
Automated and Agile Design of Layout Hotspot
Detector via Neural Architecture Search

Zihao Chen1, Fan Yang1∗, Li Shang2, Xuan Zeng1∗
1State Key Lab of ASIC & System, School of Microelectronics, Fudan University, Shanghai, China

2China and Shanghai Key Laboratory of Data Science, School of Computer Science, Fudan University, Shanghai, China

Abstract—This paper presents a neural architecture search
scheme for chip layout hotspot detection. In this work, hotspot
detectors, in the form of neural networks, are modeled as weighted
directed acyclic graphs. A variational autoencoder maps the
discrete graph topological space into a continuous embedding
space. Bayesian Optimization performs neural architecture search
in this embedding space, where an architecture performance pre-
dictor is employed to accelerate the search process. Experimental
studies on ICCAD 2012 and ICCAD 2019 Contest benchmarks
demonstrate that, the proposed scheme significantly improves
the agility of previous neural architecture search schemes, and
generates hotspot detectors with competitive detection accuracy,
false alarm rate, and inference time.

Index Terms—layout hotspot detection, neural architecture
search, Bayesian Optimization, variational autoencoder

I. INTRODUCTION

With the increasing complexity of lithography systems and
process variation, manufacturing defects caused by sensitive
layout patterns, so-called layout hotspots, have become in-
evitable. However, classical lithography simulation is highly
time-consuming [1]. Therefore, layout hotspot detection with
high accuracy and efficiency, is essential but challenging.

Two hotspot detection techniques have been extensively
studied recently: pattern matching [2], [3] and machine learning
(ML) approaches [4], [5]. Pattern matching approaches detect
hotspots via explicit pattern matching given known defect
patterns, fast but inapplicable to unseen patterns. ML ap-
proaches, however, can detect unseen hotspots with adequately
trained classifiers. Recent works on ML approaches, especially
neural network (NN) approaches such as convolutional neural
networks (CNNs) [5] and binarized neural networks [6], have
been very promising due to considerable generalizability [1].

However, neural architecture design to enable predominant
hotspot detection requires extensive design experience and do-
main expertise [7]. Meanwhile, model parameter tuning is also
time-consuming. These drawbacks hinder manually designed
NN-based hotspot detectors from moving toward large-scale
practical use. Therefore, an automated NN design approach,
so-called neural architecture search (NAS), has become an
alternative for hotspot detection tasks.

A NAS scheme automatically designs NNs by searching
neural architecture topology. Recent works on NAS [8], [9]
demonstrate their capability to generate NNs with high perfor-
mance. NAS was introduced into hotspot detection tasks for
the first time in [10], whose long search time, however, limits
the practical use of conventional NAS solutions.

The high time cost of NAS comes from two aspects, i) the
vast architectures search space and ii) the high training cost

*Corresponding authors: {yangfan, xzeng}@fudan.edu.cn.

when evaluating candidate architectures. Variational autoen-
coder (VAE) techniques [11] can be adopted to map the search
space from discrete to continuous and back. Circuitous evalua-
tion strategies using an architecture performance predictor [12]
could accelerate the search process.

This work presents a NAS scheme for the automated design
of NN-based hotspot detectors. Bayesian Optimization (BO)
is applied as the top-level algorithm, for fully exploring the
search space while exploiting potential architectures. Neural
architectures are modeled as weighted directed acyclic graphs
(DAGs) in a constrained search space. A VAE for weighted
DAGs is used to support the execution of BO, namely the
search process, during which a performance predictor com-
posed of multi-layer perceptron (MLP) is iterated to accelerate
the search process for optimal architectures. Search results are
finally decoded into neural architectures to execute hotspot
detection tasks. Experiments conducted on ICCAD 2012 [13]
and ICCAD 2019 [7] Contest benchmarks demonstrate that,
the proposed scheme can generate high-performance hotspot
detectors and significantly improve the design efficiency.

The rest of this paper is organized as follows. Preliminaries
on the hotspot detection and relevant algorithmic basis are
introduced in Section II. The NAS-based detection method
is proposed in Section III. Section IV focuses on implemen-
tation details. Experimental settings, results, and analysis are
presented in Section V. Section VI concludes this paper.

