
Perspector: Benchmarking Benchmark Suites
Sandeep Kumar

School of Information Technology
Indian Institute of Technology Delhi

New Delhi, India
Email: sandeep.kumar@cse.iitd.ac.in

Abhisek Panda
Department of Computer Science

Indian Institute of Technology Delhi
New Delhi, India

Email: abhisek.panda@cse.iitd.ac.in

Smruti R. Sarangi
Department of Computer Science

Indian Institute of Technology Delhi
New Delhi, India

Email: srsarangi@cse.iitd.ac.in

Abstract—Estimating the quality of a benchmark suite is a non-
trivial task. A poorly selected or improperly configured bench-
mark suite can present a distorted picture of the performance
of the evaluated framework. With computing venturing into
new domains, the total number of benchmark suites available
is increasing by the day. Researchers must evaluate these suites
quickly and decisively for their effectiveness.

We present Perspector, a novel tool to quantify the performance
of a benchmark suite. Perspector comprises novel metrics to
characterize the quality of a benchmark suite. It provides a math-
ematical framework for capturing some qualitative suggestions
and observations made in prior work. The metrics are generic
and domain-agnostic. Furthermore, our tool can be used to
compare the efficacy of one suite vis-à-vis other benchmark suites,
systematically and rigorously create a suite of workloads, and
appropriately tune them for a target system.

Index Terms—benchmarks, hardware counters, Latin hyper-
cube sampling, phase detection

I. INTRODUCTION

Benchmarking is a crucial task that determines how a com-
plex computer system needs to be designed and configured.
This information is used for many different purposes such
as determining the correctness of a system and optimizing,
evaluating, and enhancing its performance. For the better part
of the last two decades, benchmark suites such as SPEC[1] and
PARSEC [2] proved to be sufficient for the predominantly desk-
top and cloud-based systems [1, 2]. Designing such benchmark
suites is both a science and an art; it often draws on institutional
experience adn the intuitions of senior designers.

However, the situation has changed in the past few years.
The computing world has seen a rapid proliferation of new
devices that are optimized for specific domains of computing
such as IoT [3], FaaS [4], edge computing [5], and low-
power computing [6]. These domains vary in terms of their
requirements and the resources available to them. This has led
to a ground-up redesign of the hardware and software in order
to extract the maximum performance at a minimal cost. Also,
with the advent of the RISC-V ecosystem, hardware design has
been democratized. Due to these factors, relying on decade-
old benchmark suites [2, 7, 8], which were designed for a
completely different purpose, time, and era [9], is perhaps not
wise.

The research community has responded by developing new
benchmark suites [3, 4, 5, 10, 11, 12, 13] to benchmark these
next-generation devices. However, this raises a few important
questions, such as do they effectively benchmark the domain

for which they are designed? Is there any redundancy among
the workloads present in the benchmark suite? Earlier, these
questions were answered over a span of several years as the
community got more experience using a particular suite. Today,
the time-to-market has reduced substantially, and the size of the
community for domain-specific processors is very limited.

Furthermore, modern benchmark suites contain many differ-
ent workloads (e.g., 43 in SPEC’17). However, executing all
the workloads is time-consuming and has significant overheads
associated with configuring and executing them. Hence, re-
searchers generally execute a subset of these workloads to save
time [14]. However, the selection of workloads for the subset is
typically not motivated by the suitability of the workloads but
rather by the ease of configuration and reduction of the total
execution time. Using a random set of workloads may lead to
misleading conclusions [15, 16, 17, 18, 19].

Hence, there is a need to formally evaluate the quality of
a benchmark suite and to quantifiably measure its efficacy,
particularly when we are interested in only certain aspects of the
overall execution (such as power, TLB misses, or LLC misses).
In this work, we present Perspector, a novel mechanism to
benchmark such suites. Essentially, we create a novel set of
metrics for measuring the quality of a benchmark suite. Some
of these metrics were expressed qualitatively in somewhat
nebulous/abstract terms in prior work [2]. However, we are the
first to propose a precise mathematical definition. Using this
as our fulcrum, our full list of contributions in this paper are
as follows:

1) We propose new metrics for assessing the performance of
a benchmark suite in terms of its evaluation characteristics.

2) We validate the metrics by evaluating six widely used
benchmark suites, including, SPEC’17 [1], PARSEC [2],
and Ligra [20].

