
End-to-End DNN Inference on a Massively Parallel
Analog In Memory Computing Architecture

Nazareno Bruschi∗, Giuseppe Tagliavini∗, Angelo Garofalo∗†, Francesco Conti∗,
Irem Boybat‡, Luca Benini∗†, Davide Rossi∗

∗University of Bologna, Bologna, Italy, †ETH, Zurich, Switzerland
‡IBM Research, Zurich, Switzerland

Abstract—The demand for computation resources and energy
efficiency of Convolutional Neural Networks (CNN) applications
requires a new paradigm to overcome the “Memory Wall”. Analog
In-Memory Computing (AIMC) is a promising paradigm since it
performs matrix-vector multiplications, the critical kernel of many
ML applications, in-place in the analog domain within memory
arrays structured as crossbars of memory cells. However, several
factors limit the full exploitation of this technology, including the
physical fabrication of the crossbar devices, which constrain the
memory capacity of a single array. Multi-AIMC architectures
have been proposed to overcome this limitation, but they have
been demonstrated only for tiny and custom CNNs or performing
some layers off-chip. In this work, we present the full inference
of an end-to-end ResNet-18 DNN on a 512-cluster heterogeneous
architecture coupling a mix of AIMC cores and digital RISC-
V cores, achieving up to 20.2 TOPS. Moreover, we analyze
the mapping of the network on the available non-volatile cells,
compare it with state-of-the-art models, and derive guidelines for
next-generation many-core architectures based on AIMC devices.

Index Terms—In-Memory Computing, Heterogenous systems,
many-core architectures, Convolutional Neural Networks

I. INTRODUCTION

Matrix-Vector Multiplication (MVM) is the critical operation
in modern Deep Neural Networks (DNN), and its optimization
has been tackled from different perspectives, from software
kernels to hardware accelerators. In recent years, Analog In-
Memory Computing (AIMC) has been a widely studied com-
puting paradigm since it promises outstanding performance and
energy efficiency on MVM operations [1]. However, the large-
scale usage of AIMC in commercial products is limited by tech-
nological issues, especially in fabricating large arrays. AIMC
can be employed using very different memory technologies,
which can be classified as volatile and non-volatile.

The former has a more mature community, especially for
SRAM technology, due to its robustness and viability for large-
scale integration in any CMOS node. Several SRAM-based
chips have been developed targeting any DNN requirements [2].
However, they generally require moving network parameters
among large off-chip memories to be temporarily stored in the
on-chip computational memory, negatively impacting energy
consumption [3].

Non-volatile AIMC (nvAIMC) instead merges parameter
storage with computational memory. In this way, parameters
do not need to be transferred from on- or off-chip storage
through the memory hierarchy. However, the limited writing
access speed [4] of nvIMC devices introduces the need for a

static mapping strategy to preserve the performance capability
of such devices. Moreover, a further challenge is the fabricable
size of nvIMC devices, which de-facto is limited to 1024×1024
with up to 8-bit equivalent memory cells [4].

During the last few years, the fabrication of several proto-
types exploiting these technologies [5]–[7] demonstrated the
feasibility of the approach, despite several open challenges
related to the intrinsic variability of analog computing, the
need for specialized training to address analog noise and non-
idealities. On the other hand, most of these works aimed at
demonstrating the technology rather than targeting end-to-end
inference of deep neural networks. One of the limitations of
nvAIMC cores is their little flexibility due to the ability to
implement only MVMs.

For this reason, few recent works [8]–[10] proposed the inte-
gration of nvAIMC cores into digital System-on-Chips (SoC),
exploiting a mix of nvAIMC cores and more flexible specialized
and programmable digital processors. Thanks to this mix, they
demonstrated remarkable performance on the full inference of
neural networks in the mobile domain, such as MobileNetV2,
time multiplexing computations on several nvAIMC cores [9],
[10]. Indeed, in the mobile domain, it is common that only one
sample is processed at a time, relaxing the requirements of layer
pipelining. This constraint significantly limits the potential of
nvAIMC since only one core can be active at a given time.

