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Abstract—The challenge of processing heavy-load ML tasks,
particularly CNN-based ones at resource-constrained IoT devices,
has encouraged the use of edge servers. The edge offers per-
formance levels higher than the end devices and better latency
and security levels than the Cloud. On top of that, the rising
complexity of ML applications, the ever-increasing number of
connected devices, and the current demands for energy efficiency
require optimizing such CNN models. Pruning and early-exit are
notable optimizations that have been successfully used to alleviate
the computational cost of inference. However, these optimizations
have not yet been exploited simultaneously: while pruning is
usually applied at design time, which involves retraining the
CNN before deployment, early-exit is inherently dynamic. In this
work, we propose AdaPEx, a framework that exploits the intrinsic
reconfigurable FPGA capabilities so both can be cooperatively
employed. AdaPEx first explores the trade-off between pruning and
early-exit at design-time, creating a design space never exploited in
the state-of-the-art. Then, AdaPEx applies FPGA reconfiguration
as a means to enable the combined use of pruning and early-
exit dynamically. At runtime, this allows matching the inference
processing to the current edge conditions and a user-configurable
accuracy threshold. In a smart IoT application, AdaPEx processes
up to 1.32× more inferences and improves EDP by up to 2.55×
over the state-of-the-art FPGA-based FINN accelerator.
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I. INTRODUCTION

Due to thermal and energy constraints, many IoT devices are
restricted in their processing capabilities, requiring computing-
intensive tasks to get processed elsewhere. One alternative is to
connect these devices and offload data to Edge servers, which
are physically closer than the cloud, resulting in lower latency
and increased security. Convolutional Neural Networks (CNNs)
are a representative example of such heavy tasks. They are used
for many IoT applications, from intelligent manufacturing to
smart video surveillance. However, even very powerful Edge
servers may not satisfy the current levels of efficiency demanded
by modern applications. Therefore, there is a need to not only
optimize the hardware platforms, but also to improve the CNN
models running on top of them [1–3].

With respect to CNN model optimizations, pruning [4] and
early-exit [5] have been shown to be very prominent alternatives.
Pruning removes parts of a CNN to improve performance at
the cost of accuracy, while Early-Exit adds branches to a CNN
so that the inference may finish earlier, reducing the processing
time. These techniques have already been independently and
successfully employed, but no work has shown the benefits of
combining these two optimizations. Combining these strategies
is non trivial since, traditionally, pruning is defined and applied
before the implemented CNN model is deployed (i.e., at design
time) while early-exit is a dynamic technique (i.e., works during

Figure 1. Accuracy (a) and Energy (b) w.r.t Pruning of CNVW2A2 on CIFAR10
with no Early-Exit and with Early-Exit under three Confidence Thresholds.

the inference). Therefore, the challenges lie (i) in enabling their
simultaneous use at runtime to adapt the inference processing;
and (ii) in considering their combined impact on accuracy and
inference costs.

With the aforementioned challenges in mind, we propose
AdaPEx, for Adaptive Pruning of Early-Exit CNNs, a two-
step framework that exploits the intrinsic reconfigurable nature
of FPGAs. At design time, AdaPEx automatically generates a
library of pruned early-exit models with different resource and
accuracy profiles. At runtime, AdaPEx offers a mechanism that
dynamically chooses the best pruning rate and confidence thresh-
old to adapt the inference serving, automatically reconfiguring
the FPGA as needed. With that, AdaPEx enlarges the design
options and increases the number of processed inferences with
less energy, according to the workload and accuracy demands
at a given moment.

AdaPEx exposes two optimization knobs: the pruning rate,
which controls how much of the CNN gets pruned away; and
the confidence threshold, which defines an expected level of
certainty in the CNN outputs to guide the early-exit. As will be
explained later, lower values of this threshold make more inputs
to get classified (i.e. exited) earlier, lowering the processing time.
Figure 1(a) shows the new optimization opportunities enabled
by AdaPEx. It plots the accuracy (y-axis) over pruning rates
varying from 0 to 85% (x-axis) of the CNN with no early-exit
and of the same CNN model but with early-exits, considering
three different confidence thresholds (5, 50, and 95%). They
are all executed on the FPGA accelerator FINN [6]. As we
increase the pruned portion of the CNN, accuracy naturally drops.
However, for the early-exit models, an interesting behavior
can be observed: while the classification under 5% confidence
threshold (blue curve) gives the poorest accuracy for lightly
pruned CNNs (from 0 to 45% pruning rates), when dealing with
heavier pruning rates, the 5% confidence threshold returns the
highest accuracy. The extra design space opened by AdaPEX
also impacts energy consumption, as observed in Figure 1(b),
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which gives the energy per inference (y-axis) over pruning rates
ranging from 0 to 85% (x-axis) for the same CNNs. For instance,
when setting the early-exit confidence to 50% (orange curve),
it ends up saving energy over the CNN with no early-exit for
pruning rates of up to 40% only, after that energy consumption
is increased. In this context, AdaPEx enables an important trade-
off between pruning rate and confidence threshold that allows,
for instance, recovering some of the accuracy lost from pruning
with early-exit, and saving energy with smaller, pruned, CNNs.

