
Adversarial Attack on Hyperdimensional

Computing-based NLP Applications

Sizhe Zhang∗, Zhao Wang‡, Xun Jiao∗

∗Villanova University, ‡University of Chicago

Abstract—The security and robustness of machine learning
algorithms have become increasingly important as they are used
in critical applications such as natural language processing (NLP),
e.g., text-based spam detection. Recently, the emerging brain-
inspired hyperdimensional computing (HDC), compared to deep
learning methods, has shown advantages such as compact model
size, energy efficiency, and capability of few-shot learning in
various NLP applications. While HDC has been demonstrated
to be vulnerable to adversarial attacks in image and audio input,
there is currently very limited study on its adversarial security to
NLP tasks, which is arguable one of the most suitable applications
for HDC. In this paper, we present a novel study on the adversarial
attack of HDC-based NLP applications. By leveraging the unique
properties in HDC, the similarity-based inference, we propose
similarity-guided approaches to automatically generate adversar-
ial text samples for HDC. Our approach is able to achieve up to
89% attack success rate. More importantly, by comparing with
unguided brute-force approach, similarity-guided attack achieves
a speedup of 2.4X in generating adversarial samples. Our work
opens up new directions and challenges for future adversarially-
robust HDC model design and optimization.

I. INTRODUCTION

Natural language processing (NLP) aims to process and

analyze large amounts of natural language data, e.g., text,

to understand and extract contextual insights and nuances

in the document. Modern NLP is largely developed using

the emerging machine learning (ML) methods such as deep

neural networks, which has shown superior performance in

variety of fields within NLP such as spam detection [5],

sentiment analysis [12], and question answering [9]. Popular

universal language models include Word2Vec [17], ELMo [21],

Glove [20] and BERT [6], which have been developed to extract

word semantics into vectors and combined/included the neural

network model like LSTM [11] and Transformer [24].

However, recent studies have shown that ML-based NLP

applications are vulnerable to adversarial attacks [2], [8], which

can become a notable security threat to the security-critical

applications such as spam detection. In adversarial attack,

the imperceptible perturbations on the input can lead to the

wrongfully-predicted results. The adversarial attack problem

first raises awareness in the image classification field [7], and

then was observed in NLP domain as well. For example, a

single character change may result in a change in the meaning

of the word [8], as well as changes to the word itself may result

in a change in its grammatical meaning [2].

Recently, an emerging brain-inspired method called hyperdi-

mensional computing (HDC) has shown promising accuracy

and efficiency in various NLP tasks [15], [22], [23]. This

“non-von Neumann” computing scheme aims to imitate human

brain functions to process information in high-dimensional

space. Compared with DNNs, HDC shows advantages such as

compact model size, energy efficiency, and capability of few-

shot learning. Nevertheless, HDC also faces security challenges

like DNNs, e.g., adversarial samples can fool HDC to make

wrong predictions [16]. To the best of our knowledge, there

is currently no study to automate the generation of adversarial

attacks for HDC-based NLP applications. Thus, the paper aims

to provide a novel effort in this direction and raise awareness

of the community to jointly design adversarially-robust HDC-

based NLP applications.

Our contributions are summarized as follows:

• We present a novel effort in automatically generating

adversarial samples for HDC-based NLP applications.

Specifically, we develop a similarity-guided approach to

automatically replace words with their synonyms, which

preserves the original semantic meaning of the text but

leads to incorrect classifications.

• To develop the similarity-guided approach, we propose

two guide scores, cosine similarity and integrated simi-

larity which synthesizes four different similarity metrics

in HDC models.

• We perform adversarial attacks on spam detection bench-

marks and compare their advantages and disadvantages

based on a variety of datasets. Our experimental result

shows that, our guided approach is able to achieve up

to 89.49% attack success rate. Besides that, our guided

approach is able to generate adversarial samples 2.4X

faster than the unguided approach. By using the integrated

similarity as the guide score, we are able to further

generate 30.4% more adversarial samples and 39.4% faster

speed than the cosine similarity approach.