II. PRELIMINARIES

A. Problem Formulation

Open or short circuit failures come from different variations
in the lithographic process. Hotspots refer to layout patterns
sensitive to these process variations. Hotspot detection is a
binary classification task based on layout clip datasets with only
hotspot and non-hotspot labels. The objective is to classify clips
accurately, or more specifically, to identify real hotspots while
avoiding mistaking non-hotspots for hotspots [1].

In hotspot detection tasks, two metrics are adopted, i.e.,
detection accuracy and false alarm rate, quantified by the
confusion matrix in Table I. As shown in (1) and (2), detection
accuracy, or so-called recall, is the rate of hotspots identified
as hotspots. In contrast, the false alarm rate, abbreviated as FA,
is the rate of non-hotspots identified as hotspots.

recall =
#TP

#TP + #FN
, (1)

FA =
#FP

#TN + #FP
. (2)

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

The objective is to maximize recall while minimizing FA,
implemented by maximizing the mixed metric F1 in (3).

F1 = 2 · precision · recall
precision+ recall

, (3)

where precision is defined in (4):

precision =
#TP

#TP + #NP
. (4)

TABLE I
CONFUSION MATRIX OF HOTSPOT DETECTION PROBLEM

Prediction Ground Truth
Non-hotspot Hotspot

Non-hotspot #TN #FN
Hotspot #FP #TP

B. Neural Architecture Search

A NAS scheme aims to find the optimal neural architecture
based on a specific dataset and task. It comprises search space,
performance evaluation strategy, and search algorithm.

1) Search space: Neural architectures modeled as DAGs
lead to the discrete topological search space [9], [14], [15].
Some innovative works [8], [9] try to map the search space into
continuous but fall into the dilemma that embeddings cannot
be translated back into the topological space.

2) Performance evaluation strategy: A conventional per-
formance evaluator outputs the validation accuracy of an ar-
chitecture trained from scratch to convergence [15], which is
exceptionally time-consuming. Subsequently, proxy NN models
with fewer layers and proxy tasks with minor scales are proven
economic [8], [9], [14]. However, these strategies still suffer
from the stubborn problem of repeated training.

3) Search algorithm: Mainstream search algorithms include
Evolutionary Algorithm [14], Gradient Descent (GD) [8], Rein-
forcement Learning [15], and Bayesian Optimization [9]. This
paper uses BO as the top-level search algorithm.

As shown in Fig. 1, in a typical NAS workflow, given initial
architectures in the search space randomly, their metrics are
evaluated and fed back to the algorithm to guide the search for
candidates. The optimal architecture recorded is finally saved.

Search space
Search

algorithm

Evaluation

Strategy

Candidate architecture

Evaluation rewards

Fig. 1. A typical NAS workflow.

C. Bayesian Optimization

Bayesian Optimization is a classical black-box optimization
technique. Without loss of generality, the optimization problem
is denoted in (5) as maximization for y = f(x).

(x∗, y∗) = max
x

f(x). (5)

The BO process is summarized in Algorithm 1. In an
iteration, the Gaussian Process (GP) model is employed to
estimate f(x) from the existing data pool. Based on the prior
distribution originating from this GP model, an acquisition
function Acq(x) is constructed and optimized to generate a
candidate pair, which is finally merged into the data pool.

Algorithm 1 Bayesian Optimization
1: Sample initial data pool D = {(xi, yi)} randomly
2: for t ≤ iterations do
3: Construct the GP model through D
4: Generate candidate xt by optimizing Acq(x)
5: Get yt = f(xt) and update data pool D ← D∪{(xt, yt)}
6: end for
7: return the optimal pair (x∗, y∗) recorded

D. Variational Autoencoder for Graphs

The BO algorithm relies on a well-characterized continu-
ous space. As shown in Fig. 2, variational autoencoders can
construct a mutual map between graph topological space and
continuous embedding space [11]. Without loss of generality,
for a graph g = (V,E), we mark the adjacency matrix as A,
the node feature matrix as F, and the number of nodes as N .