Concretely, this work makes the following contributions:

• Presents a novel optimization approach combining pruning
and early-exit in a single framework for exploring the
accuracy-performance-energy trade-off;

• Proposes AdaPEx: a framework that, at design time,
leverages the design space to build a library that can be
used at runtime by reconfiguring the FPGA to match to
inference processing to the current edge conditions;

• Evaluates AdaPEx against the state-of-the-art FINN ac-
celerator under an Edge server scenario, increasing the
number of processed inferences in up to 1.32× at 2.55×
reduced energy-delay product.

II. BACKGROUND

CNN Optimizations. Several optimizations have been pro-
posed to minimize CNN requirements of millions of weights
and multiply-accumulate (MAC) operations (see a sample CNN
over the yellow background in Figure 2). Notably, compression
methods, like pruning and quantization, have successfully
reduced these requirements at small accuracy costs. Pruning is
especially recommended to reduce the CNN memory footprint
and computation (i.e., MACs) at inference (see a pruned CNN
over the blue background in Figure 2). In particular, filter
pruning [4] is the technique used in this work. It removes filters
from the CNN weight matrices, creating no sparsity (keeping
memory access regular), facilitating the use of the existing
hardware infrastructure. Removing filters from a CONV layer
also reduces the number of channels of the output feature map.

While pruning is usually statically applied, offering fixed
reductions in computation and storage costs, early-exit [5, 7] is
a dynamic optimization that takes advantage of certain inputs
being “easier” to process. For these “easy” inputs, not all layers
of the CNN are needed, so it can finish earlier (i.e., in a layer
prior to the last) by following these so-called exits or branches
(connected to the CNN original layers, called backbone). See
an example in Figure 2 over the green background with a single
earlier exit. In Figure 2, two output vectors are produced that
will have length equal to the number of classes of the dataset
(e.g., 10 and 43 classes in our evaluated datasets, CIFAR-10
and GTSRB, respectively). From these output vectors (early or
not), the probability of the input being member of each class
(i.e., the actual classification) is calculated from the softmax

function: σ(y)i = eyi/
∑K

j=1
eyj for the output vector y of

K classes. When running inferences, the early-exit CNN must
decide whether or not to take earlier exits (e.g., accept the early
output vector in Figure 2). This decision is usually based on
the confidence that the current input has already been correctly
classified with the layers processed so far. Precisely, whenever
an exit outputs a classification with confidence above a certain
value (called Confidence Threshold, from 0 to 100%) the output
is accepted, and the inference is completed. Using the softmax
(same function used to get the classes probabilities) of the exit
output vector is one popular way to measure the exit confidence.
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Figure 2. Topology of a sample CNN and its pruned and early-exit versions.

So, high probability values means high confidence. Therefore,
by lowering the confidence threshold, more inputs are allowed
to get classified earlier since the expected confidence is relaxed.

FPGA-Based CNN Acceleration with FINN. In this work,
we adopt FINN [6], a state-of-the-art framework for mapping
Deep Neural Networks (e.g., CNN) to FPGA. FINN is a popular
open-source tool from Xilinx, which is being heavily used in
both academia and industry. FPGA designs synthesized by FINN
are dataflow accelerators. Dataflow (or streaming) accelerators
offer a good compromise between performance and the ability
to execute a wide range of more complex CNNs, relying on a
pipelined architecture mapping each CNN layer to a hardware
module. FINN employs hardware modules implemented as a
set of High-Level Synthesis (HLS) template classes configured
with parameters (e.g., kernel size, stride, etc) from the CNN
layer it is in charge of executing. The main HLS module in
the FINN infrastructure is the Matrix-Vector-Threshold Unit
(MVTU) that is used to map CONV and fully-connected (FC)
layers. FC layers get mapped directly to MVTU modules. CONV
layers, on the other hand, need an auxiliary module, the Sliding
Window Unit (SWU) that prepares the input feature map before
it can be multiplied with the weight matrix at the MVTU. FINN
allows the user to tune the accelerator parallelism through a
JSON configuration file specifying the number of processing
elements (PEs) and SIMD lanes of every MVTU. Therefore,
each generated dataflow accelerator is “hard-wired” to its CNN.