II. RELATED WORK

The generation of adversarial samples for NLP applications

has received considerable attention in recent years. Unlike

the adversarial image sample, small perturbations, such as a

rewording, may significantly alter the semantic meaning of the

original sentence. Due to this, attacking the model for NLP

tasks is more challenging. Researchers have explored different

levels of perturbation in order to generate NLP adversarial

samples. As an example, altering characters from plain text

can generate adversarial samples [8]. A small spelling mistake,

character replacement, or other minor changes in a word are

considered typos and will not affect the original semantic mean-

ing. On the word level, as a result of the fact that substituting

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA 

	



synonyms for words is unnoticeable and less risky in this

domain, word-level perturbation is more common [2], [14].

Rephrasing the whole sentence is also feasible but challenging

to implement [13].

While HDC is an emerging learning method, many re-

searchers have begun to study its vulnerability and security.

In the image classification domain, a genetic algorithm was

used to generate adversarial samples for handwritten digits

with a 78% attack success rate [25]. In voice recognition, with

a differential evolution algorithm, researchers can achieve an

85.7% success rate when they launch non-target attacks against

HDC [4]. Recently, a framework called HDTest uses differential

fuzz testing methods to systematically examine the robustness

of HDC model thoroughly [16].

Due to the computational differences between DNNs and

HDCs, existing adversarial attack techniques of DNNs cannot

be applied directly to HDC models due to the indifferentiable

architecture of HDC [16]. Furthermore, to the best of our

knowledge, there is currently no study on automatically gener-

ating adversarial attacks for HDC-based NLP tasks. This paper

presents a novel study in this domain.

III. BACKGROUND

In this section, we present the background of applying HDC

methods to NLP tasks. First, we introduce the fundamental

elements and operations of HDC. Then, we describe several

stages of applying HDC in NLP tasks, including encoding, one-

pass training, inference, and retraining.

A. HDC basic element and operations

The hypervector(HV) is the most fundamental component of

HDC models. Training and inference rely on high dimensional

vectors as the basic dataflow element. In the HDC model,

HVs need to be in a fixed dimension. Additionally, the HDC

model is dominated by HV’s element-wised operations. Com-

mon operations in the HDC model are element-wise addition,

multiplication, and HV permutation. The detail is shown in

Eq. 1.

H⃗x + H⃗y = ⟨hx1
+ hy1

, hx2
+ hy2

, . . . , hxn
+ hyn

⟩

H⃗x ∗ H⃗y = ⟨hx1
∗ hy1

, hx2
∗ hy2

, . . . , hxn
∗ hyn

⟩

ρ1(H⃗) = ⟨hn, h1, h2, . . . , hn−1⟩

(1)

B. Encoding

Among the components of HDC, encoding is the most

essential process. It is necessary to encode both training and

testing samples into HVs before they can be used. Different

encodings have been investigated for various tasks. In HDC

models for NLP, N-gram encoding is one of the more popular

encoding methods [15], [22], [23]. At the start of the encoding,

we first randomly generated 37 orthogonal bipolar-1,1 HVs that

would serve as the base HVs(item memory) for all characters.

These 37 HVs represent a total of 26 alphabetic characters, 10

numbers, and all other signs(including space). Each character

will be assigned to their base HVs. The next step of encoding

is to calculate each block of N consecutive letters.

A B C D E𝑯𝑽𝑨 𝑯𝑽𝑩 𝑯𝑽𝑪+𝝆𝟏 + 𝑯𝑽𝒔𝒂𝒎𝒑𝒍𝒆=𝝆𝟐 𝑯𝑽𝒃𝒍𝒐𝒄𝒌𝟏
+

=Tri-gram

Encoding

𝑯𝑽𝑩 𝑯𝑽𝑪 𝑯𝑽𝑫+𝝆𝟏 + =𝝆𝟐 𝑯𝑽𝒃𝒍𝒐𝒄𝒌𝟐
+𝑯𝑽𝑪 𝑯𝑽𝑫 𝑯𝑽𝑬+𝝆𝟏 + =𝝆𝟐 𝑯𝑽𝒃𝒍𝒐𝒄𝒌𝟑

Fig. 1. HDC N-gram Encoding

As an example, consider the case where we compute a tri-

gram encoding for the sentence with the character “ABCDE”.