3) We use the metrics to show how the efficacy of the
benchmark suite changes if we specifically focus only on
a few select events, such as only cache-related or TLB-
related events.

4) We use the metrics to find the right subset of workloads
from a benchmark suite that are representative of the
whole.

The rest of the paper is organized as follows. We discuss
the related work and the motivation for the paper in Section II.
This is followed by a discussion on our novel metrics that are
used to capture the quality of a benchmark suite in Section III.

2023 Design, Automation & Test in Europe Conference (DATE 2023) – Best Paper Award Candidate	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

TABLE I: Analysis of prior work in this area.

Name Description PA? CA? Comp?
Workload
characterization
of SPEC’17 [15]

Statistical techniques to
identify redundancy in

SPEC 2017

✗ ✗ ✗

Wait of a
Decade [16]

Similarity analysis of
SPEC 2017 on different

ISAs

✗ ✗ ✓

Data Analytics
Workloads [18]

Similarity between SPEC
2006 and data analytics

workloads

✗ ✗ ✓

Analysis of
Redundancy in
SPEC 2006 [17]

Statistical techniques to
identify redundancy in

SPEC 2006

✗ ✗ ✗

Measuring
Program
Similarity [19]

Similarity analysis b/w
different SPEC variants
ans subset generation

✗ ✗ ✗

Perspector (This
work)

Quantifiable approach to
compare benchmark suites

and subset generation

✓ ✓ ✓

* PA: Phase analysis, CA: Coverage analysis, Comp: Has a comparison with other
suites?

We evaluate Perspector and show its different use cases in
Section IV. Finally, we conclude in Section V.

II. RELATED WORK

Prior work in this area [15, 16, 17, 18] has mostly focused
on analyzing different versions of the SPEC benchmark suite
to find redundancy within it and facilitate the execution of a
subset of workloads to save time and effort while maintaining
confidence in the results thus produced. Table I shows a brief
summary of prior work.

The standard methodology as evinced from prior work is
as follows: Theoretically, we define some key parameters that
the authors think are crucial. They are mainly the instruction
mix, memory operations, TLB operations, cache behavior, and
the performance of speculative execution [15, 16, 17, 18]. All
the workloads are executed and the relevant data is captured
using performance monitoring units or PMUs (also known
as hardware performance counters). [21]. The dimensions
of the captured data are first normalized and then reduced
using principal component analysis or PCA [22]. The resulting
principal components (PCs) are clustered using hierarchical
clustering [23].

Although efficient, this family of approaches has four key
drawbacks. ❶ Prior work completely ignores the execution
phases of a workload. Modern-day workloads show many
different phases during their execution cycle. Processing only
the final or aggregate values of execution-related hardware
counters misses this crucial information. ❷ The clustering
process lacks a well-designed metric to quantify the quality
of the clusters. This is an important metric that determines the
efficacy of the full process. Ideally, a well-balanced benchmark
suite should not form clusters. The workloads in the suite
should be significantly spaced apart from each other and cover
the entire execution space. Hence, the hierarchical clustering
approach used in prior work to combine workloads needs
further scrutiny. ❸ Prior work does not strictly ensure that a
benchmark suite holistically stresses all the components of a

microarchitecture. A well-balanced benchmark suite should at
least explore a few corner cases involving such events so that
we are sure that the entire execution space is covered. Ensuring
coverage with respect to certain architectural parameters is of
vital interest; this aspect has not received its due. ❹ Finally,
prior work in this area does not provide an unambiguous
method of comparing two benchmark suites. A comparison
mechanism is crucial in fields where a researcher has many
different benchmark suites at her disposal and would like to
select the most suitable one for her experiments. A well-defined
and quantifiable metric is required in this case to compare
them. The work done [16, 18] contains comparisons between
different versions of the SPEC suite and also a brief comparison
with some real-world benchmarks. However, the analysis is
limited to a mere comparison of the cumulative numbers of
a few microarchitectural events and does not capture a holistic
view of a benchmark suite’s performance.

We tackle all of these issues and present mathematically
derived metrics to measure different features of benchmark
suites in a quantifiable manner.

III. BENCHMARK QUALITY METRICS

In this section, we create a novel set of criteria for evaluating
the quality of a benchmark suite. The starting point is inspired
from a set of properties listed qualitatively by the authors of
the PARSEC suite [2].
1. Diverse: The benchmarks in the benchmark suite should be

as distinct from each other as possible.
2. Phase changes: Modern applications exhibit different

phases during their execution. Most synthetic or micro-
benchmarks lack this feature. Hence, it is necessary to
explicitly consider the phases in real-world benchmarks.