III. RELATED WORK

At the Edge, inference servers have been primarily used to
process CNN inferences on data offloaded from connected IoT
devices. In this context, FPGAs present a good alternative to
accelerate these incoming inferences [8–10], while consuming
less energy than GPU boards with equivalent accuracy [11], or
even superior performance [12], with small accuracy drops.

However, to cope with the demanded efficiency levels, CNN
models also need to be optimized. Pruning has been extensively
used for adapting the inference processing either on GPUs [2]
and FPGAs [10, 13]. Authors in [10] propose a framework
that adapts the inference processing by switching the pruned
model at runtime on the FPGA. In [13], a toolflow that statically
customize the CNN pruning to the underlying FPGA accelerator
is proposed. Early-exit has also been used in several works to
enable runtime adaptation. At the Edge, [1] and [14] propose
frameworks for optimizing and deploying early-exit models on
embedded GPUs. For FPGAs, [15] implements an early-exit
model by reconfiguring the FPGA at each not-taken exit to load
the next set of layers. In contrast, [16] presents a hardware-
aware tool for placing early exits in ResNets targeting the best
trade-off between accuracy and computational cost.

Wrap-up and Our Contributions. It is known that adapting
the inference processing is crucial at the Edge [1–3, 10, 14].
Until now, however, state-of-the-art works have restricted this
adaptation to a single optimization method, i.e., pruning only
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Figure 3. AdaPEx’s Workflow.

or early exiting only. One of the reasons behind it is that
these optimizations are traditionally applied at different stages
of deployment (statically pruning versus dynamically exiting).
AdaPEx advances the state-of-the-art by (i) combining pruning
and early-exit on CNNs and (ii) exploiting the FPGA reconfig-
urable capabilities to provide fully adaptive inference processing
at the Edge using these new optimization opportunities.

IV. ADAPEX

Figure 3 shows AdaPEx’s two-step workflow from the library
generation at design-time up to the inference runtime adaptation.

A. AdaPEx at Design-time

AdaPEx design-time consists of the Library Generator that
creates a library containing multiple pruned early-exit CNNs
and their accelerators. Initially, it reads the user’s CNNs/datasets
and a configuration file specifying the early exits. Then, the
generator adds the early exits to the CNN model and train the
CNNs (“Early-Exit Training” in Fig. 3). Afterward, AdaPEx
varies the pruning rate at fixed steps, gathering multiple pruned
versions of each early-exit CNN (“Dataflow-Aware Pruning”
in Fig. 3). These versions offer multiple design points on the
accuracy-resource-latency trade-off. Once the pruned models
have been exported as ONNX files, they can be passed on to the
“CNN Compilation & HLS Synthesis” that invokes the modified
FINN tool to compile the ONNX to HLS modules so that
Vivado can synthesize them. With the generated CNN models
and accelerators, the Library is created as a table containing a list
of pruned early-exit CNNs (rows) with their accuracy (extracted
on the dataset test set) as well as the throughput (in Inferences
per Second, IPS) values (extracted during synthesis). Below, we
detail the AdaPEx early-exit and pruning optimizations.

1) Early-Exit: A series of modifications to the existing
FINN/Brevitas design flow were required to enable inference
on CNN models with multiple branches (see backbone and
early exit layers in Figure 3 Library). First, early-exit models
need to be described in Brevitas, a PyTorch-based tool for
quantization-aware training from Xilinx that is part of the FINN
infrastructure. Starting from a regular CNN model, AdaPEx can
attach the early-exits to any location along the CNN topology.
Where to place and how to configure the early-exits is an active
research topic in areas like Neural Architecture Search (NAS),
Auto-ML, etc. Therefore, the user can specify how AdaPEx
adds the early exits (see “Exits Configuration” in Fig. 3), setting
the location (loc. - i.e., after which backbone layers) and the
operations (ops. - e.g., CONV, FC, etc.) of the exits, which also
enables easy exploration of the design space.