This constraint can be relaxed when leaving the mobile
domain: high-performance inference of DNNs typically ex-
ploits batching due to the large number of images typically
processed in HPC and data centers applications. Several recent
works exploited this feature proposing many-core data-flow
architectures. On the other hand, most of these works made
strong assumptions about the characteristics of the networks
to be processed to better fit the shape of the DNN on the
proposed architectures. For example, Dazzi et al. [11] targeted
a relatively small ResNet-like network targeting the CIFAR-
10 dataset, while Shafiee et al. [12] and Ankit et al. [13]
target VGG-like networks featuring no residual layers, nicely
fitting mapping on pipelined data-flow architectures. However,
DNNs generally feature data flow graph loops (e.g., residual
layers) that make a straightforward pipelining implementation
much more challenging. Moreover, most of these architectures
only feature specialized accelerators for implementing digital
functions such as ReLU, and MaxPool, somehow limiting the
flexibility of their approach.

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

Crossbar

B0 B1 B2 B3 B4 BN

I-Cache

RVRVRV

DMAEV

IMA

L1 Local TCDM

HBM Ctrl

L3

L1 L1

L1 L1

L
2

L3

CL

L1

CL

CL CL

CL

L1

CL

CL CL

CL

L1

CL

CL CL

CL

L1

CL

CL CL

W
r
a
p
p
e
r L
2

CL CL

CL CL

CL CL

CL CL

CL CL

CL CL

CL CL

CL CL

L2
quad

L1
quad

L3
quadrant

AIMC CORED
A
C

ADC

CTRL

S
t
r
e
a
m
e
r
s

output buffer

i
n
p
u
t

b
u
f
f
e
r

Analog domain

HBM

M S
write
read

L2_Q0

L2

L2_Q1

L2_Q2 L2_Q3

L3

chip domain

A)

C)

B)

D)

Fig. 1. A) Cluster architecture. B) Massively parallel system architecture. C)
IMA subsystem. D) Router model.

In this work, we tackle the problem from another perspec-
tive. We present a general-purpose system based on RISC-V
cores for digital computations and nvAIMC cores for analog-
amenable operations, such as 2D convolutions. A scalable
hierarchical network-on-chip interconnects the system to maxi-
mize on-chip bandwidth and reduce communication latency. We
evaluate all the system inefficiencies, especially for the non-
ideal mappings and communication infrastructure bottleneck
running a real-life network for state-of-the-art applications such
as ResNet-18 inference on 256×256 image dataset. We perform
an experimental assessment on an extended version of an open-
source system-level simulator [14], resulting in up to 20.2
TOPS and 6.5 TOPS/W for the whole ResNet-18 inference of
a batch of 16 256x256 images in 4.8 ms. The hardware and
software described in this work are open-source, intending to
support and boost an innovation ecosystem for next-generation
computing platforms.

II. MASSIVELY PARALLEL HETEROGENEOUS SYSTEM
ARCHITECTURE

This section presents the proposed heterogeneous many-
core SoC architecture. It consists of multiple heterogeneous
(analog/digital) clusters communicating through a hierarchical
AXI interconnect gathering data from a shared High-Bandwith
Memory (HBM), as shown in Fig. 1B.

1) Cluster: The core of the proposed system architecture
consists of heterogeneous analog/digital clusters (Fig. 1A).
Each cluster contains a set of RISC-V cores (CORES) [15],
a shared multi-bank scratchpad data memory (L1) enabling
Single Program Multiple Data (SPMD) computations, a hard-
ware synchronizer to accelerate common parallel programming
primitives such as thread dispatching and barriers, and a DMA
for the cluster to cluster and cluster to HBM communica-
tion. Each cluster also includes a nvAIMC Accelerator (IMA)
sharing the same multi-banked memory as the CORES for
efficient communication, similarly to the architecture presented
in Garofalo et al. [9].

