SA

S&HS&H

0

0

0

0

0

0

SA

1 1 CU state vector

0 0

0 0

crossbar 0

crossbar 1

crossbar 2

S&H

ADC

Item1

Item2

Item3

S&H

ADC

Item4

Item5

Item6

S&H

ADC

Item7

Item8

Item9

S&H

ADC

S&H

ADC

S&H

ADC

CU state vector

CU state vector

Predictor crossbar Embedding crossbar

sALU

LNZD

S&A

1

1

0

1

0

0

0

1

0

0

0

1

0

0

1

0

0

0

1

0

0

0

0

0

0

0

1

L
ea

d
in

g
 N

ze
ro

 D
et

ec
t

V0

V1

V2

V3

V4

V5

V6

V9

V7

V8

V10

V0

V1

V2

V3

V4

V5

V6

V7

V9

V8

V10

V11

V12

V13

V14

V15

CU state vector of

crossbar 0

Iteration

0

Iteration

1

Execution sequence

SFU

Split

Offset

of

nonzeros

0V11

(a) (b)

1

0

0

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

1

0

1

0

0

0

1

0

0

S&H

0

1

1

0

1

0

0

0

0

0

0

0

1

1

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

1

0

1

0

0

1

0

1

1

1

0

1

0

1

1

0

0

Clock

0 1 3 4 52
Clock

0 1 3 4 52

S&H

S&H C
ro

ss
b
ar

3

V0 V1 V2 V3 V4 V5

CU on crossbar1 CU on crossbar2 CU on crossbar3 Useless CU

Predict

useless CUs

Move reserved

CUs to the front

Execute the CUs

sequentially

(a) (b)

Item1

Item2
Item3

Item4

Item5

Item6

Item7

Item8
Item9

C
ro

ss
b
ar

1
C

ro
ss

b
ar

2

S&H

S&HS&H

1

0

0

0

0

0

0

0

1

0

0

0

V0 V1

SA

SA

S&HS&H

0

0

0

0

0

0

SA

1 1

CU state

vector

0 0

0 0

C
ro

ss
b
ar

 1

crossbar 1

crossbar 2

S&H

ADC

Item1

Item2

Item3

Item4

Item5

Item6

Item7

Item8

Item9

CU state vector

CU state vector

Predictor

crossbar

Embedding

crossbar

sALU

LNZD

S&ALeading Nzero Detect

V0V1V2V3V4Vn

V0V1V2V3V4V5V6V7

V9 V8V10V11V12V13V14V15

CU state

vector of

crossbar 0

It
er

at
io

n
 0

It
er

at
io

n
 1

E
x
ec

u
ti

o
n
 s

eq
u
en

ce

SFU

Split

Offset of

nonzeros

(b)

S
&

H

S
A

Item hit vector

S&H

0

0

0

1

0

SA

0 1

S
&

H

S
A

S&H

1

0

1

0

0

0

SA

1 0

S
&

H

S
A

1

1

0

0

0

1

0

0

0

1

1

1

1

T0T1

x

x

x

S&H

ADC

S&H

ADC

S&H

ADC

S&H

ADC

S&H

ADC

S&H

ADC

Item4

Item5

Item6

1

1

0

x

x

x

S&H

ADC

S&H

ADC

Item7

Item8

Item9

1

0

1

x

x

x

S&H

ADC

S&H

0

0

0

1

1

0

SA

0 1

S
&

H

S
A

S&H

1

0

1

0

0

0

SA

1 0

S
&

H

S
A

1-bit

DAC

 Read a column each

time (one-hot)

1

1

1

1

1

1

1

1

1

1

C
ro

ss
b
ar

 2
C

ro
ss

b
ar

 3

10

101

1

1000

0

10000

000000

(a)

