
Efficient Software Masking of AES through
Instruction Set Extensions

Songqiao Cui and Josep Balasch
e-Media Research Lab, STADIUS, KU Leuven, Leuven, Belgium

Email: {songqiao.cui, josep.balasch}@kuleuven.be

Abstract—Masking is a well-studied countermeasure to protect
software implementations against side-channel attacks. For the
case of AES, incorporating masking often requires to implement
internal transformations using finite field arithmetic. This results
in significant performance overheads, mostly due to finite field
multiplications, which are even worsened when no lookup tables
are used. In this work, we extend a RISC-V core with custom
instructions to accelerate AES finite field arithmetic. With a 3.3%
area increase, we measure 7.2x and 5.4x speed up over software-
only implementations of first-order Boolean Masking and Inner
Product Masking, respectively. We also investigate vectorized
instructions capable of exploiting the intra-block and inter-block
parallelism in the implementation. Our implementations avoid the
use of lookup tables, run in constant time, and show no evidence
of first-order leakage when evaluated on an FPGA.

Index Terms—Side-channel attacks, masking, instruction set
extension, RISC-V

I. INTRODUCTION

Side-channel attacks are a popular method to extract sensitive
data from cryptographic devices. They involve an adversary
capable of collecting and analyzing side-channel leakage in-
formation, the most notable example being the instantaneous
power consumption [1]. A myriad of literature has appeared
in the last decades on how to prevent side-channel attacks.
Among the proposed techniques, masking [2] is a very popular
countermeasure due to its soundness and its suitability to
protect block cipher implementations.

In its simplest form, masking consists in splitting every sen-
sitive variable s in the implementation into two shares (s1,s2)
which are then used to perform computations. The encoding
function s = f(s1, s2) determines the type of masking. The
most classical is Boolean masking, where f = s1⊕s2, but other
constructions exist that leverage on more complex encodings. A
masking scheme provides a set of computational procedures to
operate in the masked domain. Besides functional equivalence,
such procedures must also ensure all sensitive intermediates
values remain masked. When the computational procedures of
a scheme support an arbitrary number of shares n, e.g. when
f = (s1, . . . , sn), one talks about higher-order masking.

Masking can be implemented either at gate or at algorithm
level. The former method is popular for hardware implemen-
tations and has a generic nature. It often involves replac-

The authors would like to thank B. De Cock and Q. Vansina for their initial
explorations in the context of this work. This research has been funded in
part by KU Leuven Startfinanciering STG/20/047. Songqiao Cui is funded
by a PhD grant strategic basic research from the FWO Research Foundation
Flanders (grant number 1SF8223N).

ing atomic gates in an (unprotected) circuit with functional-
equivalent gadgets that operate in the masked domain. The
latter method is more common for software implementations,
and is linked towards specific cryptographic algorithms. It
typically exploits specifities of the algorithm to obtain more
efficient implementations.

In this work we focus on software implementations of the
Advanced Encryption Standard (AES), where both the encoding
and the masked functions are defined over the field GF(28). Ad-
dition in GF(28) is equivalent to bitwise exclusive-or, which is
natively available in a processor’s Instruction Set Architecture
(ISA) and therefore is very efficient. Multiplication in GF(28)
is however more involved, and demands dedicated software
routines which bring significant overheads. This is particularly
the case when they are implemented without neither lookup
tables nor conditional statements, which is necessary to avoid
timing side-channel leakages. As multiplications in GF(28)
represent the lowest level of arithmetic operations in masking
of the AES, any overhead here has a major impact to the overall
efficiency of the implementation. To give an example, a first-
order Inner Product masking [3] of the AES requires roughly
19,000 multiplications in GF(28) Hence it is clear that any
improvement in the execution of this low-level function results
in significant gains.

Motivated by this observation, in this work we set out to
design, implement and validate a small Instruction Set Exten-
sion (ISE) tailored to accelerate field arithmetic in GF(28).
By focusing on the lowest level arithmetic layer, we ensure
that most algorithmic level masking schemes applied to the
AES benefit from it. For the purposes of demonstration and
evaluation, we opt to prototype our work and our side-channel
resistant implementations on a compact RISC-V core.