1) Encoder: The embedding z for g, relys on Gaussian
vector zi for each node v ∈ V . The mean and variance of z are
extracted by a pair of graph convolutional networks (GCNs):

µ = GCNµ(F,A), (6)

logσ = GCNσ(F,A). (7)

Subsequently, the joint distribution of z is produced by (8). For
brevity, the symbol g here includes metrics A and F above.

q (z|g) =

N∏
i=1

N
(
zi
∣∣µi,σ2

i · I
)
. (8)

2) Decoder: The decoder is usually an inner product layer:

p (g|z) =
N∏
i=1

N∏
j=1

p
(
Aij
∣∣zi), (9)

where
p
(
Aij = 1

∣∣zi, zj) = sigmoid[(zi)
>
zj]. (10)

3) Loss function: The following hybrid loss function is
minimized in the VAE training phase:

LV AE = Eq(z|g) [− log p (g|z)] +β ·KL[q (z|g) || p(z)], (11)

where KL[q (·) || p(·)] is the Kullback-Leibler divergence be-
tween the posterior approximation q(·) and the prior p(·). The
first term is related to the similarity between reconstructed and
original graphs. The second term regularizes the latent space
for sampling z from a prior p(z) instead of q (z|g). β is a
tunable weight hyperparameter.

0

2
1

3

4

5 6

7

0

2
1

3

4

5 6

7

= [0.255, 0.345,… , 3.321]

Encoder Decoder

Original graph Reconstructed graph

Fig. 2. A typical encoding and decoding workflow in VAE.

!

!

III. PROPOSED APPROACHES

This section presents the proposed NAS scheme for hotspot
detection bottom-up. First, Section III-A defines the topological
space for neural architectures. Section III-B then adopts a
VAE for weighted DAGs to map this space into continuous.
In this embedding space, with an advanced NN performance
evaluation strategy in Section III-C, the BO-based NAS scheme
is proposed in Section III-D for the automated design of hotspot
detectors. Section III-E summarizes the overall workflow.

A. Topological Space of Neural Architectures

Considering the essence (the binary classification of images)
of hotspot detection, This paper explicitly uses CNN as a
hotspot detector by weighted DAGs. The following hypotheses
define the topological space of NNs, referring to [8] and [11].
• A CNN is stacked from primary modules, so-called cells.

Each cell maps a tensor from c×h×w to c′×h′×w′. Cells
of the same type share their parameters.

• There are two types of cells, normal cell and reduction cell.
In normal cells, convolution operator’s stride is 1, i.e., h = h′

and w = w′. In reduction cells, convolution operator’s stride
is 2, i.e., h = 2h′ and w = 2w′.

• Each cell is a weighted DAG, where each node represents
a calculated state while each edge represents an operator
noted by its weight. Table II shows that 7 optional operators
correspond to different weights.

• The internal structure for a single cell is shown in Fig. 3(a).
There are three types of nodes: i) input nodes input1 and
input2, succeeding output tensors from two closest previous
cells; ii) intermediate nodes from 0 to 3; iii) output node
output. Nodes with multiple inputs are computed as the
element-wise sum of input edges. Each node can connect
to its successors except the output-input straight connection.
All intermediate nodes are concatenated as output by 4 fixed
edges (solid lines) while as many as 14 optional edges are
marked as dashed lines, a few of which are fixed in practice.

• When stacking for the overall neural network, as shown
in Fig. 3(b), reduction cells only appear in the trisection
positions while normal cells occupy the rest positions.
The search space, noted as G , is thus constrained. Denote

single cell’s topological space as Gcell, Gcell ⊂ G . A hotspot
detector g ∈ G is expressed by two cells, as shown in (12).

g = S(gn, gr), (12)

where S represents the stacking operator; subscripts n and
r represent shorthand for cell type normal and reduction,
respectively.

TABLE II
OPERATORS AND WEIGHTS IN THE SEARCH SPACE

Operator Option Weight
3×3 separable convolution 1
5×5 separable convolution 2

3×3 dilated separable convolution 3
5×5 dilated separable convolution 4

3×3 max pooling 5
3×3 average pooling 6

identity 7

B. VAE for Weighted DAGs

To enable Bayesian Optimization, a mutual mapM between
the topological space G and an m-dimensional Euclidean space
Rm, should be constructed.

M : G ↔ Rm. (13)
Considering the GP model in BO, VAE based on Gaussian
distribution is a fine choice. A VAE is modified from [16] to
handle weighted DAGs.

1) Encoder: Different from (6) and (7), the hidden state of
each node is calculated in turn by aggregating the hidden states
of all predecessors along the information transfer direction in
the DAG. Specifically, the states of node v’s all predecessors
are aggregated to the input state hinv by (14), and updated to
the output state houtv by a gated recurrent unit (GRU) in (15).

hinv =
∑
Vp

g
(
eVp→v × hVp

)
�m

(
eVp→v × hVp

)
, (14)

houtv = GRUenc

(
wv, hinv

)
, (15)

where g(·) is the gating network while m(·) is the mapping
network; e represents the edge weight between node v and its
predecessors Vp; and wv represents the weight in Table II.