1

0

0

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

1

0

1

0

0
0

1

0

0

S&H C
ro

ss
b

ar
1 0

0

0

0

1

0

0

0

0

0

0

0

1

1

0

0

0

0

1

0

0

0

1

0

1

0

0

1

0

1

1

1

0

1

0

1

Clock 0 1 3 42 Clock 0 1 3 42

S&H C
ro

ss
b

ar
2

S&H C
ro

ss
b

ar
3

V0 V1 V2 V3 V4

CU on

crossbar1

CU on

crossbar2

CU on

crossbar3
Useless CU

Predict

useless CUs

Move reserved

CUs to the front

Execute the CUs

sequentially

(a) (b)

Item1

C
ro

ss
b

ar
3

Item2

Item3

Item4

Item5

Item6

Item7

Item8

Item9

S&H

1

0

0

0

0

1

V1

V1

SA

1

CU state

vector

C
ro

ss
b
ar

 1

S&H

ADC

Item1

Item2

Item3

Predictor

crossbar

Embedding

crossbar

sALU

LNZD

S&A
Leading Nzero Detect

Module

V0V1V2V3V4Vn

V1V2V3V4V5V6V7

V9

V8

V10V11V12V13V14V15

CU state

vector of

crossbar 1

T0

T1

SFU

Split

Offset of nonzeros each cycle

(b)

S
&

H

S
A

Item hit vector

1

0

0

0

0

1

T0T1

S&H

ADC

S&H

ADC

Item4

Item5

Item6

1

1

0

x

x

x

S&H

ADC

S&H

ADC

Item7

Item8

Item9

1

0

1

x

x

x

S&H

ADC

S&H

0

0

0

1

1

0

SA

0 1

S
&

H

S
A

S&H

1

0

1

0

0

0

SA

1 0

S
&

H

S
A

1-bit

DAC

1

1

1

1

1

1

1

1

1

1

C
ro

ss
b
ar

 2
C

ro
ss

b
ar

 3

10

101

1

1000

0

10000

000000

(a)

PIMPR Controller

001 00000

11

33
22

11 2233

000 00001

V2

1 00

0 01

T0

T1

0

1

V16

 One-hot

representation

of index 1

T0

T1

One-hot user

index

1

Embedding Module

P
re

d
ic

to
r

M
o

d
u
le

Embedding

S&H

1

0

0

0

0

1

V1

SA

1

CU state

vector

C
ro

ss
b
ar

 1

S&H

ADC

Item1

Item2

Item3

Predictor

crossbar

Embedding

crossbar

sALU

LNZD

S&A
Leading Nzero Detect

Module

V5V4V3V2V1 Vn

V8V7V6V5V4V3V2

V16

V1

V15V14V13V12V11V10

CU state

vector of

crossbar 1

T0

T1

SFU

Split

Offset of nonzeros each cycle

(b)

S
&

H

S
A

Item hit vector

1

0

0

0

0

1

T0T1

S&H

ADC

S&H

ADC

Item4

Item5

Item6

1

1

0

x

x

x

S&H

ADC

S&H

ADC

Item7

Item8

Item9

1

0

1

x

x

x

S&H

ADC

S&H

0

0

0

1

1

0

SA

0 1

S
&

H

S
A

S&H

1

0

1

0

0

0

SA

1 0

S
&

H

S
A

1-bit

DAC

1

1

1

1

1

1

1

1

1

1

C
ro

ss
b
ar

 2
C

ro
ss

b
ar

 3

01

101

0

001 0

1

00001

000000

(a)

PIMPR Controller

001 00000

11

33
22

000 00001

V2

1 00

0 01

T0

T1

0

1

V9

 One-hot

representation

of index 1

T0

T1

One-hot user

index

1

Embedding Module

P
re

d
ic

to
r

M
o

d
u
le

Fig. 6: Modules and dataflows in the three phases: (a) the two-
mode predictor crossbars and the dataflows in prediction phase
and execution phase. (b) the optimized LNZD module and the
dataflow in the skipping phase.