3. Coverage: The benchmark suite should cover a very large
number of runtime uses cases such that we are sure that all
aspects of the system have been thoroughly evaluated.

4. Spread: The parameter space should be covered uniformly.
We need to avoid clustering in this space, which indicates
that two benchmarks have similar behavior.

We devise the following scores to mathematically capture
the aforementioned criteria.
Notations: Assume that our benchmark suite (W) is a set of n
benchmarks, i.e., W = {w1, w2, . . . wn}. During the execution
of a benchmark (wi ∈ W), we collect m execution-related
statistics. We store them in an m-dimensional vector xi for the
benchmark wi. For a single execution of all the benchmarks
in the suite, the matrix X contains all the individual vectors
(stored as row vectors). This description is agnostic to the
specific parameters captured in an execution.

A. Diversification: Cluster Score

The benchmarks in a suite should be designed or chosen
such that they show different properties as compared to each
other in terms of execution statistics. If they are all similar
to one another, running different benchmarks will reveal no
additional insights. In simple terms, the benchmarks should not
be clustered.

!

!

To capture the “diversity” of a benchmark suite, we define
a score called the ClusterScore. For this, we first collect the
matrix X , normalize it, and create clusters using K-means
clustering [24]. To determine the quality of the clusters, we
use a well-known score called the Silhouette score [25]. As
stated before, the clustering should be as poor as possible.

1) A brief description of the Silhouette Score: Let us say
we form k clusters. For a point p ∈ Ci, i.e., point p in cluster
Ci, we first calculate an intra-cluster dissimilarity score for the
point p called η(p).

η(p) =
1

|Ci| − 1

∑
∀p′∈Ci

dis(p, p′) (1)

where, dis(p, p′) is the Euclidean distance between p and p′.
After this, we calculate an inter-cluster dissimilarity score

for point p, i.e., λ(p). We do this for all the clusters except for
the cluster containing p, and then select the minimum value.

Cost(p, j) = min
1

|Cj |
∑

∀p′∈Cj ,Cj ̸=Ci

dis(p, p′) (2)

Let us define λ(p) as the lowest cost for any j ̸= i.
Finally, we calculate the silhouette score for the point p

(S(p)):

S(p) =

{
λ(p)−η(p)

max{λ(p),η(p)} k > 1

0 if k = 1
(3)

The silhouette score of cluster Ci is an average of the
silhouette scores of all the points within that cluster.

S(Ci) =
1

|Ci|
∑

∀p∈Ci

S(p) (4)

The silhouette score of a benchmark suite is the average
silhouette score for all the clusters. Assuming k clusters:

S(W)k =
1

k

k∑
i=1

S(Ci) (5)

To calculate the ClusterScore, we calculate S(W)k for k =
2 to |W| − 1, and take the average. Here, k is the number of
clusters.

ClusterScore =
1

|W| − 2

|W|−1∑
k=2

S(W)k (6)

B. Phase changes: Trend Score

Modern workloads show different phases during execution.
Prior work [26] has shown that using hardware counters is
an effective method for detecting phase changes during the
execution of a workload. We use the same mechanism in our
analysis, albeit in a more sophisticated form.

For a given input to a set of workloads W (|W| = n), let us
say Tz = {t1, t2, t3...tn} is the set of vectors for a particular
PMU (performance monitoring unit) counter z ∈ Z (e.g. dTLB
hits) across all the individual workloads. Here, Z is the set of

16M

14M

12M

10M

 8M

 6M

 4M

 2M

LL
C
 M

is
se

s Varied stats
in different
workloads

LL
C
 M

is
se

s
C
D

F

W1 W2 W3 W4 W5

Normalized
data in both

the axes

Percentage of the execution

Different workloads:

(a) (b)

Transform

Fig. 1: Normalization of the trend score of LLC misses for five
workloads: PageRank, HashJoin, BFS, BTree, and OpenSSL)

all the PMU counters. Each vector, ti, is a time series (specific
to a given workload).

To measure the distance between two time series, we use
a well-known technique called Dynamic Time Warping or
DTW [27]. DTW aims to minimize the distance between two
time series, which can have different lengths by non-linearly
“warping” the time-space to match them.