At the beginning, “ABC”,“BCD”, and “CDE”’s block HV

needs to be computed. To calculate the block HV of “ABC”,

we first select each character’s base HV. Next, we perform

HV permutation on these base HVs based on their positions

in the block. Last, we add them together to generate the

HV for the first block. This process can be summarized as
⃗Hblock = ρ2(H⃗A) ∗ ρ

1(H⃗B) ∗ H⃗C . By redoing this process for

each three characters nearby, we are able to get their block

HVs. Last, we add them together to produce the sample HV.

The sample HV is the encoded HV for the whole sentence

which will be used for training and inference. A summary of

this process can be found in Fig. 1.

C. One-pass Training

In the following steps, we encode all training samples into

HDC, followed by HDC one-pass training. Every class will be

allocated an empty class HV and stored in associative memory.

A subsequent step is to perform element-wise additions of

the sample HVs of training samples and add them up to the

corresponding class HVs. After one-pass training, HDC model

is able to get an acceptable level of accuracy.

D. Inference

HDC inference is based on calculating the similarity between

class HVs and sample. As a first step, we encode testing

sentences into sample HVs using the same encoding mechanism

and parameters as before. The next step is to calculate the

cosine similarity between each sample HV H⃗s and all the class

HVs H⃗ci . The highest score r indicates the most similarity

between the sample HV and the class HV, and the class HV’s

corresponding label represents the classification results.

E. Retraining

After a single pass of training, optional retraining can be

performed several times to fine-tune the HDC model if needed.

The training sample HVs will be used to perform inference

first; if the prediction is wrong, these sample HVs H⃗Hs
will

be subtracted from the incorrectly predicted class HV H⃗cw and

added to the right class HV H⃗cr . By using this method, the

HDC model’s accuracy can be increased from about 70% to

around 90% with fewer than ten epochs.

!

!



In
fe

re
n

ce

Training 

HV

Training 

Data

Encoding Training

Testing 

HV

Testing 

Data

Encoding

Similarity

Check

…

Retraining

Adversarial

HV

Guide 

Score

Encoding

Perturbation

Adversarial 

Examples

Original

Examples

Yes

T
ra

in
in

g

HDC Generate Adversarial Examples

Similarity 

Check

Cosine 

Similarity Attack 

Success?

No

Adversarial 

Examples

Class 

HV

Class 

HV

Fig. 2. The overflow of proposed approaches

IV. ADVERSARIAL DATA GENERATION

A. Threat Model

To begin with, we will assume that the HDC model is a

gray box for attackers. An attacker is not aware of the training

dataset, the HDC encoding method, the associative memory

value, or any other parameter. An attacker only can access,

on the output side, the cosine similarity between the encoded

samples (sample HVs) and HDC’s class HVs. This setting is

widely used in both NLP adversarial samples generation [2]

and HDC adversarial attacks [25]. The attacker’s goal is to fool

HDC in order to make the model falsely classify the samples.

B. Perturbation

The purpose of this paper is to explore word-level replace-

ment as a perturbation, which is the most popular approach

to attack NLP neural networks. We aim to replace words in

plain sentences with their synonyms. Rather than replacing

every word, we first filter all stop words from the NLTK

(Natural Language Toolkit [3]) stop words list (e.g., “is”, “the”

and “or”). In most cases, stop words do not contribute to the

semantics of a sentence, however, changing them may result

in a break in the original sentence’s grammar and a reduction

in the readability of the sentence. After removing stop words,

we explore the Glove word embedding space [20] to find the

nearest neighbors of the remaining non-stop words. Beyond

that, we apply the counter-fitting method [18] to post-process

the Glove embedding space in order to ensure that the nearest

neighbors are synonyms. Once we get the Glove embedding

space model post-processed, we select the top N (N = 10)

closest words to the original word in the embedding space as

their synonyms. It is possible that the Glove embedded space

dictionary does not cover all of the words we used in our

task which means some words cannot find their synonyms.