B. Module design and dataflow for the runtime strategy

We design the dedicated hardware architecture to efficiently
implement the above strategy at runtime. The modules and
dataflow of the architecture are described as follows.

The Embedding Module consists of an array of ReRAM
crossbars, where each row of embedding modules can store an
item feature vector. The Predictor Module contains a group
of crossbars arranged in a vertical manner. A batch of user
interaction vectors is placed in sequence across all the columns.
Each predictor crossbar links to one row of the embedding
crossbars as shown in Figure 6(a). The predictor crossbar has
two function modes, i.e., the predicting mode for the prediction
phase and the reading mode for the execution phase. Unlike
conventional crossbars only containing a DAC on each row,
the predictor crossbars deploy switchable DACs on each row
and each column. Besides, an optimized Leading Nonzero
Detection Module (LNZD) is added in SFUs for the skipping
phase, as shown in Figure 6(b).

1) Prediction phase: In the prediction phase, we turn on
the switches of the DACs on each row to implement predicting
mode on predictor crossbars. The data flow is shown as 182 in
Figure 6(a): PIMPR inputs “1” to DACs on all rows of predictor
crossbars; and consequently, each predictor crossbar can sum-
marize the values on each column. Suppose the resulting sum
of a column is ≥ 1, indicating that at least one item interacts
with the user. In this case, the corresponding sense amplifier
(SA) on the bottom of the predictor crossbar then outputs a “1”
bit to reserve the corresponding CU in the embedding crossbar.
Otherwise, the predictor crossbar yields a “0” bit on this column
as a signal to skip the useless CU. The outputs of all columns
of a predictor crossbar are combined into a CU state vector for
further use in the skipping phase.

2) Skipping phase: The data flow of the skipping phase
is shown as 183 in Figure 6(b). The CU state vectors from
predictor crossbars are fed to LNZDs, which operate at a much
higher frequency and output each nonzero’s offset in the CU
state vector cycle by cycle. The central controller converts these
offsets into corresponding one-hot format (denoted as one-hot

Inefficient pipeline

Efficient pipeline

S&H

C
ro

ss
b

ar
1

C
ro

ss
b

ar
2

Write group 0 nodes

Write group 1 nodes

Aggregation

Phase

Combination

phase

Write nodes

to crossbar

Group0

Group0

Group0

Group1 Group2

Group1

Group3

Group2

Group4

Group3

Group2Group1

Group1Group0 Group2 Group3 Group4 Group5 Group6

Group0 Group1 Group2 Group3 Group4 Group5

Group0&1 Group2&3

S&H

(b) (c)

(a)

Prediction phase Skipping phase

Batch 0

Batch 0

Batch 0

Batch 1

Batch 1

Batch 2

Batch 1

Execution phase

Batch 0 & 1 & 2

Batch 0

Batch 0

Batch 1 Batch 2

Batch 1

Batch 3 & 4 & 5

Batch 3 Batch 5

Batch 6 & 7 & 8

Batch 3

Batch 4

Batch 2 Batch 4

Batch 2

Inefficient pipeline

Efficient pipeline

(a)

(b)

Prediction phase Skipping phase

Batch 0

Batch 0

Batch 0

Batch 1

Batch 1

Batch 2

Batch 1

Execution phase

Batch 0 & 1 & 2

Batch 0

Batch 0

Batch 1 Batch 2

Batch 1

Batch 3 & 4 & 5

Batch 3 Batch 5

Batch 6 & 7 & 8

Batch 3

Batch 4

Batch 2 Batch 4

Batch 2

Inefficient pipeline

Efficient pipeline

(a)

(b)

First level pipeline Second level pipeline

Prediction phase Skipping phase

Batch 0

Batch 0

Batch 0

Batch 1

Batch 1

Batch 2

Batch 1

Execution phase

Batch 0 & 1 & 2

Batch 0

Batch 0

Batch 1 Batch 2

Batch 1

Batch 3 & 4 & 5

Batch 6 & 7 & 8

Batch 2

Inefficient pipeline

Efficient pipeline

(a)