We calculate the pair-wise DTW distance of all the data
points in Tz and report the average for metric z (TScorez).

TScorez =
1

|W| ∗ (|W| − 1)

∑
tm∈Tz

∑
tp∈Tz,m ̸=p

DTW (tm, tp)

(7)

We then calculate the average DTW score for all the metrics
in Z, which is the final TrendScore.

TrendScore =
1

|Z|
∑
∀i∈Z

TScorei (8)

1) Normalization in DTW: Note that if a particular tm ∈
Tz has unusually high values (see Figure 1), then the
TScorez score will be dominated by this, and eventually the
TrendScore. To remedy this, we use the CDF (cumulative
distribution function) [28] of a particular metric instead of
its absolute values. The CDF normalizes the y-axis. Doing
so also bounds the distance between two points to the range
[0,100]. However, even now, the x-axis, i.e., the time axis, is
still not normalized because different workloads might have
taken different times to execute. To fix this, instead of the
absolute time, we use the percentiles of the execution time to
define the x-axis (see Figure 1). The resultant normalized time
series are used to compute the DTW values and, ultimately, the
(TrendScore).

C. Coverage Score

Depending on the characteristics of the workloads and the
input data to them, the relative number of different microar-
chitectural events can vary significantly. Ideally, workloads
in a suite should have a lot of diversity in the number of
different microarchitecture events, indicating a good coverage
of the parameter space. Here, we define a metric called Cover-
ageScore for a benchmark suite, that captures its coverage of
the parameter space.

!

!

Let us assume we want to compare the coverage of two
benchmark suites W1 and W2, each containing n workloads.
We then execute workloads in W1 and W2 for the same amount
of time (adjust the inputs accordingly), and then collect the
hardware counter matrices X1 and X2, respectively, of size m×
n.

1) Normalization of the coverage score: The values of the
PMU counters can vary from a few thousand to a few billion. In
order to compare the scores of different benchmark suites, we
need the scores to be within a certain bounded region. Hence,
normalization is a crucial step before processing the data. A
min-max normalization step brings the data from any range to
a predefined range, say [0,1]. However, if we normalize each
of the benchmark suites in isolation, we shall lose a crucial
piece of information: the relative ranges of the values (two
different value ranges, say A:[0 to 10K] and B:[0 to 100K],
get normalized to the range [0 to 1]). In order to prevent this,
we normalize the PMU counters values jointly.

In order to normalize X1 and X2, we first create a matrix
X of size m × 2n by concatenating (X1|X2). Then, we
calculate two m-dimensional vectors, Q and R, which contain
the element-wise maximum and minimum values of the PMU
counters across all the workloads.

Qi = maxXi,j
0≤j<2n

and Ri = minXi,j
0≤j<2n

(9)

Here, Xi,j represents the element at the ith row and jth column
in the matrix X . Qi and Ri represent the ith element of the
vector Q and R that contain the maximum and minimum values
of the PMU counter mi, respectively.

The normalization function is as follows:

X normi,j = (Xi,j −Ri)/(Qi −Ri) (10)

Here, Xi,j is the element of the matrix X and Qi and Ri are
the ith elements of vectors Q and R, respectively. This will
bring all the values in the range of [0,1] while preserving the
relative difference between them.

2) Scoring: After normalization, we use Principal Compo-
nent Analysis or PCA [22] to reduce the dimensionality of the
data while also preserving its variance. PCA will eliminate all
the redundant features (events) from the data. We ensure that
98% of the original variance is preserved.

⟨X T
1 , d1⟩ = PCA(X norm1,variance = 0.98) (11)

⟨X T
2 , d2⟩ = PCA(X norm2,variance = 0.98) (12)

Here, d1 and d2 are the number of PCA components in
the transformed data (using PCA), X T

1 and X T
2 , respectively.

We define the CoverageScore as the variance present in the
transformed data.

CoverageScoreW1
=

1

d1

d1−1∑
i=0

V ariance
(
compi(X T

1)
)
(13)

WB is spread out

Gap in the
parameter space

Fig. 2: Difference between coverage and spread. Suite WA has
high coverage but a low spread. Suite WB has good coverage
and spread.