This set of methods of finding synonyms has been extensively

studied in the context of generating natural language adversarial

samples on neural networks [2]. In contrast to image and

signal perturbations, natural language perturbations are difficult

to evaluate and nearly impossible to achieve perfection, so we

employ mature approaches as our perturbation scheme.

C. Adversarial Generation Algorithm

To automatically generate adversarial samples, we propose

two strategies, unguided generation and guided generation. The

former strategy is based on a brute-force search without any

guidance. The latter approach is a greedy approach guided by

the similarity scores we propose. Because our task is a binary

classification, we call the plain text prediction result as the

original label. If the attack is successful, the flipped label which

we call it adversarial label. The whole HDC model and attack

overflow is shown in Fig. 2. The details are as follows.

Brute-force Algorithm We first develop a brute-force search

method to generate adversarial samples. In order to generate as

many adversarial samples as possible, it will attempt to search

for every possible word replacement combination for the plain

sentence. Specifically, we first generate and test all possible

adversarial samples which is generated by only one word

substituted on the plain sentence. If any of these adversarial

samples can not “fool” the model, we will try every possible

two-word substitution. In addition, if too many words are able

to be replaced, the number of possible combinations may be

enormous. We, therefore, set a time limit for generating each

adversarial sample. If it finds an adversarial sample that can

fool the model or reaches the process time limit, it will stop

and try to generate an adversarial sample based on the next

plain sentence. Besides that, if the number of word changes

meet our max limit(n), it will give up this try and attempt the

next one. This process is explained in Algorithm 1.

Algorithm 1 Brute-force

for y = 1, ..., S in xorig do

if y is not in stop words list then

A[y]← find synonym(y,N)
for i = 1, 2...n do

for C in combination(i,xorig) do

for CC in Cartesian product(i,xadv) do

xadv = perturb(xorig, A[C][CC])
Labelxadv

= test(xadv)
if Labelxadv

! = Labelxorig
then

return xadv {Attack success}
i = i+ 1

Greedy Algorithm An alternative method for generating

adversarial samples is to utilize the output of the model as

guidance, which are cosine similarities between sample HV

and class HVs in HDC model. We develop a greedy algorithm

using cosine similarity and integrated similarity as the guid-

!

!



ance scores(G). In general, a higher score indicates that the

adversarial samples are closer to our adversarial label class HV

hence is more promising to lead to a successful attack. First, the

algorithm generates all possible adversarial samples with only

one-word replacements. After that, we determine whether any

of these adversarial samples attack successful or not. If not, as a

result, we will select the sample with the highest score Gmax as

the new sample and repeat this procedure until attack success.

However, we only replace each word in the original sentence

once. Similar to the brute-force approach, we set limits for the

number of words(n) to be replaced, and the maximum time it

takes to generate each adversarial sample. The details of the

algorithms are provided in the Algorithm 2.

Algorithm 2 Greedy Algorithm
xadv = xorig

for y = 1, ..., S in xadv do

while i¡=n do

if y is not in stop words list and not replaced then

A[y]← find synonym(y,N)
xadv = perturb(xorig, A[y])
Labelxadv, G = test(xadv)
if Labelxadv

! = Labelxorig
then

return xadv {Attack success}
Gmax ← max(G)
if Gmax > 0 then

ymax = A[argmax(G)]
xadv = Perturb(xadv, A[ymax])
i = i+ 1

D. Guidance Scores

To make the algorithm perform better, the algorithm needs

guidance from the HDC model to better replace words to attack.