(b)

First level pipeline Second level pipeline

Batch 0 Batch 4 Batch 5
Batch 1

Batch 6 & 7 & 8

Batch 3 Batch 4 Batch 5

Batch 2 Batch 3 Batch 4

Fig. 7: Pipeline optimization: (a) batch-by-batch pipeline. (b)
two-level latency-matching pipeline.

user index) to represent the global index of the users interacting
with at least one item in the batch. The one-hot user index is
later used in the execution phase to search the interactive items
on the corresponding embedding crossbars.

The input size of each LNZD should match the largest batch
size (e.g., 128), which causes a great burden on hardware
resources. Here, we split the long CU state vector into short
vectors to simplify the LNZD’s logic cost, as shown in Fig-
ure 6(b). Note that the digital circuit of LNZD operates at a fre-
quency (e.g., 1.5 GHz) which is hundreds of times the operating
frequency of the ReRAM crossbars (e.g., 10 MHz [13]). The
production throughput of one-hot user index from the LNZD is
therefore high enough for the consumer (embedding crossbars).

3) Execution phase: In the execution phase, the predictor
crossbar works in reading mode by turning on the switches of
the DACs on each column as shown in 184. For the one-hot
user index that goes through the DACs on columns of predictor
crossbars, only one column of a predictor crossbar is “read out”
by the right SA. The output Item-hit vector from each predictor
crossbar drives each row of the embedding crossbar to select the
feature vectors of the interactive items for gather and reduction
operations.

With our runtime strategy, crossbars may compute partial
results for different users in an iteration. We buffer these partial
results instead of merging these partial results immediately.
Then, the controller records the original user interaction vectors
and performs an index-selection process to merge the corre-
sponding partial results to get the final embedding results for
each user.

C. Latency-matching Pipeline

It incurs long latency to write the user interaction vectors
onto the ReRAM-based crossbars, not only because the write
latency is much longer (e.g., (r) 29.3ns/(w) 50.9ns [14]), but
also the crossbar only supports writing one row per cycle.
Therefore, the latency of the prediction phase is much longer
than the skipping and execution phases in a batch (e.g., 2.75×
and 4.1× longer on Google Maps [4] with a batch size of 128,
respectively). A straightforward pipeline design, as shown in
Figure 7(a), inevitably causes considerable idle time. We pro-
pose a latency-matching pipeline design to improve efficiency
as shown in Figure 7(b). We triple the resources of predictor
crossbars and write the three batches of data into three rows
of predictor crossbars in parallel. Meanwhile, the prediction
and execution phases of the three batches are arranged in
a finer-grained manner where each phase is executed batch

!

!

Algorithm 1: Heuristic K-partition for Offline Strategy
Input: access frequency of n items in descending order F = {F1, . . . , Fn},

crossbar number k
Output: item assignments of k crossbars A = {A1, . . . , Ak}

1 Create A = {A1, . . . , Ak} and generate min-heap A based on Ai.val;
/* Ai.val is the access frequency of crossbar,

initialized to 0; Ai.item is the list of assigned
items, initialized to empty */

2 for j ← 1 to n do
3 root← pop the root element of A;
4 root.val += Fj ;
5 append j to root.item;
6 push root into A;
7 end

Tab. I. Parameters of the PIMPR Architecture

Component Configuration
Area

(mm2×10−3)
Power
(mW)

Crossbar

Embedding Crossbar: 128×128
2-bit/cell, number: 9504×8 1900.8 22809

Predictor Crossbar: 128×128
1-bit/cell, number: 96×8 17.4 190.8

For FC layer: 128×128
2-bit/cell, number: 8192 204.8 2457.8

DAC
For Embedding Crossbar:
1-bit, number: 76000×8 102.75 2371.2

For FC layer: 2-bit
number: 5120 1.7 30.72

ADC 6-bit,1.2GSps
number: 3700×8+128 17395 19024

SA 1.2GSps, number:1200×8 1094.3 950.4
S&H number:1216000×8+5120 299.21 3.95

Buffer 512KB×9 1843.2 2520
SFU - 8854.4 976

Controler - 1842.9 67.3

DIMM 2.4GHz, 4 channel
8 GB per channel - 8500

Total 33.56 mm2 59.64 w

by batch. Experiments show an average 2.69× improvement
of throughput on the workloads shown in Table II using our
latency-matching pipeline.