A. Related Works

A few works have tackled the issue of bringing masking-
based side-channel countermeasures to RISC-V cores. For
instance, De Mulder et al. [4] propose a RISC-V architecture
where internal components are inherently hardended against
attacks. These include both the register bank and the ALU,
as well as transfers to/from memory. The work by Kiaei and
Schaumont [5] introduces a separated and secure datapath that
executes a set of instructions protected against side-channels
attacks. The solutions provided in these works integrate the
countermeasures directly into the processor architecture, mak-
ing them somewhat independent of the software running on
them. Our objective is instead to accelerate certain operations

2023 Design, Automation & Test in Europe Conference (DATE 2023) – Best Paper Award Candidate	

 978-3-9819263-7-8/DATE23/© 2023 EDAA 

	



with minimal additional execution units, which are used from
the software side.

Following a similar reasoning, the work by Gao et al. [6]
proposes an ISE for masking tailored to software developers.
In particular, a total of 22 instructions are proposed that support
Boolean masking operations as well as mask conversion. While
similar in spirit, our work differs from [6] in that we aim for a
small subset of instructions for arithmetic in GF(28), which can
be leveraged by different masking schemes. Examples include
higher-order masking schemes based on Boolean masking [7],
[8], or Inner Product masking [3]. Other solutions such as
Affine masking [9] can also benefit from it to pre-compute
lookup tables. Note that bitsliced implementations such as [10]
operate at bit level (AND, XOR) and therefore cannot benefit
directly from such an ISA which assumes variables defined in
GF(28). To account for this, we explore in the work vectorized
implementations which, similar to bitslicing scenarios, assume
multiple data blocks are processed in parallel.

B. Contributions

Our contributions are as follows:

1) We create dedicated hardware instructions to accelerate
multiplication in the AES field GF(28), the major bottle-
neck for masked software AES implementations.

2) We incorporate singular and vectorized instructions as
extension to the popular VexRiscv core and analyze
their area costs by synthesizing them on an FPGA.

3) We benchmark assembly implementations of unprotected
and protected AES implementations using Boolean and
Inner Product Masking schemes, both for the singular and
vectorized cores.

4) We evaluate the resistance of our assembly implemen-
tations using non-specific leakage assessment to validate
their security against first-order attacks

C. Paper organization

In Sect. II we review the masking schemes implemented in
this work and their application to AES in software. In Sect. III
we introduce our proposed instruction set extensions, describe
the modifications performed to the original RISC-V core and
associated tooling, and quantify the area costs of the extended
cores. In Sect. IV we benchmark our hardware-accelerated
implementations w.r.t. the baseline case and provide the results
of the side-channel leakage assessment when synthesizing the
core on an FPGA. In Sect. V we conclude the paper.

II. BACKGROUND AND RELATED WORKS

In this section we present in more detail the masking schemes
considered in this work and their application to protect AES in
software. In particular, we focus on the higher-order schemes
proposed by Rivain and Prouff [7] (based on Boolean masking)
and by Balasch et al. [3] (based on Inner Product masking).
For each of them, we summarize the cost of their masked
operations.

A. Boolean Masking and Inner Product Masking

Boolean masking [2] is one of the most studied and imple-
mented masking schemes. Its encoding function is based on
the exclusive-or operator. For an arbitrary number of shares n,
variables are split as: x = s1 ⊕ . . .⊕ sn.

In [7] Rivain and Prouff show how to leverage on this
encoding function to secure operations in any finite field. With
the goal of protecting AES, they provide a set of algorithms
to mask the necessary GF(28) operations at any order n.
The cost of each masked algorithm in terms of basic finite
field operations (addition ⊕ and multiplication ⊗) is listed in
Table I (upper rows). Linear operations (addition, squaring) are
typically efficient in the masked domain, as they can be applied
individually per share without need of recombining them. This
is also the case for the refreshing algorithm, which is used
to remove data dependencies between operations by adding
fresh randomness. In contrast, multiplication has quadratic
complexity due to the calculation of product terms of all shares.
Note that the table omits randomness costs, as the focus of
our work is on computational costs. For details on the exact
algorithms we refer the reader to [7].

In [11] Balasch et al. present a masking scheme that uses the
inner product of two vectors (denoted L and R) as encoding
function. For an arbitrary number of shares n, variables are
split as: s = r1 ⊕ (l2 ⊗ r2)⊕ . . .⊕ (ln ⊗ rn).