As mentioned in Section IV-A, we assume the HDC model as

a grey box in this paper. The attacker will have access to the

cosine similarity between the encoded sample (sample HVs)

and the class HVs. Based on these, we propose two guidance

scores to guide our greedy algorithm.

Cosine Similarity Current HDC adversarial attacks [4], [16],

[25] generally use cosine similarity to guide their decision

making. An increase in similarity indicates that the samples are

more likely to be classified as belonging to the same class as

the adversarial samples. The difference between the adversarial

sample and the original sample similarity to the adversarial

class HV on the adversarial sample is calculated, if it is

negative, the adversarial sample is less similar to the adversarial

class, which is undesirable. When it is positive, it indicates

a more likely chance of attacking success for the adversarial

sample. Due to HDC inference results being obtained from

comparing the most similar vectors. It is a very useful and

straightforward score.

Integrated Similarity In order to guide the adversarial attack

more effectively and comprehensively, we develop an integrated

similarity as a guidance score. This score is based on four

similarities rather than two. There are four cosine similarities

between adversarial sample encoded sample HV and the ad-

versarial class HVs: Car (cosine similarity between adversarial

sample encoded sample HV and the adversarial label class HV),

Cor (cosine similarity between original sample encoded sample

HV and the adversarial label class HV), Cow (cosine similarity

between original sample encoded sample HV and the original

class HV), and Caw (cosine similarity between adversarial

sample encoded sample HV and the original class HV). In order

to maximize the similarity between the encoded sample HV and

the adversarial class HV, as well as the minimum similarity

between the sample HV and the original label class HV, we

mixed these four similarities differences. The details of the

calculation are explained in the Eq. 2.

S = (Car − Cor) + (Cow − Caw)
(2)

V. EXPERIMENTAL RESULTS

A. Experiment Setup

We pre-train three HDC models for three text spam detection

datasets, SMS text [10], YouTube comments [1] and Hotel

reviews [19], using 70% of training data in each dataset. Then

for each model, we use the remaining 30% data as the base

(validation) data to generate adversarial samples. According

to the section above, we use the n-gram encoding to train

our HDC models [22], [23]. A counterfitting method [18] was

used to post-process the vectors using the GloVe embedding

space [20]. In order to minimize the disruption of original

sentences, we limited the number of word replacements (n)

to 30% of each sample across all our approaches. We test

our three unguided and guided approaches including: brute-

force search, greedy with cosine similarity, and greedy with

integrated similarity. We test the number of adversarial samples

that are generated against the generation time. As part of our

experiment, we also conducted experiments with various time

limits (5s,10s,30s) for generating each adversarial sample in

order to better understand the benefits of each method. Table II

shows our attack success rate across different datasets and

approaches. Figure 3 illustrates the results.

B. Comparisons Between Different Approaches

Attack Success Rate The attack success rate with different

approaches across different datasets is shown in Table II. Our

first finding is that no matter what approach we use, the

attack success rate is relatively low (3%-18%) for the SMS

and Youtube datasets. However, we are able to achieve an

attack success rate of 89% for the Hotel Review dataset. This

is reasonable because it is more challenging to attack the

dataset with shorter-length sentences due to the limited word

substitutions we can make. As an example, SMS and YouTube

samples contain 18 and 20 words on average, respectively.

However, the average number of words in the hotel reviews

dataset is 170. By having more words in each sample, it is easier

to have more options for word substitutions, which will lead to

a higher attack success rate. The same phenomenon has been

observed in DNN-based NLP applications [2]. It is also possible

!

!



TABLE I
EXAMPLES OF ADVERSARIAL SAMPLES FOR DIFFERENT DATASETS. MODIFIED WORDS ARE IN RED AND ORIGINAL WORDS ARE IN GREEN.