Let us take as example the CNN used as case study in
this work, the CNV, a VGG-like CNN available in FINN. We
use the CNN block structure (sequence of layers with same
configuration, see Fig. 3 Library with two sample blocks) to set

in AdaPEx the locations of each exit, making AdaPEx to add
two early exits to CNV: one after the second CONV layer (first
block) and another exit after the fourth CONV layer (second
block). As for configuring the early exits, we set AdaPEx to
appended a CONV layer (with the same configuration of the
block, number of channels, filter size, etc.) followed by a max-
pool layer with kernel size of k = ⌊DIM

2
⌋, where DIM is the

dimension of the block’s output feature map, so it significantly
reduces the map size, making FPGA synthesis feasible for the
two following FC layers (that use the same configuration as the
FC layers in the original CNV). The user configuration used
as case-study (with CONV, Max-Pool, and FC layers) follows
previous works on early-exit [5, 7].

After the model is fully defined with all its exits in Brevitas,
the model can be trained. AdaPEx uses a training procedure [5]
implemented as a Brevitas script where, instead of optimizing
for the traditional loss function (from a single exit), all exits
are simultaneously trained by optimizing for a weighted sum
of the loss functions of each exit, called Joint Loss Function:
Jloss =

∑N

n=1
wnL(ŷexitn , y, θ), where N is the number of

exits, wn the exit’s weight, and L the traditional loss function
accepting the exit’s softmax ŷexitn , ground-truth y, and the
model weights θ. Besides, as explained in Section II, AdaPEx
takes the softmax on each exit as a measure of their confidence.

From the FPGA point of view, a new HLS module had to be
developed and included in the FINN design flow, along with a
new transformation step to manage it during FPGA mapping.
This new HLS branch module performs the branches between
the CNN backbone and the early exits. FINN connects MVTU
modules (the HLS module in charge of executing each CONV
and FC layer) with AXI stream interfaces (implemented as
FIFOs, in the input/output ports of each MVTU). In that way,
the output of every HLS module corresponds to the CNN layer’s
output feature map and is fed to the next module in the dataflow.
The new branch module leverages this implementation style by
duplicating the incoming stream into two independent streams
(one feeding the backbone, the other feeding the early exit).
Therefore, some FPGA resource overhead will be observed
(mainly in terms of BRAMs), but neither backbone nor exit
throughput is undermined, and there is no risk of pipeline stalls.

2) Pruning: To prune out parts of a CNN that will be later
executed on the FPGA, AdaPEx implements in Brevitas a prun-
ing mechanism based on [10], called Dataflow-Aware Pruning,
which, besides the CNN model, takes into account properties of
the dataflow accelerator. Respecting such properties guarantees
that the pruned CNN models get synthesized to the accelerators
configured by the user. Notably, two properties in FINN have
to be met to ensure correct feeding and synchronization of all
PEs and SIMD lanes of every MVTU: the number of PEs must
divide the number of CONV filters, and the number of SIMD
lanes must divide the number of input channels.
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For each pruned model, the Dataflow-Aware Pruning takes
an initial CNN model, a user-defined FINN configuration file
(containing parameters like number of PE/SIMD in JSON
format, “FINN Config.” in Figure 3), and a pruning rate
(percentage specifying how many filters to prune). Then, for
every convolutional layer, the procedure prunes ri filters in such
a way that it respects the (chout

i − ri) mod (PEi) = 0 and

(chout
i−ri)mod (SIMDi+1) = 0 constraints, where PEi and

SIMDi+1 give the MVTU’s number of PEs and SIMD lanes of

current i and next layer i+1, respectively. chout
i gives the not-

pruned number of channels for that layer (from the initial CNN).
If the constraints are not met, the procedure iteratively decreases
ri until they are met. Then, ri filters are pruned based on their
ranking of the sum, from the floating-point representation, of
its absolute weight values (`1-norm) [4].

Two approaches can be taken when pruning an early-exit
model: pruning only the backbone layers or pruning the
backbone and the CONV layers inside each early-exit (see
backbone/exit layers in Figure 3). While the latter approach
will speed up the early exits as well as the backbone layers, it
may significantly decrease the exit’s accuracy since these exits
can be less resilient to pruning. On the other hand, the former
approach, which leaves the exits CONV layers untouched, offers
an exciting trade-off between performance and accuracy when
comparing the early to the last exits. AdaPEx supports both
approaches (which the user can set to either one or both with
the pruned flag in the Exits Configuration, see Figure 3). These
approaches will be compared in the Section VI. After pruning
the early-exit CNN, it is retrained and exported as an ONNX
file to be compiled by FINN.