For efficiency reasons the first element of L (which is
assumed to be public) is set to one, i.e. l1 = 1. The main
advantage of Inner Product Masking is that its encoding func-
tion brings improved security properties and better resistance
against transition leakages [3]. The price to pay is an increase in
complexity of its masked constructs. These are summarized in
Table I (bottom rows). Besides addition, the remaining masked
operations require more field operations, in particular costly
multiplications. Note that some of these multiplications (also
in Boolean masking) are often tabulated in implementations,
i.e. to perform squarings or multiplications by constants. We
however consider consider them as normal multiplications as
we aim for implementations without lookup tables. For details
on the exact algorithms we refer the reader to [3].

TABLE I
COST OF MASKED ALGORITHMS IN TERMS OF FINITE FIELD OPERATIONS

AND NUMBER OF SHARES n.

Operation GFADD (⊕) GFMUL (⊗)
BMADD n -
BMMUL 2n2 - 2n n2

BMSQ - n
BMREF 2n-2 -
IPADD n -
IPMUL 2n2 2n2+n-1
IPSQ - 2n
IPREF 2n n-1

B. Application to the AES

The AES is a block cipher that operates on a 128-bit state,
internally arranged as a 4 x 4 array of bytes in GF(28). In

!

!



this work we focus on AES-128 encryption, where the AES
states goes iteratively through a series of linear and non-linear
transformations. We incorporate masking at algorithm level by
adapting each transformation to operate on masked data.

Table II summarizes the number of masked operations re-
quired by each AES transformation. Non-linear transformations
are in general very efficient. This is particularly the case of
AddRoundKey, which only involves 4 x 4 element addi-
tions, and ShiftRows, which simply reorders array elements
without additional calculations. For MixColumns we use
the xtime equations, which require four doubling operations
(i.e. multiplications by 2). The most costly transformation is
SubBytes, which internally calculates a field inverse followed
by an affine transformation. For the field inverse, we leverage
on the approach originally proposed in [7] and compute it
with the power function x254, which can be evaluated with
a monomial that requires 4 multiplications and 7 squarings.
The refreshing of 2 intermediate computations is needed to
prevent leakages due to dependent variables. For the affine
transformation, we evaluate it with an equation over GF(28),
which requires 8 additions, 7 squarings, 7 multiplications with
a constant and 2 refreshings. Following the reasoning given
before, we consider multiplications by a constant as normal
multiplications.

TABLE II
NUMBER OF MASKED OPERATIONS PER AES TRANSFORMATION.

AES Transformation Masked Operation
ADD MUL SQ REF

AddRoundKey 16 - - -
SubBytes (inverse) - 4 7 2
SubBytes (affine) 8 7 7 2

ShiftRows - - - -
MixColumns 15 4 - -

III. INSTRUCTION SET EXTENSION

In this section, we elaborate on the instruction set extensions
that we have developed to accelerate multiplication in GF(28).
We discuss how these have been integrated to the baseline
RISC-V processor used in this work (VexRiscv) and the
adaptations made to the RISC-V tool-chain and the SoC wrap-
per (LiteX) necessary to obtain a functional and synthesized
design for FPGA environments.

A. Hardware Multiplier in GF(28)

Multiplication in GF(28) takes two variables as input and
generates one variable as output. All input/output variables
are elements in GF(28) and consequently encoded as bytes. A
multiplication in GF(28) involves two steps: the multiplication
of the two inputs followed by a reduction by an irreducible
polynomial. In context of AES, the irreducible polynomial is
given by x8 + x4 + x3 + x1 + x+ 1.

Implementing this operation in hardware can be done with
basic logic gates, namely AND and XOR gates. On the first
step, 64 AND gates and 49 XOR gates are used to calculate
the 16-bit result of the multiplication. On the second step,

29 XOR gates are used to perform the reduction back to an
element in GF(28). The reduction is implicitly hardcoded in
our multiplier, as we focus on implementations of the AES
and therefore consider the irreducible polynomial as fixed. If
one were to design a generic multiplier in GF(28), a different
approach would be required to perform the reduction. We opt
to implement the multiplier as a fully combinational circuit,
such that it can be efficiently integrated into the execution
stage of the processor. By doing so, we incorporate it as
an atomic operation that executes with the same latency as
native instructions such as AND or XOR. In other words, we
essentially make the cost of a field multiplication equivalent to
a field addition. Naturally, the insertion of this field multiplier
brings certain area overheads for the core, which are discussed
later in Sect. III-D.