SMS Texts

Original Text Prediction = Ham. (Cosine Similarity: 0.1225)

I liked the new mobile

Adversarial Text Prediction = Spam. (Cosine Similarity: 0.2499)

I enjoyed the new mobile

YouTube Comments

Original Text Prediction = Spam. (Cosine Similarity:0.2623)

Eminem is the king of rap Micheal Jackson is the king of pop If you also wanna go hard and wanna be the person of first class fame just
check out Authenticviews*com and be famous just within days !! yO

Adversarial Text Prediction = Ham. (Cosine Similarity:0.2644)

Eminem is the king of rapper Micheal Jackson is the king of pop If you also wanna go hard and wanna be the person of first class fame
just check out Authenticviews*com and be famous just within days !! yO

Hotel Review

Original Text Prediction = Truthful. (Cosine Similarity:0.6231)

The Sheraton Chicago Hotel and Towers is a nice place to stay if you need a place to stay on quick notice, but it certainly does not ’exceed
expectations’ as touted on their website. Their Starpoints system is somewhat complicated and not helpful for the frequent traveler. ’Chic
but not fussy’ is an overstatement. The room was clean, although the bed covering was wrinkled and the bathroom counter had water lying
on it that appeared as though it hadn’t been cleaned since the last guest. There was hand lotion and shampoo samples, but no soap sample.
The bathroom was short on two towels and it took two calls to housekeeping to get this fixed. ’Cheap’ might have been a better adjective.
Check out was simple and not much hassle. Overall, the Sheraton Chicago Hotel and Towers is fine in a pinch, but next time, I will research
hotels a little better before making a decision and reserving a room.

Adversarial Text Prediction = Deceptive. (Cosine Similarity:0.6237)

The Sheraton Chicago Hotel and Towers is a lovely place to stay if you needs a place to stay on quick notice, but it certainly does not
’exceed expectations’ as touted on their website. Their Starpoints system is somewhat complicated and not helpful for the frequent traveler.
’Chic but not fussy’ is an overstatement. The room was clean, although the bed covering was wrinkled and the bathroom counter had water
lying on it that appeared as though it hadn’t been cleaned since the last guest. There was hand lotion and shampoo samples, but no soap
sample. The bathroom was short on two towels and it took two calls to housekeeping to get this fixed. ’Cheap’ might have been a better
adjective. Check out was simple and not much hassle. Overall, the Sheraton Chicago Hotel and Towers is fine in a pinch, but next time, I
will research hotels a little better before making a decision and reserving a room.

TABLE II
ATTACK SUCCESS RATE ACROSS ALL APPROACHES AND DATASETS

Brute-force Cosine Similarity Integrated Similarity

SMS 7.27% 3.31% 4.14%
Youtube 18.93% 13.84% 16.38%

Hotel 25.72% 60.51% 89.49%

that the rewording cannot effectively attack HDC in short-

length sentence tasks and that character-level replacements or

sentence rephrases would be more effective.

Attack Speed Additionally, we have observed that our

guided approaches are capable of generating adversarial sam-

ples much more quickly than the unguided approach. It can

be seen from Figure 3 that the slope of the guided approach

is always steeper. As a result, our guide approach is able to

generate adversarial samples 2.4X faster than the brute-force

approach. In theory, the brute-force approach is able to achieve

the highest attack success rate since it will search the entire

space, but practically, it is not realistic, especially for long

sentence samples. In this regard, we believe it is essential to

take into account the speed of the attack.

Different Guidance Score Lastly, the performance of the

approach with integrated similarity is better than the cosine

similarity one, both in terms of success rate and speed. As

shown in the table and figure, our guide approach with in-

tegrated similarity generates 30.4% more adversarial samples

and 39.4% faster than cosine similarity. This proves that our

proposed integrated similarity is able to guide an adversarial

attack on HDC more effectively than cosine similarity with

nearly no additional overhead.

C. Perturbations of Adversarial Sample

As we mentioned in the introduction, reword as perturbation

is clearly perceptible in the NLP task. At the same time, unlike

images or voice, the perturbation in the NLP task is challenging

to evaluate because there is no widely-used objective metric.