Finally, the DAG’s hidden state henc is produced after all
nodes have been traversed. Equations (6) and (7) are then
adapted in (16) and (17).

µ = MLPµ(henc), (16)

logσ = MLPσ(henc). (17)

To avoid the numerical overflow of σ in (17), a sigmoid-
like constraint function is adopted here. The latent vector z
is sampled from q (z|g) similar to (8).

2) Decoder: A gated recurrent unit GRUdec followed by
MLPdec updates the embedding and calculate the prior pedge:

hdec = GRUdec(z), (18)

pedge (g|z) = MLPdec(hdec). (19)

grec = (V,Erec) is reconstructed by sampling from pedge(·).
In the training process, (8) and (19) are substituted into (11).

LV AE is minimized to update the network till convergence. See
Section IV-A for details on the VAE’s training.

In practice, the bidirectional map M is implemented on a
single cell’s search space Gcell. The encoding and decoding
process for a hotspot detector g, marked by Menc(·) and
Mdec(·), are generalized by (20) and (21), respectively.

z =Menc(g) = [Menc(gn),Menc(gr)] = [zn, zr] , (20)

grec =Mdec(z) = S(Mdec(zn),Mdec(zr)), (21)
where z ∈ Rm and zn, zr ∈ Rm/2; g ∈ G and gn, gr ∈ Gcell.

C. Performance Evaluation of Detectors

The topological space of the hotspot detectors has been
defined and mapped into continuous. The performance eval-
uation strategy should be draughted afterward. The metric F1

is utilized to evaluate the searched detectors.
A fundamental performance evaluation is conducted in the

final testing case. The optimal neural architecture is trained for
epochs until the best performance is achieved, that is, the final
hotspot detector.

!

!

input1

input2

0 1 2 3 output

(a)

N
o

rm
al cell

R
ed

u
ctio

n
 cell

N
o

rm
al cell

R
ed

u
ctio

n
 cell

N
o

rm
al cell

…

Activation

Predictive

detection

Layout clips

Preprocess

2 1 2 21

(b)

Fig. 3. The topological architecture of hotspot detectors. Fig. 3(a) presents the single proposed cell’s inside structure, where nodes are state tensors and
edges (in red) are operators. Edges connected to output is fixed; certain edge types (operators) are not marked here for generality. Fig. 3(b) presents the macro
architecture of a hotspot detector. There is a total of 8 cells here; only the 3rd and 6th ones are reduction cells. Layout clips are preprocessed and fed into this
8-layer CNN; after a sigmoid-like activation function, the CNN predicts whether an input clip is a hotspot or non-hotspot.

However, during the search process requiring agility, the
following strategies are used to estimate candidates’ final F1.
• Candidates are only trained for one epoch before verifying
F1 as the ground-truth score on the validation set, instead of
training from scratch to convergence like [9], [14], [15].

• The search process is still relatively slow due to repeated
training. It is noticed that [12], under the same task, dataset,
and training method, a correlation between the neural ar-
chitecture and its performance is latent but undeniable.
Meanwhile, neural architectures have been mapped to latent
vectors according to (20). Therefore, a further estimation of
F1 is adopted by conducting an MLP-based performance
predictor. As shown in (22), the embedding z is mapped
to a scalar predictive score ŝ.

ŝ = P(z) = MLPpred(z), (22)

where a sigmoid activation function matches the range of F1.
The embedding z and the corresponding ground-truth score
F1, are employed to train the predictor. Moreover, it is more
practical to focus on the relative merits of architectures rather
than the absolute score values. A ranking error function
could be adopted instead of the standard Mean Squared Error
(MSE) or Mean Absolute Error (MAE).

Lrank =
∑
i

∑
si>sj

max [0, w − (ŝi − ŝj)], (23)

where w is a margin hyperparameter generally set to 1. The
arrangements of ground-truth scores s and predicted scores
ŝ are expected to be consistent for all architecture pairs in
the dataset, corresponding to the minimization of (23).
This performance evaluation strategy’s effectiveness is

demonstrated by experimental results in Section V.