B. Proposed Instructions in RISC-V Context

The support for encoding space for opcode extensions, regu-
lated in the RISC-V Instruction Set Manual, enables to develop
custom instructions while maintaining compatibility with the
baseline ISA. Our proposed instructions are summarized in
Table III. We propose two sets of instructions: singular (first
row) and vectorized (second row). As the name indicates,
instructions in each set differ in the amount of multiplications
in GF(28) that can be performed in parallel. This enables
different implementations as will be detailed in Section IV,
exploiting inter-block and intra-block parallelism options in the
implementation.

Focusing first on the singular case, two instructions are
proposed: GFMul and GFMulImm. The instruction GFMul is
the most generic: it reads two operands from source registers,
and outputs the result to a destination register. The instruction
is of type R-format, and performs a single multiplication in
GF(28). Since registers are 32 bits, only the lowest byte is
used by this operation. The instruction GFMulImm is a specific
I-format instruction that employs an immediate rather than a
second source register. As mentioned in Sect. II, several mask-
ing operations involve multiplying variables with a constant.
Having this instruction allows to save one instruction compared
to using GFMul, as the constant does not need to be loaded
into a register. Immediates in RISC-V are 12 bits long, which is
enough to hold the 8 bit value required by the instruction. Since
it reuses the same multiplier circuit of GFMul, this instruction
comes at virtually no cost other than some extra decoding logic.

The second set of instructions, for the vectorized case, are
simply extensions of the singular operations. Instead of a
single multiplication, they perform four parallel multiplications
treating the 32-bit registers as four virtual 8-bit registers. Thus,
GFMulVec is a vectorized version of GFMul operating on
registers, and GFMulVecImm is an extension of GFMulImm.
The latter still employs an 8-bit immediate, which is replicated
to each of the four multiplier instances. Note that both singular
and vectorized instructions are assigned with the same instruc-
tion pattern. The vectorized instructions are essentially reduced
to singular ones if 24 MSBs are set to 0.

In order to use and validate our custom instructions, we need
to perform some modifications to the RISC-V GNU toolchain.

!

!



TABLE III
OVERVIEW OF PROPOSED RISC-V INSTRUCTIONS.

Instruction ABI GFMul GFMulImm ← singular
GFMulVec GFMulVecImm ← vectorized

Format R I
Opcode 0001011 0001011
funct3 000 111
funct7 0000011 -

Operand d,s,t d,s,j
MATCH 0x600000b 0x700b
MASK 0xfe00707f 0x707f

This is required so that the compiler can recognize the instruc-
tion ABI and translate it to the right machine code. Table III
accommodates a summary of the added instructions, with ABI
name, format, pattern, operands, MATCH and MASK, in lines
with RISC-V instruction naming conventions and formatting.

C. Integration in VexRiscv

VexRiscv is an open-source RISC-V implementation writ-
ten in SpinalHDL, a Scala-based Hardware Description Lan-
guage (HDL). A nice feature of VexRiscv is that it can be
highly customized by means of the so-called plugin system.
Architectural aspects such as pipeline stages, supported RV32I
instruction sets, MUL/DIV extensions, memory caches, etc. can
be defined prior to generating the final HDL. The integration of
customized instruction extensions in VexRiscv is supported
by means of the same plugin system.

We start from a baseline VexRiscv core configuration,
useful for area comparison and benchmarking. The baseline
core features a 5-stage pipeline and support for RV32IM
instruction sets. We opt to disable both the instruction cache
and data cache to obtain a compact baseline core. Note that
our implementations are aimed to run in constant time and to
avoid the use of lookup tables, hence caches could be enabled
without affecting the security evaluation in Sect. IV.

We implement our instructions by means of a customized
plugin (GFMulPlugin), which extends the plugin interface
within VexRiscv. It notifies the decoding stage about the new
instruction pattern and the control unit about register bypassing
and operand usage. The hardware multiplier in GF(28) is
directly integrated in the execution stage, using the operands as
required by the instruction, i.e. with or without immediate, and
pushing the results to next pipeline stages. We generate two
independent designs, one with support for singular instructions
and one with support for vectorized instructions, in order to
compare their area overheads.

D. FPGA Validation

LiteX [12] is a convenient and efficient framework, written in
Migen (a Python based HDL) that allows to create System-on-
Chip (SoC) designs that act as interface between a softcore and
the outside system. The resulting SoC designs can be ported to
different FPGA boards by adapting configuration and constraint
files. Interesting for our purposes is that LiteX has already
support for VexRiscv cores. We leverage on this to create
an SoC extended with a serial communication interface, so that

we can both communicate with the core as well as load custom
firmware directly to the FPGA.