B. AdaPEx at Runtime

AdaPEx’s Library is used by the Runtime Manager during
the second step (Figure 3), performing runtime adaptation of
the inference processing. Whenever a change in the workload
is flagged (possible with performance monitors added to the
software in charge of the incoming inferences), the runtime
manager searches in the library for pruning rate and confidence
threshold that are most adequate to the current workload and
the user’s accuracy threshold. Thus, it can either change the
confidence threshold, changing the acceptability of the earlier
exits (as seen above, lowering the threshold cause more inputs
to get classified earlier); or, change the pruning rate. Unlike
the confidence threshold, changing the pruning rate requires
reconfiguring the FPGA to switch the running accelerator, since,
as already mentioned, each dataflow accelerator is synthesized
(i.e. hardwired) to a particular pruned CNN. The Runtime
Manager runs along the FINN host code (executing on the
board GPP connected to the FPGA that manages the inferences,
sending new inputs and collecting results).

The search on the Library takes as input the user’s accuracy
threshold (see Fig. 3), configured before deployment, and
information on the current workload (i.e., incoming inferences
per second, IPS), sampled at runtime. The Runtime Manager
will select the models with accuracy above the threshold and
with sufficient throughput for the incoming workload (recall that
accuracy and throughput values were gathered at design-time
and are stored in the Library). Whenever there is more than
one model above threshold, the Runtime Manager will select
the one with the highest accuracy (averaged on all exits).

Figure 3 right side illustrates the Runtime Manager at work.
Plot a shows the currently selected pruning rate (orange curve)
and confidence threshold (purple curve) and b shows a workload

Figure 4. AdaPEx design space for CNVW2A2 on IPS and Joule per inference
on CIFAR-10 dataset (plots a and b) and GTSRB (plots c and d).

curve (green) and the delivered accuracy (blue). The initial
relatively low workload allows for a low pruning rate and a
high confidence threshold, resulting in high accuracy levels.
After this initial phase, an increase in workload is observed,
which the Runtime Manager counters by lowering the confidence
threshold (enabling faster inferences). Workload keeps rising
until the Runtime Manager switches the pruning rate to a higher
value, with an accelerator of a smaller area footprint and faster
processing, but also with lower accuracy levels.

V. METHODOLOGY

Accelerators used across our experiments were synthesized
within the Xilinx’s FINN design flow [6] with Vivado targeting a
Xilinx Zynq Ultrascale+ MPSoC ZCU104 board (XCZU7EV) at
100MHz. We used Xilinx Vivado for resource usage and power
extraction and Verilator RTL simulations for performance.

We adopted the CNV CNN from FINN for evaluation with
2-bits quantization (CNVW2A2). Models were adapted to the
CIFAR-10 and the German Traffic Sign Recognition Benchmark
(GTSRB) datasets. AdaPEx generates 18 models for each initial
early-exit CNN with pruning rates from 0% (not-pruned) to 85%
(5% steps). Each model generates a specific FINN accelerator.
On each pruned model, the confidence threshold can vary from
0 to 100% at 5% steps. All images consider CIFAR-10’s image
resolution (3x32x32). Accuracy results are reported on Brevitas
TOP-1 test accuracy. The early-exit training procedure follows
[5], weighting the first exit at 1.0 and the remaining at 0.3.
Early-exit models are pruned and retrained for 40 epochs [4],
with standard data augmentation and learning rate of 0.001 with
decay of 0.1. Training was performed on Intel Xeon E5-2640
with NVIDIA Tesla K20m GPU.