2) IMA: The IMA is built around a Phase-Change Memory
(PCM) computational memory organised as a 2D array fea-
turing horizontal word lines and vertical bit lines (Fig. 1C).
In computational memory, the PCM cells are exploited as

TABLE I
GVSOC ARCHITECTURE PARAMETERS

Parameter Value
Number of clusters 512

Number of IMA per cluster 1
Number of CORES per cluster 16

L1 memory size 1 MB
HBM size 1.5 GB

Operating frequency 1 GHz
Number of streamers ports (read and write) 16

IMA crossbar size 256×256
Analog latency (MVM operation) 130 ns

Quadrant factor (HBM link,wrapper,L3,L2,L1) (1,8,4,4,4)
Data Width (HBM link,wrapper,L3,L2,L1) (64,64,64,64,64) Bytes

Latency (HBM link,wrapper,L3,L2,L1) (100,4,4,4,4) cycles

programmable resistors placed at the cross points between the
word lines and the bit lines, which allows the implementation
of MVM in the analog domain with high parallelism and
efficiency. In this work, we assume an MVM to be executed
in 130 ns as reported in Khaddam et al. [7]. At the beginning
of each word lines and the end of each bit lines, Digital-to-
Analog (DAC) and Analog-to-Digital converters (ADC) con-
verters perform the conversion between analog and digital
domains, respectively. ADCs and DACs connect to two digital
buffers connected to the L1 memory through a set of streamers
featuring programmable address generation.

3) Interconnect: The interconnect infrastructure connecting
the clusters in the proposed many-core architecture consists of
a highly parametrizable hierarchical network composed of a set
of AXI4 nodes, as proposed in Kurth et al. [16]. The network
topology specifies different regions called quadrants connecting
groups of clusters: the Level 1 nodes connect N1 quadrants
(clusters), the Level 2 nodes connect N2 Level 1 quadrants,
and the Level Level N nodes connect NN Level N-1 quadrants,
as shown in Fig. 1B. The Quadrant Factor for a given level N
defines the number of quadrants (either clusters or level N-1
quadrants) connected to the AXI node for each level. Clusters
feature a master and a slave port, which means that a transaction
can either be initiated by the target cluster through its master
port or by any other cluster through the target cluster’s slave
port. The same concept applies to the whole hierarchy of
quadrants. In both cases, transactions can be either read or write
transactions with full support for bursts according to AXI4
specifications. The last level of the interconnect architecture,
called Wrapper, connects all the levels below to the off-chip
HBM through an HBM controller.

III. SIMULATION INFRASTRUCTURE

We modeled the proposed architecture by extending an open-
source simulator named GVSOC [14] meant to simulate RISC-
V-based clustered multi-core architectures. It is a C++ event-
based simulator featuring a simulation speed of 25 MIPS and
an accuracy of more than 90% compared to a cycle-accurate
equivalent architecture when simulating a full DNN in a single
cluster, as reported in Bruschi et al. [14].

The main components integrated into the simulator are the
IMA and the interconnect infrastructure extending the capabili-

!

!

0
conv

1
pool

2
conv

3
conv

4
res

5
conv

6
conv

7
res

8
conv

9
conv

10
res

11
conv

12
conv

13
res

14
conv

15
conv

16
res

17
conv

18
conv

19
res

20
conv

21
conv

22
res

23
conv

24
conv

25
res

26
pool

27
FC

batch ID -> one new batch after MAX(in,compute,out)

0 1 2 3
0 1 2

4 5 6
3 4 5

0 1
0 1

2 3 4
2 3 4

0 1 2 3
0 1 2
0 1 2

0 1
0

in
compute

out
in

compute
out
in

compute
out

t

0
conv

1
pool

2
conv

Pipeline stagesC)

B)A)

Fig. 2. A) Directed Acyclic Graph (DAG) of the ResNet-18 execution. B)
Mapping example on 512 clusters. C) High-level description of pipelining
computational model.

ties of the simulator towards many-core accelerators (i.e., up to
512 clusters and 8192 RISC-V cores). The IMA is integrated
into the cluster as a master of the cluster crossbar. All the
components of the IMA have been modeled, including the
input and output buffers and the streamers. At the system level,
the interconnect infrastructure has been modeled as a set of
parametric router components with configurable data width,
latency, and the number of master and slave ports combined
together to create the topology described in Fig. 1D. Table I
describes the configuration parameters of the platform used in
this work. All the modules in the simulator have been calibrated
using the cycle-accurate RTL and FPGA equivalent. 256×256
IMA size has been used since it has been demonstrated in
more works and shows better technological feasibility at this
time [7]. This infrastructure allows to simulate the execution
of a full ResNet-18 on 512 instantiated clusters in less than 20
minutes on a 32 GB RAM, Intel(R) Core(TM) i7-2600 CPU
@ 3.40GHz.