We incorporate our VexRiscv core flavours (baseline,
singular and vectorized) in the LiteX platform, and synthesize
the SoC design for Xilinx Artix7 FPGA using Vivado 2020.1.
Table IV summarizes the implementation results of all cores.
Our VexRiscv with singular extensions requires around 60
additional LookUp Tables (LUT), which corresponds to a 3.3%
area increase. The core for vectorized extensions requires 202
extra LUTs, hence an area increase of 7.5%. Note that the
increase from singular to vectorized is not an exact three-fold.
This is explained by the fact only combined LUTs are contained
in the report, e.g. a 6-input LUTs in Artix7 is counted whether
one or two of the internal 5-input LUTs are used, plus potential
optimizations performed by Vivado. Although the relative area
increase may seem large, we stress that our baseline core is
intentionally compact and would be reduced if using a more
complex core. For both our designs, the flip-flop count increases
only by 2 due to the extra instructions.

TABLE IV
OVERVIEW OF RESOURCE UTILIZATION.

Core LUT Flip-Flops
VesRiscv (baseline) 1814 1072
VesRiscv (singular) 1874 1074

VexRiscv (vectorized) 2016 1074

IV. EVALUATION

In this section, we present our masked implementations
of the AES. We focus on first-order Boolean masking and
Inner Product masking, and benchmark the gains obtained with
the different cores that we developed (baseline, singular, and
vectorized). We also provide a Test Vector Leakage Assessment
(TVLA) evaluation [13] on FPGA to confirm our accelerated
implementations do not show evidence of leakage.

A. Implementations and Performance Results
In order to have better control of the processor’s resources

and to force the usage of our customized instructions, we have
developed all our implementations in RISC-V assembly. An
important remark here is that, in our current instantiation of
the VexRiscv core, instructions take a minimum of 2 clock
cycles to execute. This is due to a limitation of the Wishbone
bus implemented by the LiteX platform when composing the
SoC, which limits the processor throughput to one instruction
per two cycles and one memory access per six cycles. As a
consequence the absolute cycle counts are quite bloated with
respect to related works, even though our assembly code has
been heavily optimized. We note that this is an architectural
effect of our SoC generation and has limited impact on our
main contributions. Indeed, the key point in our performance
analysis is to determine the relative cycle count gains across
the different implementations, which is not strongly affected by
this effect.

The timing results of our implementations are summa-
rized in Table V. The first implementation (AES) corre-
sponds to a software-only reference implementation in the

!

!



baseline core. It is a classical AES implementation, unpro-
tected against side-channel attacks which uses lookup tables
to perform the SubBytes transformation and the doublings
in MixColumns. The overhead caused by masking can be
measured with respect to this implementation, which takes
roughly 22 k clock cycles.

TABLE V
PERFORMANCE OF IMPLEMENTATIONS (ROUNDED).

Implementation Clock Cycles VexRiscv Core
AES 22 372

baselineAES-BMSW 1 291 317
AES-IPSW 2 165 339
AES-BMHW 177 645 singular
AES-IPHW 399 507

AES-BMHW,INTRA 54 809

vectorizedAES-IPHW,INTRA 124 317
AES-BMHW,INTER 209 079
AES-IPHW,INTER 422 694

The second set of implementations correspond to the masked
versions of the AES with Boolean Masking (AES-BMSW ) and
IP Masking (AES-IPSW ) in the baseline core, i.e. without
instruction acceleration. Both implementations use n = 2
shares and perform multiplication in GF(28) in software. The
routine uses log-alog tables without conditional statements
(i.e. constant time) and takes 98 clock cycles to execute.
Compared to the reference AES, the masked implementations
incur 57x and 96x times overhead, respectively for BM and IP.

The implementations on the singular core (AES-BMHW and
AES-IPHW ) are virtually the same as the previous ones. The
only difference is that multiplication in GF(28) is accelerated
with the dedicated instructions. This change results in 7.2x and
5.4x times speed up for BM and IP, respectively, visualizing
the usefulness of our hardware-accelerated instructions.