TABLE II: System configuration

Hardware Settings
Xeon E-2186G CPU, 3.80 GHz Disk: 1 TB (HDD)
CPUs: 1 Socket, 6 Cores, 2 HT
DRAM: 32 GB L1: 384 KB, L2: 1536 KB, L3: 12 MB

System Settings
Linux kernel: 5.9 ASLR: Off GCC: 9.3.0
DVFS: fixed frequency (performance) Transparent Huge Pages: never

Here, compi is the function that returns the contents of the
ith PCA component. Similarly, we can calculate the Cover-
ageScore for W2 also. A high CoverageScore indicates a good
coverage of the m-dimensional parameter space (by definition).
Prior work [29] has also used a simple variance-based metric
to define the coverage of PARSEC and SPLASH-2 benchmark
suites.

D. Spread Score

The coverage score gives an estimate of how much variance
the workloads have in the parameter space. However, as ob-
served by us and Bienia et al. [29], this analysis is not enough
on its own. A few workloads that are different from the mean
can cause the variance to inflate (see Figure 2).

To remedy this, we add a metric that measures how uniformly
distributed are the workloads of a benchmark suite over the
parameter space. Ideally, the workloads should be uniformly
distributed and should not leave huge gaps in the parameter
space. To this end, we use the KS-test, a well-known test
to measure how close a set of points is to a uniform dis-
tribution [30]. A KS-score (also known as D-value) in the
range of [0,0.5] indicates that the set of points can be weakly
approximated as a uniform distribution [30].

SpreadScoreW1 =
1

n

n−1∑
i=0

KS-Test(X normi, U(0, 1,m))

(14)

Here, n is the number of workloads in W1, X normi is the ith

column of the normalized matrix X norm and U(0, 1,m) is
a set of m randomly drawn points from a uniform distribution
between [0,1].

IV. EVALUATION

In this section, we discuss the scores assigned to of different
benchmark suites by Perspector under different scenarios. The

!

!

TABLE III: Description of the different suites and workloads
used in Perspector. All the benchmarks are executed with their
standard input settings.

Suite Description
PARSEC [2] A benchmark suite of parallel workloads to evaluate

multi-threading capabilities of a multiprocessor system.
SPEC’17 [1] A benchmark suite to stress the CPU and the memory

subsystem.
Ligra [20] A lightweight graph processing framework.
LMbench [8] A set of micro-benchmarks to measure the latency of

different system calls.
Nbench [7] A set of mico-benchmarks to test the speed of integer,

floating-point, and memory operations.
SGXGauge [31] A suite of real-world benchmarks from different do-

mains. *We use the non-SGX versions of these benchmarks.

TABLE IV: Description of the hardware counters.

PMU Counter Description
cpu-cycles: Total CPU cycles
branch-instructions: Dynamic branch instructions
branch-misses: Branch mispredictions
dtlb_load_misses.
dtlb_store_misses.
walk_pending:

Total #CPU cycles spent in walking the
page table for the dTLB load and store
misses.

cycle_activity.
stalls_mem_any:

Total stall cycles

page-faults: Total number of page faults
dTLB-loads &
dTLB-stores:

Total number of dTLB loads and stores

dTLB-load-misses &
dTLB-store-misses:

Total number of dTLB load and sore
misses

LLC-loads & LLC-stores: Total number of LLC loads and stores
LLC-load-misses &
LLC-store-misses:

Total number of LLC load and store
misses

details of our evaluated system can be seen in Table II. Table III
lists the benchmark suites and Table IV lists the PMU events
used in this paper.1 Note that we ensure that the execution times
of all the workloads are roughly the same by tweaking the input
values.

A. Benchmark Suites’ Scores

Figure 3a shows the Perspector scores assigned to different
benchmark suites using all PMU counters.

❶ Cluster score (lower is better): Ligra is assigned the
highest score indicating a high degree of clustering. This is
primarily because of how Ligra is designed. It is a lightweight
graph processing framework for shared memory systems. It
mainly consists of two parts, the first component is responsible
for loading and decoding the input graph, and the second one
is used to implement different algorithms such as BFS and
PageRank [20]. As a large portion of the code base is shared,
the workloads are expected to behave similarly, justifying the
high degree of clustering. The rest of the workloads are fairly
spread out, as indicated by their cluster scores (see Figure 4).