D. BO-based NAS Scheme in Top-level

Exploration and exploitation should be traded off appropri-
ately in this search space G . Upper Confidence Bound (UCB)
function is maximized as the acquisition function in BO.

The NAS scheme is summarized in Algorithm 2. First, neural
architectures are randomly generated and trained to obtain the
initial data pool. Subsequently, all DAGs are encoded into
embeddings, mapping the search space into continuous. Then
BO iterations begin, where the performance predictor is used
to avoid training candidates in BO. GP model is then built
and optimized to produce a candidate. This new architecture is
also evaluated via the predictor and merged into the data pool.
Finally, the recorded optimal embedding is selected.

Algorithm 2 BO-based NAS for Designing Hotspot Detectors
1: Generate the initial data pool {(gi, si)} randomly
2: Encode DAGs into latent vectors and get {(gi, zi, si)}
3: for t ≤ iterations do
4: Train P(·) based on {(zi, si)} and get {(zi, ŝi)}
5: Construct GP model based on {(zi, ŝi)}
6: Generate candidate zt by optimizing UCB(z)
7: Calculate the score ŝt and update dataset {(zi, ŝi)}
8: end for
9: return the optimal z∗ recorded

Train VAE
𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒 · and 𝑀𝑀𝑑𝑑𝑒𝑒𝑒𝑒 ·

Initialize graphs
randomly {(𝑔𝑔𝑖𝑖 , 𝑠𝑠𝑖𝑖)}𝑖𝑖=1

𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖

Embed 𝑔𝑔𝑖𝑖 by 𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒 ·
{(𝑔𝑔𝑖𝑖 , 𝐳𝐳𝑖𝑖 , 𝑠𝑠𝑖𝑖)}𝑖𝑖=1

𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖

Train predictor 𝑃𝑃(·)
and get {(𝐳𝐳𝑖𝑖 , �̂�𝑠𝑖𝑖)}

build GP model on 𝐳𝐳𝑖𝑖 , �̂�𝑠𝑖𝑖
�̂�𝑠~𝒩𝒩(𝜇𝜇𝐺𝐺𝐺𝐺,𝜎𝜎𝐺𝐺𝐺𝐺2)

Optimize Acquisition function
𝐳𝐳𝑡𝑡 = max

𝐳𝐳
UCB 𝐳𝐳 𝜇𝜇𝐺𝐺𝐺𝐺,𝜎𝜎𝐺𝐺𝐺𝐺2

Update {(𝐳𝐳𝑖𝑖 , 𝑠𝑠𝑖𝑖)} by
�̂�𝑠𝑡𝑡 = 𝑃𝑃 𝐳𝐳𝑡𝑡

Select 𝑔𝑔∗ = 𝑀𝑀𝑑𝑑𝑒𝑒𝑒𝑒 𝐳𝐳∗
with optimal �̂�𝑠∗

as the final architecture

Train and evaluate

Data and VAE preparation Customized NAS process Selection and training

Complete hotspot detector

Fig. 4. The proposed scheme’s overall workflow.

E. Overall Workflow

The overall workflow is shown in Fig. 4.
1) Data and VAE preparation: The VAE is trained in

advance. Nini hotspot detectors are then randomly sampled
in the space G . Each hotspot detector gi is evaluated on the
validation set after epoch(s) of training, getting si, the ground-
truth F1 score. Finally, gi is encoded into a vector zi.

2) Customized NAS process: See Section III-D for details.
3) Selection and training: The latent vector z∗ with the

highest ŝ∗ is selected and decoded into g∗ ∈ G through
Mdec(·). The complete hotspot detector represented by g∗ is
trained on the training set until the best performance is achieved
on the validation set, and taken out as the final hotspot detector.

IV. METHODOLOGICAL DETAILS

There are still additional details to be illustrated, including
VAE’s training settings and superior performance, the adopted
datasets, and training techniques for hotspot detectors.

A. Implementation of VAE

In the VAE’s training process, 105 DAGs are randomly
sampled to generate the dataset {(gi)}, gi ∈ Gcell. The
dimension of the Euclidean space Rm/2 is set to 14.

Subsequently, network weights are randomly initialized. In
each iteration, the encoding-decoding process is performed for

!

!

all samples. GD then optimizes the loss function in (11) to
update weights, where hyperparameter β is set to 0.01.