IV. COMPUTATIONAL MODEL

This section presents the computational model of the pro-
posed massively parallel heterogeneous architecture, detail-
ing its main characteristics: Layer Mapping, IMA execution,
Pipelining, Data Tiling, and Self-Timed Execution Flow.

1) Static Layer Mapping: According to the computational
model of the proposed many-core architecture, each layer of a
DNN is statically mapped to a certain number of clusters, while
the input/output features maps (IFM/OFM) are streamed from
producer to consumer clusters. Fig. 2B shows the mapping of
the ResNet-18 on the architecture, where each node of the graph
in Fig. 2A represents a CNN layer, grouped by color according
to the IFM dimensions, and every layer is mapped on different
clusters of the system, as shown in Fig. 2B. The number of
clusters used to map a specific layer depends on the number of
parameters of the layer. For example, Layer 22 features 2.3M

L1 TCDM

ADC

Weights
crossbar

WT x IFMi =

OFMi

D
A
C

i

S
T
R
E
A
M
-
O
U
T

S
T
R
E
A
M
-
I
N

IMA

i
i
i

i

i
N
N
N

i N

Input
Buffer

i

Output Buffer

IFM0
OFM0

C
O
M
P
U
T
E

Fig. 3. IMA execution model.

parameters, requiring 40 clusters for the mapping, assuming
each 256x256 IMA can store 64K parameters.

2) IMA Execution: As described in Sec. II, the IMA
subsystem communicates directly to the L1 of the cluster,
acting as a master of the TCDM interconnect. Assuming DNN
parameters of a specific layer are being pre-loaded to the non-
volatile array, IMA execution is composed of three distinct
phases, as shown in Fig. 3. Stream-in fetches the IFM of the
layer and moves them to the input buffer of the IMA. Compute
performs the input data conversion by the DACs, the analog
MVM execution on the crossbar, and the ADCs conversion.
Stream-out moves the output digital MVM result from the
output buffers to the L1 memory. Input and output buffers are
duplicated to enable double buffering, completely overlapping
the cost of transfers between the L1 and the buffers with the
computation, maximizing the computational efficiency of the
accelerator.

3) Pipelining: When the inference starts, the IFM of the first
layer is streamed into the first set of clusters which process
it generating the OFM, which is then passed to the second
set of clusters and so on. Assuming the possibility of having
large batches of images allows for the creation of the software
pipeline described in Fig. 2C, where different chunks of data
are processed by a different set of clusters simultaneously, fully
overlapping the data movements (i.e., in charge of the DMA)
with the computation (i.e., in charge of IMA and/or CORES).
Ensuring that all pipeline stages execute in the same amount
of time is essential when creating such a pipeline structure.
Techniques to speed-up pipeline stages, such as parallelization
and data-replication, will be discussed in Sec. V.

4) Data Tiling: To fit IFM/OFM of large DNN models
within the limited memory resources of the clusters (1 MB of
L1 memory is assumed in this work), we split IFM/OFM into
smaller chunks of data called tiles, processed by the clusters
as soon as the input data is transferred to the L1 memory.
In particular, data tiling is always performed along the Win

and Wout dimensions for input and output, respectively. In this
work, we assume a static tiling strategy, and Win/out implicitly
defines the batching dimension. Therefore, the batches are
composed of vertical slices of IFM/OFM. The other dimensions
(Cin and Hin) are, when necessary, tiled in other clusters to
fit the memory requirements (parameters mapping) or to speed
up the computation (parallelization).

5) Self-Timed Execution: To implement the pipeline be-
tween the tiled structure described in IV-4, we exploit a data-

!

!

H_in_tile*C_in

H_out_tile*C_out

M

...

1

0

N

...