❷ Trend score (higher is better): PARSEC and SGXGauge
are assigned large trend scores compared to other suites. This
is primarily because both of them consist of a diverse set of
real-world workloads as opposed to other suites that either just

1Capturing more events than the available PMU counters results in a loss of
accuracy due to multiplexing by the OS. [21]

(a) All events (b) LLC focused

Min

Max

(C
ol
u
m
n
-w
is
e)

(c) TLB focused

Fig. 3: Benchmark scores for three different settings: a) with
all PMU counters b) only using LLC-related PMU counters,
and c) only using TLB-related PMU counters.

Spread
in Nbench

(a) Nbench

Clustering in
SGXGauge

(b) SGXGauge

Fig. 4: Clustering in Nbench and SGXGauge.

contain kernels [32], which are susceptible to compiler tuning,
or similar workloads (Ligra, LMbench, Nbench). Figure 5
shows the trend of LLC-misses in Nbench and SPEC’17.

❸ Coverage score (higher is better): LMbench has the
highest coverage score because its workloads stress different
aspects of computing such as the memory bandwidth, IPC
bandwidth, and cached I/O bandwidth. Furthermore, it is used
for measuring the latency of different OS-related operations,
such as reading memory, issuing system calls, and handling
signals [8]. This expansive range of testing results in a wide
coverage (see Figure 6).

❹ Spread score (lower is better): Here, all the suites are
assigned a similar score. SPEC’17 performs marginally better
due to its workloads’ well-spread-out coverage of all the
parameter spaces.

B. Focused Scoring

Here, we analyze how the Perspector scores change when we
focus only on a few microarchitectural events. This analysis is
useful when researchers want to stress test a particular sub-
system instead of the complete system.

Figures 3b and 3c show the Perspector score using only
LLC-related and TLB-related events, respectively. When using
only LLC-events, PARSEC and SPEC’17 have the best cluster
score, indicating a wide spread of the workloads. PARSEC and
SGXGauge continue to dominate the trend score. LMbench

!

!

Only two
phases

(a) Nbench

Different
phases

(b) SPEC’17

Fig. 5: Trend of LLC misses for Nbench and SPEC’17.

Fig. 6: Figure showing the coverage of LMbench and SPEC’17
using the first two components of PCA [22].

still has the highest coverage score, although it gets reduced
by 66%. Similar trends are seen when using only TLB-related
events. One key change is in the coverage score. In this setting,
SPEC’17 has the highest coverage score. The coverage score
of LMbench gets reduced by 88% though.

C. Benchmark Suite Subset Generation

As mentioned before, creating a subset of a benchmark suite
is a non-trivial task. As Perspector captures a more holistic view
of a program’s execution, including phase changes, a subset
generator using the proposed m metrics will result in a subset
that closely resembles the main benchmark suite. As a proof-
of-concept, we devise a novel methodology to generate a subset
of a suite based on Latin Hypercube Sampling, or LHS [33].
The LHS method is used to efficiently sample probability
distributions in an M-dimensional sample space [33]. In our
case, the total number of dimensions is equal to the total
number of PMU counters (see Table IV). LHS divides each
dimension into fixed regions and then samples one point from
each region. The number of regions depends on the number
of points that we intend to sample [33]. Using SPEC’17 as
a representative suite, we were able to reduce the set of
43 workloads to a subset of 8 workloads using LHS. When
compared with the full SPEC suite, the deviation in scores is
minimal – just 6.53% (not shown due to space constraints).
Similar observations were made by Panda et al. [16].

V. CONCLUSION

In this work, we introduced four rigorously defined metrics
that are broadly in line with qualitative suggestions made in
prior work to measure the efficiency of a benchmark suite.
Using the metrics, we evaluated the performance of some of
the most widely used benchmark suites. We also showed how
the benchmark suites fare when we focus on only a particular

set of microarchitectural events, how they stand with respect
to each other, and how to effectively choose a representative
subset of a benchmark suite.

REFERENCES

[1] SPEC, “CPU 2017,” https://www.spec.org/cpu2017/.
[2] C. Bienia and K. Li, “Parsec 2.0: A new benchmark suite for chip-

multiprocessors,” in MoBS, 2009.
[3] A. Shukla, S. Chaturvedi, and Y. L. Simmhan, “Riotbench: An iot

benchmark for distributed stream processing systems,” CCPE, 2017.
[4] M. Copik, G. Kwasniewski, M. Besta, M. Podstawski, and T. Hoefler,

“Sebs: A serverless benchmark suite for function-as-a-service comput-
ing,” Middleware, 2021.