Convergence has been reached after 50 epochs of training.
The reconstruction accuracy exceeds 99.95% on both the train-
ing and validation set divided by the proportion of 9:1.

Besides perfect reconstruction accuracy, the ability to dis-
tinguish between different graphs is another crucial advantage
of the proposed VAE. The following test is performed. First,
graphs g1 and g2 are randomly generated; g1 is randomly
perturbed to obtain a similar graph g̃1; then the Euclidean
norms between their latent vectors are calculated, respectively
recorded as d(g1, g2) and d(g1, g̃1). The above operations
are repeated 10,000 times to obtain the average distances
d̄(g1, g2) = 10.204 and d̄(g1, g̃1) = 2.466. Therefore, this VAE
can indeed measure the difference between graphs.

B. Layout Hotspot Datasets

ICCAD 2012 [13] and ICCAD 2019 [7] Contest benchmarks
are used, referred to as ICCAD12 and ICCAD19, respectively.
In ICCAD12, more than 97% layouts relate to a 28nm process
design kit (PDK), and the remaining relates to a 32nm PDK.
ICCAD19 inherits the 28nm PDK and layer types in ICCAD12,
updating the lithographic models and adding new patterns for
testing. ICCAD19 is divided into two subsets, ICCAD19-1 and
ICCAD19-2, with a shared training set.

C. Training of Hotspot Detectors

Several customized techniques are adopted in the hotspot
detectors’ training process due to the characteristic of layout
datasets. As shown in Fig. 3(b), feature extraction is performed
on the original layout clips before feeding them into NN-based
hotspot detectors. Here, the discrete cosine transform (DCT)
[17] is employed to extract features.

In addition, the dataset in Section IV-B is unbalanced. An
up-sampling method is adopted during the training process to
balance the sampling probability of hotspots and non-hotspots.
A biased learning method [17] is introduced to balance detect-
ing accuracy and false alarm rate.

V. EXPERIMENTAL RESULTS

A. Experimental Settings

NAS experiments are conducted on a single NVIDIA RTX
2080Ti GPU with ICCAD12 and ICCAD19 benchmarks. The
searched cells for these benchmarks are shown in Fig. 5. The
whole scheme is deployed in Pytorch and its detailed settings
are presented here.

1) Predictor settings: A two-layer MLP is sufficient. Sig-
miod function serves as the output activation.

2) Hotspot detectors’ training settings: Stochastic GD is
utilized for training detectors. The initial learning rate is set
to 0.025 with a batch size of 128; the learning rate is annealed
down to 0 with the cosine scheduler; Total 8 cells are connected
serially to build a macro neural architecture.

3) Top-level NAS settings: The Botorch toolkit constructs the
GP model and optimizes the UCB function. Total 600 epochs of
search are enough to ensure the convergence of BO. Total 100
detectors are sampled and trained for one epoch to initialize
the data pool.

B. Comparison with Manual Designs

Table III shows the performance comparison of hotspot
detectors auto-designed by the proposed method and manually
designed ones. Columns Accu, FA, F1 and Time show the
hotspot detection accuracy, false alarm rate, F1 score, and
hotspot detector’s inference time, respectively.

Taking the column Accu in the TCAD’19 [17] subtable as
an example, Average represents the average of the accuracy
obtained by TCAD’19 [17] on these datasets; and Ratio repre-
sents the average accuracy’s ratio of TCAD’19 [17] to Ours.
The paradigms above can be migrated to other subtables.

Specifically, compared with all manually designed hotspot
detectors, ones generated by the proposed method achieve the
highest average accuracy, the lowest average FA, and the
shortest average inference time.

The results above demonstrate that auto-designed hotspot
detectors surpass manually designed ones in terms of detection
capability and operating efficiency. Moreover, in these base-
lines, professionals have spent months designing NNs, which
auto-designed ones defeat in about a single hour of search.
In addition, the used NN models with limited scale (stacking
layers) also avoid long inference times.

C. Comparison with Other NAS-based Methods

Table IV compares the proposed scheme with other NAS-
based methods. DARTS [8] is a classic general-purpose NAS
algorithm; TODAES’22 [10] is the state-of-the-art NAS-based
hotspot detection method.

Compared with the general DARTS [8] and the customized
TODAES’22 [10], this scheme achieves the best performance
in all hotspot detection metrics and reduces the search time by
15.120× and 11.173×, respectively.