The implementations on the vectorized core exploit different
parallelism options depending on the number of blocks (i.e.
number of encryptions) that need to be processed by the
application. We first explore intra-block parallelism, where
certain operations within a single AES encryption are per-
formed in parallel. This case is useful when a single block
is encrypted and latency is important. The SubBytes trans-
formation, representing the bottleneck of the implementation, is
performed on four AES state elements in parallel. Additionally,
the AES state is rearranged to facilitate the calculations of
ShiftRows and MixColumns. The resulting implementa-
tions (AES-BMHW,INTRA and AES-IPHW,INTRA) achieve
an additional 3.24x and 3.2x times speed up with respect to
the singular core.

Lastly, we also explore inter-block parallelism where mul-
tiple (independent) AES encryptions are performed together.
This case is similar to exploited in bitsliced implementations,
e.g. [10], where multiple data blocks are encrypted and through-
put is important. In this case, we observe slightly larger gains
of 3.4x and 3.76x respectively for BM and IP. Note that for
this case, the numbers reported in Table V correspond to four
blocks.

In both parallelization options, the gains are very close to
the optimal 4x speed up that could theoretically be obtained.
The reason why gains are slightly lower is simply due to the
overhead caused by extra operations (e.g. pack/unpack) as well
as the limited parallelization options of memory accesses.

B. Side-Channel Leakage Evaluation

We have used the CW305 Artix7 FPGA Target by NewAE
Technology as platform to evaluate the side-channel security
of our implementations. For each VexRiscv core, we have
ported and synthesized the LiteX SoC for the Artix7 FPGA
in the CW305 and enabled serial communication to inter-
face with an external PC. Since our core does not have an
internal random number generator, we have implemented an
internal cryptographic pseudo-random number generator that
provides (before each encryption) the randomness required by
the implementation. The seed is provided by the PC at the
beginning of each measurement campaign. We have configured
the VexRiscv cores to operate at a clock frequency of
12.5 MHz. This value is selected to avoid overlaps between
the power patterns of consecutive clock cycles. To measure
the power consumption, we have used an external Picoscope
PS6404 with a sampling interval of 3.2 ns and captured the
first three rounds of the algorithm.

For the analysis of measurements, we have used the TVLA
described in [13]. For each measurement campaign, we have
collected two sets of measurements while performing AES
encryption on the evaluation board: one where the (unmasked)
plaintext is fixed, and one where the plaintext is randomly gen-
erated. The (unmasked) key is the same for both measurement
sets and it is refreshed before each algorithm execution. The
TVLA test calculates the Welch’s (two-tailed) t-test for each
sample in the measurement sets, and returns a vector of t-scores
as result. As common in the literature, a threshold value of
the t-score is set at ± 4.5 to determine if the implementation
exhibits leakage in the first-order moment.

Fig. 1 shows the outcome of the t-test evaluation of our
masked implementations in the singular core: AES-BMHW

and AES-IPHW . In these experiments, masking is effectively
disabled by setting all random values to zero. It is a sanity
check with the purpose of confirming the experimental setup is
sound. Consequently we expect it to indicate the presence of
leakage as confirmed in the plot, with many samples crossing
the ±4.5 boundary. We have collected 10,000 measurements
for these experiments.

Fig. 2 shows the outcome of the t-test evaluation when
randomness is enabled. We have collected 1 M measurements
for these experiments. Note that the upper plot, corresponding
to the implementation of Boolean masking with n = 2 shares,
exhibits leakage. As explained in [3], this effect is caused
due to transition based leakages in the implementation and/or
processor architecture which can undermine the security of the
implementation. This effect is stronger in Boolean masking,
whose encoding function is based on the exclusive-or operator.
Increasing the number of shares to n = 3, as shown in the mid-
dle plot, effectively yields a secure first-order implementation
regardless of the existence of transition based leakages [14].

!

!



Fig. 1. T-test results for AES-BMHW (top) and AES-IPHW (bottom) with
RNG deactivated. The red lines mark the ±4.5 threshold.

Note however that the execution time increases considerably.
For Inner Product masking, as shown in the bottom plot, there
is no evidence of leakage when using n = 2. The experimental
results demonstrate the soundness of our implementations and
confirm the insertion of the GF(28) multiplier has no adverse
effects on their side-channel security.

Fig. 2. T-test results for AES-BMHW (top, n = 2), AES-BMHW (top, n = 3),
and AES-IPHW (bottom, n = 2) with RNG activated. The red lines mark
the ±4.5 threshold.