Many existing studies require volunteers to perform user studies

as part of the evaluation of the perturbations [2], [14], in

which their settings are varied, and volunteers’ evaluations

are subjective. In order to minimize the side effects of the

perturbation, we utilize widely used perturbation approaches

as we described in the Section IV-B. Even though we cannot

conduct some user studies, we still believe this is a reasonable

approach. Table I illustrates some adversarial samples we

generated across different datasets.

VI. CONCLUSION

Brain-inspired HDC as a novel computing paradigm has

shown promising performance in NLP tasks. This paper

presents a novel study on automatically generating adversarial

attacks for HDC-based NLP applications. We propose similar-

ity score-guided greedy algorithms to automatically generate

adversarial samples for text data. Experimental results on three

spam detection datasets show that our approach can achieve

up to 89% attack success rate and similarity-guided attack

achieves a speedup of 2.4X in generating adversarial samples

than the brute-force approach. Our future work will focus on

leveraging the automatically-generated adversarial samples to

!

!



0 2000
Time[s]

0

20

40

60

80

Ad
ve

rs
ar

ia
l E

xa
m

pl
es

(a) SMS 5s

0 2000 4000
Time[s]

(b) SMS 10s

0 5000
Time[s]

(c) SMS 30s

0 200
Time[s]

0

20

40

60

Ad
ve

rs
ar

ia
l E

xa
m

pl
es

(d) Youtube 5s

0 200 400
Time[s]

(e) Youtube 10s

0 500 1000
Time[s]

(f) Youtube 30s

0 1000
Time[s]

0

50

100

150

Ad
ve

rs
ar

ia
l E

xa
m

pl
es

(g) Hotel 5s

0 1000 2000
Time[s]

(h) Hotel 10s

0 2500 5000
Time[s]

(i) Hotel 30s

Fig. 3. Number of generated adversarial samples versus time across different
approaches, datasets and time limits

enhance the robustness of HDC-based NLP applications to

adversarial attacks.

Acknowledgments. This work was partially supported by NSF

grant #2202310. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the

authors and do not necessarily reflect the views of the National

Science Foundation.

REFERENCES

[1] Túlio C Alberto, Johannes V Lochter, and Tiago A Almeida. Tubespam:
Comment spam filtering on youtube. In 2015 IEEE 14th international

conference on machine learning and applications (ICMLA), pages 138–
143. IEEE, 2015.

[2] Moustafa Alzantot, Yash Sharma, Ahmed Elgohary, Bo-Jhang Ho, Mani
Srivastava, and Kai-Wei Chang. Generating natural language adversarial
examples. In Proceedings of the 2018 Conference on Empirical Methods

in Natural Language Processing, pages 2890–2896, Brussels, Belgium,
October-November 2018. Association for Computational Linguistics.

[3] Steven Bird, Ewan Klein, and Edward Loper. Natural language pro-

cessing with Python: analyzing text with the natural language toolkit. ”
O’Reilly Media, Inc.”, 2009.

[4] Wencheng Chen and Hongyu Li. Adversarial attacks on voice recognition
based on hyper dimensional computing. Journal of Signal Processing

Systems, 93(7):709–718, 2021.

[5] Michael Crawford, Taghi M Khoshgoftaar, Joseph D Prusa, Aaron N
Richter, and Hamzah Al Najada. Survey of review spam detection using
machine learning techniques. Journal of Big Data, 2(1):1–24, 2015.

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805, 2018.

[7] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati,
Chaowei Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song. Robust

physical-world attacks on deep learning visual classification. In Proceed-

ings of the IEEE conference on computer vision and pattern recognition,
pages 1625–1634, 2018.

[8] Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yanjun Qi. Black-box
generation of adversarial text sequences to evade deep learning classifiers.
In 2018 IEEE Security and Privacy Workshops (SPW), pages 50–56.
IEEE, 2018.