The results above illustrate that the proposed scheme signifi-
cantly improves the design efficiency and maintains competitive
hotspot detection performance, surpassing the existing NAS-
based methods.

On the one hand, although NAS-based methods above share
the same topological search space in Section III-A, this paper’s
VAE maps the search space to a compact continuous space
to facilitate design space exploration in BO. Therefore, it is
reasonable to obtain hotspot detectors with higher performance
finally. On the other hand, the performance predictor reveals
the potential correlation between the architecture and its perfor-
mance, avoiding repeated training, thus significantly improving
design efficiency.

VI. CONCLUSIONS

This paper proposes a NAS scheme to design high-
performance NN-based hotspot detectors agilely and automati-
cally. VAE is conducive to performing BO in continuous space
to obtain superior solutions, and performance prediction in the
local solution space makes our scheme more agile. Experiments
conducted on ICCAD12 and ICCAD19 demonstrate that the
proposed scheme significantly increases the agility of auto-
design and generates hotspot detectors competitive with state-
of-the-art ones in all metrics. NN-based hotspot detectors are
therefore promoted to move towards automation and agility.

!

!

TABLE III
PERFORMANCE COMPARISON WITH STATE-OF-THE-ART MANUALLY DESIGNED NN-BASED HOTSPOT DETECTORS

Dataset
TCAD’19 [17] DAC’19 [18] TCAD’19 [19] Ours

Accu
(%)

FA
(%)

F1

score
Time

(s)
Accu
(%)

FA
(%)

F1

score
Time

(s)
Accu
(%)

FA
(%)

F1

score
Time

(s)
Accu
(%)

FA
(%)

F1

score
Time

(s)
ICCAD12 98.4 26.2 0.581 397 99.2 20.6 0.641 60 97.7 17.9 0.666 401 96.2 6.4 0.838 7.5

ICCAD19-1 76.0 2.6 0.710 53 80.9 3.5 0.667 63 47.0 1.5 0.556 56 91.6 8.6 0.577 8.3
ICCAD19-2 88.4 87.8 0.636 429 89.7 84.1 0.651 496 84.5 83.6 0.627 445 90.5 83.9 0.656 44.9

Average 87.6 38.9 0.642 293 89.9 36.1 0.653 207 76.4 34.3 0.616 301 92.8 33.0 0.690 20.2
Ratio 0.944 1.179 0.930 14.505 0.969 1.094 0.946 10.248 0.823 1.039 0.893 14.901 1 1 1 1

TABLE IV
PERFORMANCE COMPARISON WITH STATE-OF-THE-ART NAS-BASED METHODS

Dataset
DARTS [8] TODAES’22 [10] Ours

Accu
(%)

FA
(%)

F1

score
Time

(s)
Search

time (h)
Accu
(%)

FA
(%)

F1

score
Time

(s)
Search

time (h)
Accu
(%)

FA
(%)

F1

score
Time

(s)
Search

time (h)
ICCAD12 90.4 7.4 0.790 8.1 9.62 93.3 9.5 0.767 8.3 6.81 96.2 6.4 0.838 7.5 0.76

ICCAD19-1 84.5 8.3 0.554 5.9 9.63 90.8 8.6 0.573 7.3 6.78 91.6 8.6 0.577 8.3 0.73
ICCAD19-2 90.0 88.7 0.642 65.6 14.77 85.5 84.4 0.630 49.8 11.56 90.5 83.9 0.656 44.9 0.76

Average 88.3 34.8 0.662 26.5 11.34 89.9 34.2 0.657 21.8 8.38 92.8 33.0 0.690 20.2 0.75
Ratio 0.952 1.055 0.959 1.314 15.120 0.968 1.035 0.952 1.079 11.173 1 1 1 1 1

Normal cell

Reduction cell

(a)

Normal cell

Reduction cell

(b)

Normal cell

Reduction cell

(c)

Fig. 5. The searched cells by the proposed scheme. Figures 5(a), 5(b) and 5(c) are cells searched on ICCAD12, ICCAD19-1, and ICCAD19-2 benchmarks.
ck−2 and ck−1 represent two input nodes from two nearest former cells, and ck represents the only output node.

ACKNOWLEDGEMENT

This research is supported partly by National Key R&D
Program of China 2020YFA0711900, 2020YFA0711903, partly
by National Natural Science Foundation of China (NSFC)
research projects 62141407, 61929102 and 62090025.