[5] S. Bäurle and N. Mohan, “Comb: A flexible, application-oriented bench-
mark for edge computing,” EdgeSys, 2022.

[6] N. Rajovic, N. Puzovic, L. Vilanova, C. Villavieja, and A. Ramirez, “The
low-power architecture approach towards exascale computing,” in ScalA,
2011.

[7] BYTE, “Nbench,” https://www.math.utah.edu/∼mayer/linux/bmark.html.
[8] L. McVoy and C. Staelin, “lmbench: Portable tools for performance

analysis,” in ATC, 1996.
[9] K. M. Dixit, “Overview of the spec benchmarks,” 1993.

[10] J. Zbontar, F. Knoll, A. Sriram, M. Muckley, M. Bruno, A. Defazio et al.,
“fastmri: An open dataset and benchmarks for accelerated mri,” 2018.

[11] S. Resch and U. R. Karpuzcu, “Benchmarking quantum computers and
the impact of quantum noise,” ACM Computing Surveys (CSUR), 2022.

[12] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa
et al., “In-datacenter performance analysis of a tensor processing unit,”
in ISCA’17.

[13] Y. Wang, S. Liu, X. Wu, and W. Shi, “Cavbench: A benchmark suite for
connected and autonomous vehicles,” SEC, 2018.

[14] S. Singh and M. Awasthi, “Efficacy of statistical sampling on contempo-
rary workloads: The case of spec cpu2017,” in IISWC, 2019.

[15] A. Limaye and T. Adegbija, “A workload characterization of the spec
cpu2017 benchmark suite,” ISPASS, 2018.

[16] R. Panda, S. Song, J. Dean, and L. K. John, “Wait of a decade: Did spec
cpu 2017 broaden the performance horizon?” HPCA, 2017.

[17] A. Phansalkar, A. M. Joshi, and L. K. John, “Analysis of redundancy
and application balance in the spec cpu2006 benchmark suite,” in ISCA,
2007.

[18] R. Panda and L. K. John, “Data analytics workloads: Characterization
and similarity analysis,” in IPCCC, 2014.

[19] A. Phansalkar, A. M. Joshi, L. Eeckhout, and L. K. John, “Measuring
program similarity: Experiments with spec cpu benchmark suites,” 2005.

[20] J. Shun and G. E. Blelloch, “Ligra: A lightweight graph processing
framework for shared memory,” ser. PPoPP, 2013.

[21] Denis B., “Pmu counters and profiling basics,” https://easyperf.net.
[22] I. Jolliffe, Principal Component Analysis, 2011.
[23] “Hierarchical clustering,” https://en.wikipedia.org/wiki/Hierarchical

clustering.
[24] T. Kanungo, D. Mount, N. Netanyahu, C. Piatko, R. Silverman, and

A. Wu, “An efficient k-means clustering algorithm: analysis and imple-
mentation,” IEEE TPAMI, 2002.

[25] P. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and
validation of cluster analysis,” J. Comput. Appl. Math., 1987.

[26] J. Nomani and J. Szefer, “Predicting program phases and defending
against side-channel attacks using hardware performance counters,”
HASP, 2015.

[27] D. J. Berndt and J. Clifford, “Using dynamic time warping to find patterns
in time series,” in KDD Workshop, 1994.

[28] F. Mosteller, R. Rourke, and G. Thomas, Probability with Statistical
Applications, 1961.

[29] C. Bienia, S. Kumar, and K. Li, “PARSEC vs. SPLASH-2: A Quan-
titative Comparison of Two Multithreaded Benchmark Suites on Chip-
Multiprocessors ,” in IISWC, 2008.

[30] H. Hassani and E. S. Silva, “A kolmogorov-smirnov based test for
comparing the predictive accuracy of two sets of forecasts,” Econometrics.

[31] S. Kumar, A. Panda, and S. R. Sarangi, “Sgxgauge: A comprehensive
benchmark suite for intel sgx,” in ISPASS, 2022.

[32] J. STOKES, “Behind the benchmarks: Spec, gflops, mips et al,” https:
//arstechnica.com/features/1999/04/benchmarking/, 1999.

[33] “Latin hypercube sampling - wikipedia,” https://en.wikipedia.org/wiki/
Latin hypercube sampling.

!

!

	Select a link below
	Return to Previous View
	Return to Main Menu