We base our evaluation on a typical IoT application, smart
video surveillance, with numerous cameras requesting frames
to be inferred at a local Edge server. To keep the discussion
general, we will refer to those requests as inference requests.
For that, we model 20 cameras requesting inferences at the
rate of 30 Inferences per Second (IPS) for 25 seconds. Due to
factors like IPS fluctuation, network congestion, or the variable
number of connected cameras, the rate of incoming inference
requests (workload) changes over time [17], represented as 30%
random workload deviation every 5 seconds. Experiments are
executed 100 times, and average values are reported. We have
set the maximum accuracy loss (AdaPEx’s accuracy threshold)
to 10%. Next, we evaluate performance, Quality of Experience
(here defined as the product of accuracy by the percentage
of processed frames), power, and energy of AdaPEx over the
following baselines:
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Figure 5. Accuracy (left y-axes) and latency (right y-axes) over pruned CNNs with Confidence Thresholds (C.T.) of 5, 25, 50, and 75% on plots from (a) to (d).
On plot (e), resource usage on a XCZU7EV board for the Early-Exit CNVW2WA on the CIFAR-10 dataset.

• Original FINN accelerator synthesized to off-the-shelf
CNN models;

• Pruning-Only, called PR-Only, that uses the runtime
selection presented in Sec. IV-B, but with a single (no
early) exit to evaluate the pruning benefits;

• Confidence-Only, a not-pruned early-exit model, called
CT-Only that also uses the runtime selection but adapts
the Confidence Threshold only.

VI. RESULTS

This section presents the design space enabled by combining
pruning and early-exit. It then discusses evaluation results of
AdaPEx on the aforementioned application, showing the benefits
of exploiting the new design space at runtime.

A. AdaPEx’s Design Space

Newly Created Design Space. Figure 4 presents the design
space enabled by the AdaPEx combination of pruning and early-
exit for the two evaluated datasets: CIFAR-10 (upper plots) and
GTSRB (lower plots). Figures (a) and (c) plots throughput (in
IPS) versus accuracy (y-axis) while Figures (b) and (d) give
the energy per inference versus accuracy. Design points are
generated by varying the pruning rate (P.R.) from 0 to 85%
(indicated by the size of each point) and the confidence threshold
(C.T.) from 0 to 100% (indicated by the color scale) for both
pruned exits (squares) and not pruned exits (circles). From plots
(a) and (c), we see that CNN models (and accelerators) of lower
accuracy that run faster are required to cope with high workload
levels. A similar behavior is observed on the energy plots (b
and d), but with a noticeable plateau from around 4µJ onwards
for both datasets. Beyond 4µJ, the extra energy consumed by
targeting inferences of higher accuracy is wasted. As can be
observed, it is crucial to match the CNN model, by setting
P.R. or C.T., to the current workload at runtime. This way,
no accuracy is unnecessarily lost while meeting throughput
constraints with minimal energy.

Pruned Early-Exits. One important design decision of
pruning early-exit CNNs is how to handle the exit layers, i.e.,
whether or not to prune layers in the early exits. As shown
in Figure 4, having these two options naturally enlarges the
design space, but what is more interesting is that it may also
recover some of the accuracy lost from pruning the original
CNN layers (backbone). Figure 5(a)–(d) present the average
accuracy (left y-axes) and latency (right y-axes) versus pruning
rate (x-axes) on the CIFAR-10 dataset under four Confidence
Thresholds (C.T. = 5%, 25%, 50% and 75%). Figure 5(e) plots
the FPGA resource utilization. In Pruned Exits across all plots,
the additional convolutional layers for the early-exits are pruned
at the same rate of the backbone. In Not Pruned Exits, the exits
are not pruned when added to the CNN backbone.

In terms of accuracy, not pruning early exits recovers some
of the accuracy for the more heavily pruned models especially
at lower confidence thresholds (5 and 25% thresholds in plots
(a) and (b)). The reason for this is twofold. First, note that
the layers in the pruned backbone are larger than the not
pruned exit layers. As the backbone layers get more heavily
pruned, their accuracy drops quicker than that of the early
exits. Second, the confidence threshold also plays an important
role in such scenarios. As the confidence threshold is lowered,
more inputs get classified at earlier exits, increasing their
impact in the overall accuracy/latency when the full test set is
considered. When considering latency, similar reasoning holds
for combinations of high pruning rates and low confidence
thresholds. For example, from around 50% pruning onwards in
plot (a), where the low confidence threshold causes more inputs
to exit early, we see faster inferences.

In summary, in scenarios where a high pruning rate is needed
to, for example, achieve high throughput, not pruning early exits
may help recover some of the accuracy lost in the backbone.
In high-accuracy scenarios, in turn, lightly pruned CNNs can
be used with a high confidence threshold, causing the last
(backbone) exit to be in charge of classifying most inputs. In
this case, early exits can be pruned more aggressively, reducing
resource usage without significant costs in accuracy.