Besides the pipeline of these three phases, we also exploit
a system-level pipeline for computing on ReRAM chips and
loading low-frequency items from DIMMs. The latency of
loading these interactive L vectors in a pipeline stage is 0.29×
of the latency of computing on ReRAM chips averagely in
our evaluation. This number indicates that the bandwidth of
DIMMs is no longer a bottleneck in our design.

D. Offline Mapping Strategy for Workload Balancing

Although the runtime strategy can improve the computing
efficiency of embedding crossbars, there still be many idle
cycles on amounts of crossbars for the unbalanced workloads
as shown in Figure 5(b). Here, we propose an offline mapping
strategy to balance the workload and revive those vacant
crossbars. The key idea is to reorder the items stored on the
embedding crossbars to make each embedding crossbar has the
same probability of being activated. The problem of minimizing
the difference among the access frequencies of crossbars can
be relaxed as a linear K-partition problem solved by a greedy
heuristic as shown in Algorithm 1.

IV. EXPERIMENT

A. Experiment Setup and Benchmark

Table I shows the area & power parameters of the com-
ponents in PIMPR (consisting of eight ReRAM-based chips,

one DIMM for the embedding engine, and one ReRAM-based
chip for the FC engine). We use CACTI 7 [15] at 32nm to
model buffers. We use the same ReRAM model as in [13]
to obtain the power consumption parameters of the ReRAM
crossbars. The read/write latency and read/write energy cost are
29.31ns/50.88ns, 1.08pJ/3.91nJ, respectively [14]. For ADC,
DAC, and SA, the model from [16] is used. According to the
statistical data, up to 21 rows in an embedding crossbar are
activated. Thus 6-bit ADC is sufficient for the accumulation
results on each bitline. We implement the overall digital cir-
cuitry (including the central controller, multiplexers, decoders
of the input vector controller, SFU component, etc.) in Verilog
RTL. We then synthesize the RTL using 32nm [17] technology
with an operating frequency of 1.5GHz. For DIMM, we use
Ramulator [18] to get a cycle-accurate behavioral model. We
modified NVSim [19] with these models to estimate time, area,
and energy consumption. The overall area and power consump-
tion of PIMPR are 33.56mm2 and 59.64W, respectively.

We use Facebook’s deep learning recommendation
model (DLRM) [20] with eight embedding tables and
six FC layers in our experiments. The batch size is 128. We
select six datasets in real-world recommendation systems.
(1) Amazon - CDs & Vinyl (cds) [5]. (2) Amazon - Kindle
Store (kds) [5]. (3) Amazon - TV & Movie (tvm) [5]. (4)
Google Maps (map) [4]. (5) Anime (ani) [4]. (6) Steam Game
(stm) [4]. In experiments, we combine four datasets as a big
workload for evaluating the production-level recommendation
systems. The workloads are listed in Table II.