1

W_in

C_in

H
_
i
n

W_out

C_out

H
_
o
u
t

C_in
C
_
o
u
t

K_x

K
_
y

0

H_in_tile

C_in_tile

H_out_tile

H_in_tile*C_in_tile

H_out_tile*C_out

+ +

+
0 i j M

0
pipeline
stages

(reduction
tree)

0 0 00 i j N

I
M
A
s

/

C
O
R
E
S

CORES

IMAs

data-replication /
parallelization

Reduction

A)

B) C)

Fig. 4. A) Generic layer IFM, parameters and OFM. B) Data-replication and
parallelization. C) Reduction operation.

flow self-timed execution model. Computation in a cluster
can be performed by the CORES, IMA, or both in parallel.
While software execution on the CORES is synchronous, IMA
execution is managed asynchronously (like DMA transfers).
A cluster can perform a certain computation whenever three
conditions are satisfied: a) Chunk N+1 from the producers can
be loaded to the L1 memory, b) the consumers are ready to
accept the output data of chunk N-1, c) both IMA and CORES
are free to compute chunk N. If all the conditions are satisfied,
the new iteration can start with the following execution flow:
1) the CORE0 (i.e., master core) first waits for the events
from the input and output DMA channels and IMA, 2) the
CORE0 configures and triggers I/O DMA channels and IMA
for computation of next tile 3) digital processing is performed
in parallel on the CORES. 4) All the CORES go to sleep,
waiting for the events described in point 1).

V. EVALUATION: RESNET-18

In this section, we present the mapping of the ResNet-18
on the proposed many-core architecture, providing insights on
the adaptations required to the baseline mapping and execution
model presented in Sec. IV to map all the layers and balance
the pipeline optimally. The key operation of a ResNet-18
is a sequence of two 3x3 2D convolutions followed by a
tensor addition (i.e., residual layer) between the OFM of the
previous layer and the OFM of the previous residual layer.
The first two layers are a 7x7 2D convolution followed by a
MaxPool activation layer that starts propagating the residuals.
The topology is shown in Fig. 2A.

1) Multi-cluster layers: When mapping a real-life network
to the many-core architecture, the ideal condition would consist
of perfectly matching the parameters of every layer with the
size of the IMA. Unfortunately, this is not the case in the most
general case. Two types of situations might arise, depending
on the dimension of the IFM/OFM. When the size of the

input channels multiplied by the kernel size (Cin ×Kx ×Ky)
is greater than the number of rows of the IMA (i.e., 256),
multiple IMAs are needed to compute the partial outputs. Then,
a reduction among these partial outputs has to be performed
to compute the OFM. On the other hand, while the size of
the output channels is larger than the number of columns of
the IMA (i.e., 256), the inputs need to be broadcasted to all
the IMA involved (storing a different set of output channels
parameters), and multiple IMAs compute part of the output
channels at the same time. In some layers of ResNet-18, the
two situations arise concurrently. This mapping approach has
to be applied to all the layers computed in the analog domain,
excluding Layer 0.

2) Data-replication and Parallelization: In a pipelined
computational model, the throughput of the whole pipeline
is limited by the latency of the slowest stage. Hence, the
pipeline has to be balanced as much as possible to achieve
high throughput. Unbalancing might depend on many causes,
and we will explain some of them in Sec. VI. A technique
to speed up the execution of layers (i.e., one stage of the
pipeline) executed in the analog domain (i.e., on the IMA)
is data-replication. Data-replication increases the parallelism,
replicating the parameters of a layer on different IMAs and
computing at the same time multiple jobs on multiple chunks
of the IFM. With this approach, the speed-up, net of overheads
due to communication and data tiling, is theoretically equal
to the number of replications at the cost of area, as the same
layer parameters are stored on multiple IMAs (Fig. 4B). In this
work, we extensively use this technique, especially for the first
layers of the network. If the bottleneck of the pipeline is a
layer executed in the digital domain (e.g., residual, reductions,
pooling), one option is to parallelize the computation on the
CORES over multiple clusters. A plain parallelization scheme
is used for pooling and residual layers (i.e., Layers 1, 4, 7, 13,
19).