REFERENCES

[1] Ibrahim M Elfadel, Duane S Boning, and Xin Li. Machine learning in
VLSI computer-aided design. Springer, 2019.

[2] Andrew B Kahng, Chul-Hong Park, and Xu Xu. Fast dual graph-based
hotspot detection. In Photomask Technology 2006, volume 6349, page
63490H. International Society for Optics and Photonics, 2006.

[3] Yen-Ting Yu, Ya-Chung Chan, Subarna Sinha, Iris Hui-Ru Jiang, and
Charles Chiang. Accurate process-hotspot detection using critical design
rule extraction. In Proceedings of the 49th Annual Design Automation
Conference, pages 1167–1172, 2012.

[4] Dragoljub Gagi Drmanac, Frank Liu, and Li-C Wang. Predicting
variability in nanoscale lithography processes. In 2009 46th ACM/IEEE
Design Automation Conference, pages 545–550. IEEE, 2009.

[5] Haoyu Yang, Jing Su, Yi Zou, Yuzhe Ma, Bei Yu, and Evangeline FY
Young. Layout hotspot detection with feature tensor generation and
deep biased learning. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 38(6):1175–1187, 2018.

[6] Yiyang Jiang, Fan Yang, Bei Yu, Dian Zhou, and Xuan Zeng. Efficient
layout hotspot detection via binarized residual neural network ensemble.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 40(7):1476–1488, 2020.

[7] Gaurav Rajavendra Reddy, Kareem Madkour, and Yiorgos Makris. Ma-
chine learning-based hotspot detection: Fallacies, pitfalls and marching
orders. In 2019 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), pages 1–8. IEEE, 2019.

[8] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable
architecture search. arXiv preprint arXiv:1806.09055, 2018.

[9] Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabas
Poczos, and Eric P Xing. Neural architecture search with bayesian
optimisation and optimal transport. Advances in neural information
processing systems, 31, 2018.

[10] Yiyang Jiang, Fan Yang, Bei Yu, Dian Zhou, and Xuan Zeng. Efficient
layout hotspot detection via neural architecture search. ACM Transactions
on Design Automation of Electronic Systems (TODAES), 2022.

[11] Muhan Zhang, Shali Jiang, Zhicheng Cui, Roman Garnett, and Yixin
Chen. D-vae: A variational autoencoder for directed acyclic graphs.
Advances in Neural Information Processing Systems, 32, 2019.

[12] Xuefei Ning, Wenshuo Li, Zixuan Zhou, Tianchen Zhao, Shuang Liang,
Yin Zheng, Huazhong Yang, and Yu Wang. A surgery of the neural
architecture evaluators. 2020.

[13] J Andres Torres. Iccad-2012 cad contest in fuzzy pattern matching
for physical verification and benchmark suite. In 2012 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), pages
349–350. IEEE, 2012.

[14] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient
neural architecture search via parameters sharing. In International
conference on machine learning, pages 4095–4104. PMLR, 2018.

[15] Barret Zoph and Quoc V Le. Neural architecture search with reinforce-
ment learning. arXiv preprint arXiv:1611.01578, 2016.

[16] Jialin Lu, Liangbo Lei, Fan Yang, Li Shang, and Xuan Zeng. Topology
optimization of operational amplifier in continuous space via graph
embedding. In 2022 Design, Automation & Test in Europe Conference
& Exhibition (DATE), pages 142–147. IEEE, 2022.

[17] Haoyu Yang, Jing Su, Yi Zou, Yuzhe Ma, Bei Yu, and Evangeline FY
Young. Layout hotspot detection with feature tensor generation and
deep biased learning. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 38(6):1175–1187, 2018.

[18] Yiyang Jiang, Fan Yang, Hengliang Zhu, Bei Yu, Dian Zhou, and Xuan
Zeng. Efficient layout hotspot detection via binarized residual neural
network. In 2019 56th ACM/IEEE Design Automation Conference (DAC),
pages 1–6. IEEE, 2019.

[19] Ying Chen, Yibo Lin, Tianyang Gai, Yajuan Su, Yayi Wei, and David Z
Pan. Semisupervised hotspot detection with self-paced multitask learning.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 39(7):1511–1523, 2019.

!

!

	Select a link below
	Return to Previous View
	Return to Main Menu