[9] Sarik Ghazarian, Ralph Weischedel, Aram Galstyan, and Nanyun Peng.
Predictive engagement: An efficient metric for automatic evaluation of
open-domain dialogue systems. In Proceedings of the AAAI Conference

on Artificial Intelligence, volume 34, pages 7789–7796, 2020.
[10] José Marı́a Gómez Hidalgo, Tiago A Almeida, and Akebo Yamakami. On

the validity of a new sms spam collection. In 2012 11th International

Conference on Machine Learning and Applications, volume 2, pages 240–
245. IEEE, 2012.

[11] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

[12] Tomoki Ito, Kota Tsubouchi, Hiroki Sakaji, Tatsuo Yamashita, and
Kiyoshi Izumi. Word-level contextual sentiment analysis with inter-
pretability. In Proceedings of the AAAI Conference on Artificial Intel-

ligence, volume 34, pages 4231–4238, 2020.
[13] Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke Zettlemoyer. Ad-

versarial example generation with syntactically controlled paraphrase
networks. arXiv preprint arXiv:1804.06059, 2018.

[14] Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter Szolovits. Is bert really
robust? a strong baseline for natural language attack on text classification
and entailment. In Proceedings of the AAAI conference on artificial

intelligence, volume 34, pages 8018–8025, 2020.
[15] Fangxin Liu, Haomin Li, and Li Jiang. L3e-hd: A framework enabling

efficient ensemble in high-dimensional space for language tasks. In
Proceedings of the International ACM Sigir Conference on Research and

Development in Information Retrieval (SIGIR), 2022.
[16] Dongning Ma, Jianmin Guo, Yu Jiang, and Xun Jiao. Hdtest: Differential

fuzz testing of brain-inspired hyperdimensional computing. In 2021 58th

ACM/IEEE Design Automation Conference (DAC), pages 391–396. IEEE,
2021.

[17] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
estimation of word representations in vector space. arXiv preprint

arXiv:1301.3781, 2013.
[18] Nikola Mrkšić, Diarmuid O Séaghdha, Blaise Thomson, Milica Gašić,

Lina Rojas-Barahona, Pei-Hao Su, David Vandyke, Tsung-Hsien Wen,
and Steve Young. Counter-fitting word vectors to linguistic constraints.
arXiv preprint arXiv:1603.00892, 2016.

[19] Myle Ott, Claire Cardie, and Jeffrey T Hancock. Negative deceptive
opinion spam. In Proceedings of the 2013 conference of the north

american chapter of the association for computational linguistics: human

language technologies, pages 497–501, 2013.
[20] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove:

Global vectors for word representation. In Proceedings of the 2014 con-

ference on empirical methods in natural language processing (EMNLP),
pages 1532–1543, 2014.

[21] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christo-
pher Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized word
representations. In Proceedings of the 2018 Conference of the North

American Chapter of the Association for Computational Linguistics:

Human Language Technologies, Volume 1 (Long Papers), pages 2227–
2237, New Orleans, Louisiana, June 2018. Association for Computational
Linguistics.

[22] Abbas Rahimi, Pentti Kanerva, and Jan M Rabaey. A robust and energy-
efficient classifier using brain-inspired hyperdimensional computing. In
Proceedings of the 2016 International Symposium on Low Power Elec-

tronics and Design, pages 64–69, 2016.
[23] Rahul Thapa, Bikal Lamichhane, Dongning Ma, and Xun Jiao. Spamhd:

Memory-efficient text spam detection using brain-inspired hyperdimen-
sional computing. In 2021 IEEE Computer Society Annual Symposium

on VLSI (ISVLSI), pages 84–89. IEEE, 2021.
[24] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion

Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention
is all you need. Advances in neural information processing systems, 30,
2017.

[25] Fangfang Yang and Shaolei Ren. On the vulnerability of hyperdimen-
sional computing-based classifiers to adversarial attacks. In International

Conference on Network and System Security, pages 371–387. Springer,
2020.

!

!


	Select a link below
	Return to Previous View
	Return to Main Menu