3) Reduction Management: A different approach has to
be adopted for the reduction since this operation requires a
hierarchical tree (Fig. 4C) featuring limited and decreasing
parallelism. In particular, the level of parallelism of this op-
eration is implicit in the structure of the network. In ResNet-
18, we might have to sum up the partial products of up to
20 clusters (i.e., Layers 20-21, 23-24) according to the multi-
cluster mapping strategy described in Sec. V-1. In this context,
the computation of the residuals might form a bottleneck for
the pipeline since this operation has to be performed by the
CORES in the digital domain. To accelerate these layers we
split the hierarchical tree into several pipeline stages and assign
each pipeline stage to a logarithmically decreasing number of
clusters with well-balanced latency. This approach has been
exploited in all reduction layers.

4) Residuals Management: In an ideal pipelined data flow,
data are exchanged only among consecutive pipeline stages.
On the other hand, in many modern DNNs such as ResNet-
18, this is not the case due to the presence of residual layers.
Unfortunately, with limited resources in terms of memory
storage (1 MB per cluster), and considering the residual’s

!

!

A)

16 2 56 28 53 167

B)
C)

D)

B
C

D

Fig. 5. ResNet-18 inference results. A) Throughput with different mapping
optimizations. B) Execution time on every cluster in naive implementation.
C) Execution time on every cluster in data-replication and parallelization
implementation. D) Execution time on every cluster in final implementation.

Fig. 6. Performance degradation considering non-idealities due to static
mapping, network topology, and communication.

data lifetime between when it is produced and when it is
consumed, external temporary storage has to be used to store
this temporary data. In particular, in our pipeline, ResNet-18
requires 1.6 MB to simultaneously store all the residuals of
the whole network, where the minimum dimension can be
calculated as Cout ∗ Hout. While a first intuitive approach to
tackle this issue is to exploit the off-chip HBM memory due to
its large capacity, exploiting such memory as temporary storage
for residual blocks significantly increases the traffic towards
this high-latency memory controller, forming a bottleneck for
the whole pipeline reducing its overall performance. Instead,
a better solution is to exploit the L1 memory of clusters
not used for computations for residual storage, improving the
performance compared to the baseline approach by 1.9×.

VI. RESULTS AND DISCUSSION

In this section, we analyze the results of ResNet-18 execution
mapped on the proposed many-core heterogeneous architecture.

Fig. 7. Area efficiency per group of clusters as defined in Fig. 2 without
communication inefficiencies.

To extract reliable physical implementation information from
the architecture, we performed the physical implementation
(down to ready for silicon layout) of the cluster in 22nm
FDX technology from Global Foundries. We used Synopsys
Design Compiler for physical synthesis, Cadence Innovus for
Place&Route, Siemens Questasim for extracting the value
change dump for activity annotation, and Synopsys PrimeTime
for power analysis. Area, frequency, and power figures are
then scaled to a 5nm tech node more suitable for modern
HPC architectures. Fig. 5D shows the execution time of a
batch of 16 256×256 images on the architecture. For each
cluster, it shows the amount of time spent on computation,
communication, synchronization, and sleeping. Since analog
and digital computations are performed in parallel, execution
bars are indicated in green when analog bound and in red when
digital bound. We can note an expected increasing trend of
latency with the cluster ID caused by the head and tail of the
pipeline execution (i.e., idle times waiting for the first and the
last batches are propagated through the pipeline).

Fig. 5A shows the performance gain achieved thanks to the
techniques described in Sec. IV. Fig. 5B shows the latency
breakdown of the clusters in a naive implementation, where
all the network parameters are mapped into the architecture
exploiting the multi-cluster technique described (Sec. V-1) but
with no further optimizations. It is possible to note the large
unbalance between the first layers and the deeper layers in
the network. Fig. 5C shows the latency breakdown after data-
replication and parallelization, better balancing the pipeline
and improving performance by 1.6× at the cost of utilising 61
more clusters. Reducing compute latency moves the bottleneck
of the execution on communication due to large contentions
on the HBM, mainly caused by residual management. Fig. 5d
shows the optimized mapping of residual described in Sec. V-4
further improving performance by 1.9× at the cost of 2 more
clusters (to exploit 2 MB of available on-chip memory).