V. CONCLUSION

In this work we have proposed a compact ISE for RISC-V to
support field multiplications in GF(28). By accelerating the low-
est level of arithmetic computation, our ISE can be leveraged
on by different masking schemes with application to the AES.
We have proposed two possible sets of extensions (singular vs.
vectorized), aiming at different scenarios and with a different
area vs. execution time tradeoff. We have developed assembly
implementations based on Boolean Masking and Inner Product
Masking, benchmarked their overhead, and evaluated their side-
channel security on an FPGA, demonstrating that the added
hardware does not compromise their security.

REFERENCES

[1] P. C. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
Advances in Cryptology - CRYPTO ’99, ser. LNCS, M. J. Wiener, Ed.,
vol. 1666. Springer, 1999, pp. 388–397.

[2] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi, “Towards sound ap-
proaches to counteract power-analysis attacks,” in Advances in Cryptology
- CRYPTO ’99, ser. LNCS, M. J. Wiener, Ed., vol. 1666. Springer, 1999,
pp. 398–412.

[3] J. Balasch, S. Faust, B. Gierlichs, C. Paglialonga, and F. Standaert,
“Consolidating inner product masking,” in Advances in Cryptology -
ASIACRYPT 2017, ser. LNCS, T. Takagi and T. Peyrin, Eds., vol. 10624.
Springer, 2017, pp. 724–754.

[4] E. D. Mulder, S. Gummalla, and M. Hutter, “Protecting RISC-V against
side-channel attacks,” in Design Automation Conference 2019 - DAC
2019. ACM, 2019, p. 45.

[5] P. Kiaei and P. Schaumont, “Domain-oriented masked instruction set
architecture for RISC-V,” IACR Cryptol. ePrint Arch., p. 465, 2020.

[6] S. Gao, J. Großschädl, B. Marshall, D. Page, T. H. Pham, and F. Regaz-
zoni, “An instruction set extension to support software-based masking,”
IACR Trans. Cryptogr. Hardw. Embed. Syst., vol. 2021, no. 4, pp. 283–
325, 2021.

[7] M. Rivain and E. Prouff, “Provably secure higher-order masking of AES,”
in Cryptographic Hardware and Embedded Systems - CHES 2010, ser.
LNCS, S. Mangard and F. Standaert, Eds., vol. 6225. Springer, 2010,
pp. 413–427.

[8] J. Coron, A. Greuet, and R. Zeitoun, “Side-channel masking with pseudo-
random generator,” in Advances in Cryptology - EUROCRYPT 2020, ser.
LNCS, A. Canteaut and Y. Ishai, Eds., vol. 12107. Springer, 2020, pp.
342–375.

[9] G. Fumaroli, A. Martinelli, E. Prouff, and M. Rivain, “Affine masking
against higher-order side channel analysis,” in Selected Areas in Cryptog-
raphy - SAC 2010, ser. LNCS, A. Biryukov, G. Gong, and D. R. Stinson,
Eds., vol. 6544. Springer, 2010, pp. 262–280.

[10] P. Schwabe and K. Stoffelen, “All the AES You Need on Cortex-M3
and M4,” in Selected Areas in Cryptography - SAC 2016, ser. LNCS,
R. Avanzi and H. M. Heys, Eds., vol. 10532. Springer, 2016, pp. 180–
194.

[11] J. Balasch, S. Faust, B. Gierlichs, and I. Verbauwhede, “Theory and prac-
tice of a leakage resilient masking scheme,” in Advances in Cryptology
- ASIACRYPT 2012, ser. LNCS, X. Wang and K. Sako, Eds., vol. 7658.
Springer, 2012, pp. 758–775.

[12] F. Kermarrec, S. Bourdeauducq, J. L. Lann, and H. Badier, “LiteX:
an open-source SoC builder and library based on Migen Python DSL,”
CoRR, vol. abs/2005.02506, 2020.

[13] G. Goodwill, B. Jun, J. Jaffe, and P. Rohatgi, “A testing methodology for
side channel resistance validation,” http://csrc.nist.gov/news events/non-
invasive-attack-testing-workshop/ 08 Goodwill.pdf, 2011.

[14] J. Balasch, B. Gierlichs, V. Grosso, O. Reparaz, and F. Standaert, “On the
cost of lazy engineering for masked software implementations,” in Smart
Card Research and Advanced Applications - CARDIS 2014, ser. LNCS,
M. Joye and A. Moradi, Eds., vol. 8968. Springer, 2014, pp. 64–81.

!

!


	Select a link below
	Return to Previous View
	Return to Main Menu