Tab. II. Workload Configurations
Workload Dataset Configurations Workload Dataset Configurations

CDS cds-cds-cds-cds KDS kds-kds-kds-kds
TVM tvm-tvm-tvm-tvm MAP map-map-map-map
ANI ani-ani-ani-ani STM stm-stm-stm-stm

MIX1 cds-kds-tvm-map MIX2 kds-tvm-map-stm

B. Overall Performance

We compare PIMPR with state-of-the-art NDP recommenda-
tion accelerators TensorDIMM [6], RecNMP [7], SPACE [4],
TRiM [8]. We do not include the comparisons with
REREC [10] for the ReRAM crossbar capability is limited
and the mainstream embedding operations using the gather-
reduction pattern are not supported in REREC. Figure 8 shows
the relative performance and energy efficiency of PIMPR and
the other NDP systems normalized to TensorDIMM×2 when
executing the total DLRM. Each suffix means the number of
memory chips used in the specific NDP design. Averagely,
PIMPR achieves 6.72× and 1.79× speedup, 36.2×, and 5.1×
energy efficiency improvement compared with TensorDIMMx2
and TRiM.

In these NDP systems, the parallelism of the processing units
is limited by the huge cost of the digital circuit implementation
and constrained memory bandwidth. By comparison, each
ReRAM crossbar in ReRAM crossbar arrays can perform the
reduction of multiple items in one cycle, and we can execute
calculations on multiple crossbars simultaneously, which pro-
vides a huge potential for computational parallelism. Besides,

!

!

(b)

(a)

1

10

CDS KDS TVM MAP ANI STM MIX1 MIX2

S
p

ee
d

u
p

TensorDIMM×4 RecNMP×2 RecNMP×4 SPACEx1 TRiMx1 PIM-PR

1

10

100

CDS KDS TVM MAP ANI STM MIX1 MIX2

E
n

er
g
y
 E

ff
ic

ie
n

cy

TensorDIMMx4 RecNMP×2 SPACEx1 TRiMx1 PIM-PR

Fig. 8: (a) Speedup and (b) energy efficiency comparisons when
executing the total DLRM.

Tab. III. Effect of Our Strategies
Workloads CDS KDS TVM MAP

Base design latency(ms) 1379.2 1720.4 2555.84 2126.4
Energy

consume(J) 62.8 89.6 127.12 103.44

Base+RTS latency(ms) 503.36 627.2 1213.6 771.2
Energy

consume(J) 20.4 25.44 47.36 31.84

Base+RTS
+OMS

(PIMPRS)

latency(ms) 184.8 471.5 665.04 286.4
Energy

consume(J) 8.16 20.8 29.75 13.28

PIMPR only needs to load the low-access items from DIMMs,
which greatly reduces bandwidth pressure (In our experiments,
the latency of loading items from DIMMs is only 0.29×
of the latency of computing on ReRAM chips averagely. It
indicates that our design can solve the “memory wall” problem
of DLRM.) Moreover, the two proposed strategies further
contribute to better performance, for they greatly improve the
efficiency of the embedding operations on crossbars.
C. Analysis of Our Proposed Strategies

We also provide ablation studies to demonstrate the ef-
fects of our runtime strategy (RTS) and offline mapping
strategy (OMS). We evaluate the latency/energy consumption
with/without the two strategies on CDS, KDS, TVM, MAP.
The results are shown in Table III. We observe that (RTS) alone
brings 2.74× latency improvement and 3.10× energy reduction
averagely on the four workloads. With both RTS and OMS,
PIMPRS further achieves 5.78× performance improvement and
6.05× energy reduction on average.

Here, we calculate the average of the following values in
all batches to further explain the effect of the two strategies:
1) the maximum value of the reserved CUs on each crossbar,
which determines the inference latency of a batch according
to the “Cask Effect”. 2) the mean value of the reserved CUs
on each crossbar. The higher the value, the longer the average
working hours of each crossbar in a batch, causing more energy
consumption. 3) the variance of the reserved CUs on each
crossbar, which indicates the degree of the load balance among
the crossbars. The statistical results are shown in Figure 9.
We can figure that the averaged maximum value using RTS or
RTS+OMS is smaller (0.36× or 0.17× averagely) than that in
base design, which contributes to the corresponding improve-
ment (2.74× or 5.78× averagely) on throughput. The averaged
variance using RTS+OMS is much smaller than that using
RTS, which indicates a more balanced workload distribution
using OMS. Besides, the averaged mean value using RTS or
RTS+OMS is smaller (0.173× or 0.135× averagely) than that