To provide insights into the sources of inefficiency high-
lighted in Fig. 5D, we analyze the mapping and latency
breakdown of the Resnet-18 inference. The first source of
inefficiency (global mapping) is caused by the fact that not
all the clusters are used for mapping network parameters. In
our mapping, 322 clusters out of 512 have been exploited.
This is an intrinsic characteristic of all systolic architectures
exploiting pipelining as a computational model, worsened by
the constraints in terms of mapping imposed by IMA. However,

!

!

this has only an effect on the area efficiency since, in such
regular architecture, each cluster can be easily clock and power
gated, minimizing the impact on energy efficiency. The second
source of inefficiency (local mapping) is caused by the fact that
even if a specific cluster is being used, the mapping on it might
under-utilize the analog and digital resources. In some cases,
parameters cannot fill the whole IMA; in other cases, the array
is not used at all. The same happens for digital computing,
e.g., in the case of purely digital layers. A possible solution to
mitigate this degradation could be to integrate heterogeneous
clusters configured to fit better all the possibilities, such as IMA
and a single CORE (i.e., analog clusters) or 16 CORES without
IMA (i.e., digital clusters).

The third source of inefficiency is caused by the pipeline
unbalance. Different layers feature different computational ef-
ficiency, as described in Fig. 7, where the layer groups are
defined depending on the IFM dimension. Some layer groups
feature significant area efficiency, thanks to large IFM/OFM
implying high data reuse (i.e., several iterations over the same
parameters statically mapped on the IMA). In particular, Layer
12 (i.e., group 3) is executed on 10 clusters, with data-
replication factor of 2, leading to a peak of efficiency of
600 GOPS/mm2. Conversely, deeper layers in the network,
because of the stride, feature analog layers with very poor pa-
rameters reuse interleaved with stages of reductions executed by
the CORES. In particular, Layer 20, 21, 23, and 24 (i.e., group
5) are executed on 40 clusters each. This causes extremely low
latency for the execution of the analog layers (less than 0.2 ms),
which translates into lower area efficiency (50 GOPS/mm2)
compared to the first layers. A possible approach to tackle
this inefficiency might lead to further exploiting heterogeneity
by coupling IMA and CORES with a set of more compact
specialized digital accelerators more suitable for low-data reuse
layers, improving the silicon efficiency. Another approach could
be to use larger IMA arrays [17]. However, this would require
more data transfers per cluster.

Despite the analyzed sources of inefficiency, the proposed
architecture delivers 20.2 TOPS (i.e., 3303 images/s) and
42 GOPS/mm2 on the end-to-end inference of Resnet-18. Per-
forming the inference in 9.2 ms and 15 mJ, which corresponds
to an energy efficiency of 6.5 TOPS/W, paves the way for
a new generation of general-purpose many-core architectures
exploiting a mix of analog and digital computing.

VII. CONCLUSION

In this work, we have proposed a general-purpose het-
erogeneous multi-core architecture based on a PULP cluster
augmented with nvAIMC accelerators to efficiently execute
real end-to-end networks, exploiting the throughput of such a
paradigm. We have proposed a mapping based on the com-
bination of pipelining execution flow and many techniques
to increase the parallelism and split the workload among the
nvAIMC cores. We have shown the results of the inference of
a batch of 16 256×256 images on a ResNet-18, obtaining up
to 20.2 TOPS and 6.5 TOPS/W for a 480 mm2 architecture.
We have finally provided an exhaustive performance analysis,
considering a real case of traffic and highlighting the criticisms

when nvAIMC is used in real applications, providing several
insights on how to mitigate this effect, to drive the design
and the usage of nvAIMC architecture as a general-purpose
platform for DNN acceleration.

ACKNOWLEDGEMENT

This work was supported by the WiPLASH project (g.a.
863337), founded by the European Union’s Horizon 2020
research and innovation program.

REFERENCES

[1] A. Sebastian et al., “Memory devices and applications for in-memory
computing,” Nature nanotechnology, vol. 15, no. 7, pp. 529–544, 2020.

[2] J.-s. Seo et al., “Digital Versus Analog Artificial Intelligence Accelerators:
Advances, trends, and emerging designs,” IEEE Solid-State Circuits
Magazine, vol. 14, no. 3, pp. 65–79, 2022.

[3] J.-M. Hung et al., “Challenges and Trends of Nonvolatile In-Memory-
Computation Circuits for AI Edge Devices,” IEEE Open Journal of the
Solid-State Circuits Society, vol. 1, pp. 171–183, 2021.

[4] S. Yu et al., “Compute-in-Memory Chips for Deep Learning: Recent
Trends and Prospects,” IEEE Circuits and Systems Magazine, vol. 21,
no. 3, pp. 31–56, 2021.

[5] H. Jia et al., “15.1 A Programmable Neural-Network Inference Ac-
celerator Based on Scalable In-Memory Computing,” in 2021 IEEE
International Solid- State Circuits Conference (ISSCC), vol. 64, pp. 236–
238, 2021.

[6] I. A. Papistas et al., “A 22 nm, 1540 TOP/s/W, 12.1 TOP/s/mm2 in-
Memory Analog Matrix-Vector-Multiplier for DNN Acceleration,” 2021
IEEE Custom Integrated Circuits Conference (CICC), pp. 1–2, 2021.

[7] R. Khaddam-Aljameh et al., “HERMES-Core—A 1.59-TOPS/mm2 PCM
on 14-nm CMOS In-Memory Compute Core Using 300-ps/LSB Lin-
earized CCO-Based ADCs,” IEEE Journal of Solid-State Circuits, vol. 57,
no. 4, pp. 1027–1038, 2022.

[8] H. Jia et al., “A Programmable Heterogeneous Microprocessor Based
on Bit-Scalable In-Memory Computing,” IEEE Journal of Solid-State
Circuits, vol. 55, no. 9, pp. 2609–2621, 2020.

[9] A. Garofalo et al., “A Heterogeneous In-Memory Computing Cluster for
Flexible End-to-End Inference of Real-World Deep Neural Networks,”
IEEE Journal on Emerging and Selected Topics in Circuits and Systems,
vol. 12, no. 2, pp. 422–435, 2022.

[10] C. Zhou et al., “AnalogNets: ML-HW co-design of noise-robust TinyML
models and always-on analog compute-in-memory accelerator,” arXiv
preprint arXiv:2111.06503, 2021.

[11] M. Dazzi et al., “Efficient Pipelined Execution of CNNs Based on
In-Memory Computing and Graph Homomorphism Verification,” IEEE
Transactions on Computers, vol. 70, no. 6, pp. 922–935, 2021.

[12] A. Shafiee et al., “ISAAC: A Convolutional Neural Network Acceler-
ator with In-Situ Analog Arithmetic in Crossbars,” in 2016 ACM/IEEE
43rd Annual International Symposium on Computer Architecture (ISCA),
pp. 14–26, 2016.

[13] A. Ankit et al., “PUMA: A Programmable Ultra-Efficient Memristor-
Based Accelerator for Machine Learning Inference,” in Proceedings of
the Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’19, (New
York, NY, USA), p. 715–731, Association for Computing Machinery,
2019.

[14] N. Bruschi et al., “GVSoC: A Highly Configurable, Fast and Accurate
Full-Platform Simulator for RISC-V based IoT Processors,” in 2021 IEEE
39th International Conference on Computer Design (ICCD), pp. 409–416,
2021.

[15] M. Gautschi et al., “Near-Threshold RISC-V Core With DSP Extensions
for Scalable IoT Endpoint Devices,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 25, no. 10, pp. 2700–2713, 2017.

[16] A. Kurth et al., “An Open-Source Platform for High-Performance Non-
Coherent On-Chip Communication,” IEEE Transactions on Computers,
pp. 1–1, 2021.

[17] P. Narayanan et al., “Fully On-Chip MAC at 14 nm Enabled by Accurate
Row-Wise Programming of PCM-Based Weights and Parallel Vector-
Transport in Duration-Format,” IEEE Transactions on Electron Devices,
vol. 68, no. 12, pp. 6629–6636, 2021.

!

!

	Select a link below
	Return to Previous View
	Return to Main Menu