0

40

80

120

160

Max Mean Variance/10 Max Mean Variance/10 Max Mean Variance/10 Max Mean Variance/10

CDS KDS TVM MAP

V
a
lu
e

Base Base+RTS Base+RTS+OMS（PIMPR）

Fig. 9: The maximum & mean number and the variance of the
reserved CUs using different strategies on the four datasets,
which determines the total latency, energy consumption, and
ReRAM load-balancing degree in inference, separately.

in base design, thus the average energy consumption using
RTS+OMS is also the least.

V. CONCLUSION

The tremendous data movement becomes the bottleneck for a
high-performance DLRM accelerator. Facing this challenge, we
present the first PIM-based DLRM accelerator with a hetero-
geneous memory hierarchy. Moreover, sparsity widely exists in
DLRMs, we propose runtime & offline strategies and latency-
matching pipeline to exploit sparsity on the heterogeneous
architecture. Experimental results show that PIMPR performs
better than the previous NDP-based DLRM accelerators on
various datasets.

REFERENCES

[1] P. Covington et al., “Deep neural networks for youtube recommenda-
tions,” in RecSys, 2016.

[2] Facebook. [Online]. Available: http://www.facebook.com.
[3] U. Gupta et al., “The architectural implications of facebook’s dnn-based

personalized recommendation,” in HPCA, 2020.
[4] H. Kal et al., “Space: locality-aware processing in heterogeneous memory

for personalized recommendations,” in ISCA, 2021.
[5] J. Ni et al., “Justifying recommendations using distantly-labeled reviews

and fine-grained aspects,” in EMNLP-IJCNLP, 2019.
[6] Y. Kwon et al., “Tensordimm: A practical near-memory processing

architecture for embeddings and tensor operations in deep learning,” in
MICRO, 2019.

[7] L. Ke et al., “Recnmp: Accelerating personalized recommendation with
near-memory processing,” in ISCA, 2020.

[8] J. Park et al., “Trim: Enhancing processor-memory interfaces with
scalable tensor reduction in memory,” in MICRO, 2021.

[9] C. Xu et al., “Overcoming the challenges of crossbar resistive memory
architectures,” in HPCA, 2015.

[10] Y. Wang et al., “Rerec: In-reram acceleration with access-aware mapping
for personalized recommendation,” in ICCAD, 2021.

[11] Y. Qu et al., “Product-based neural networks for user response predic-
tion,” in ICDM, 2016.

[12] H. Guo et al., “Deepfm: a factorizationmachine based neural network for
ctr prediction,” arXiv preprint arXiv:1703.04247, 2017.

[13] A. Shafiee et al., “Isaac: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars,” in ACM SIGARCH Computer
Architecture News, 2016.

[14] D. Niu et al., “Design of cross-point metal-oxide reram emphasizing
reliability and cost,” in ICCAD, 2013.

[15] R. Balasubramonian et al., “Cacti 7: New tools for interconnect explo-
ration in innovative off-chip memories,” TACO, 2017.

[16] D. Fujiki et al., “In-memory data parallel processor,” in ACM SIGPLAN
Notices, 2018.

[17] Synopsys. [Online]. Available: https://www.synopsys.com/community/
university-program/teaching-resources.html.

[18] Y. Kim et al., “Ramulator: A fast and extensible dram simulator,” IEEE
Computer architecture letters, 2015.

[19] X. Dong et al., “Nvsim: A circuit-level performance, energy, and area
model for emerging nonvolatile memory,” TCAD, 2012.

[20] M. Naumov et al., “Deep learning recommendation model for personal-
ization and recommendation systems,” arXiv:1906.00091, 2019.

!

!

	Select a link below
	Return to Previous View
	Return to Main Menu