FPGA Resource Utilization. Figure 5(e) plots the BRAM,
LUT, and FF resource usage w.r.t. pruning rates for “Pruned” and
“Not Pruned” early-exit CNNs. Remember that the confidence
threshold is simply used to accept output vectors and thus it
does not change any hardware configuration. For this reason, the
resource plot is valid for all confidence thresholds. As can be
seen, there is no significant difference in resource usage when
comparing pruned and not-pruned early exits for lightly pruned
CNNs (from 0 up to 20% pruning rates). This is due to the
reduced contribution of early-exits to the total resource usage of
such large models. For example, for the not-pruned early-exit
CNN (0% pruning rate), exits correspond to 15.25%, 22.58%,
and 30% of the allocated BRAMs, LUTs, and FFs, respectively.
On the other hand, for the CNN pruned at 85% the exits
represent 45%, 28.38%, and 30.82% of the accelerator BRAM,
LUT, and FFs. Meaning that as the pruning rate increases, the
exits impact on the total resource usage rises and the cost of the
“Not Pruned” (purple curves) exits become clearer in contrast
with their pruned counterparts (green curves). This is most
noticeable for the BRAM usage as this type of resource is
primarily used to implement FIFOs to store intermediate data
(i.e., feature maps), which are larger within the not pruned exits.

Wrap-Up. We see that combining pruning and early-exit
leads to highly heterogeneous design space. From Figures 4
and 5, it is clear that there are many different combinations
of pruning rate and confidence threshold, resulting in different
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Table I
AVERAGED INFERENCE LOSS, ACCURACY, LATENCY, AND POWER OVER

THE FULL 25 SECONDS RUN.

Dataset Infer. Loss[%] Accuracy[%] Power[mW] Latency[ms]

AdaPEx
CIFAR-10 0.00 80.15 1.26 3.52

GTSRB 0.00 68.80 1.31 3.04

PR-Only
CIFAR-10 11.82 85.72 1.13 4.37

GTSRB 0.00 65.38 1.09 3.79

CT-Only
CIFAR-10 12.58 86.57 1.35 4.38

GTSRB 14.01 66.09 1.37 3.63

FINN
CIFAR-10 22.80 88.74 1.16 5.19

GTSRB 23.60 70.04 1.14 5.21

accuracy, performance, and energy profiles. The challenge is
how to tap into this potential with an effective dynamic approach
at runtime. In the following section, we evaluate how AdaPEx
achieves this.

B. AdaPEx at the Edge

Table I summarizes the evaluation on the CIFAR-10 and
GTSRB datasets. It presents the rate of lost inference requests
(Infer. Loss), accuracy, power, and latency results averaged
over all executions (25s each). Results show that AdaPEx
delivers the best performance across both datasets, reporting
no inference loss, meaning 1.31× and 1.32× increase in
the number of processed inferences over the original FINN
accelerator on CIFAR-10 and GTSRB datasets, respectively.
AdaPEx also processes inference requests at latency 1.48×
and 1.72× lower than FINN on CIFAR-10 and GTSRB. The
increased performance comes at a moderate accuracy cost.
AdaPEx processed inferences with accuracy 8.59% below the
original CNN (running on FINN) on CIFAR-10 and only 1.24%
below on the GTSRB dataset. Recall that this cost is controlled
by the user through the accuracy threshold, which was set to
10% in our evaluations. It is also worth noting that early-exit
brings power costs due to the extra circuitry required by the
additional layers, see AdaPEx or CT-only power in Table I. For
example, when comparing the two baselines running not-pruned
CNNs (FINN and CT-Only), we see that adding the early exits
incurs in 16.09% and 19.63% power overhead, for CIFAR-10
and GTSRB datasets, respectively. Nevertheless, by smartly
selecting pruning rates and confidence thresholds, AdaPEx is
able to leverage such larger accelerators to deliver inferences
of higher quality and energy efficiency as discussed next.

Figure 6 plots the Quality of Experience (QoE curves)
and the averaged Energy-Delay Product (EDP) w.r.t original
FINN accelerator (bars) averaged over all executions. With
QoE (defined as the product of accuracy by the percentage
of processed frames) we can assess the overall inference
serving quality by measuring the performance-accuracy trade-off.
AdaPEx achieves the highest QoE levels among all baselines,
increasing QoE over FINN by 11.72% and 15.27% on the
CIFAR-10 and GTSRB datasets, respectively. This is because
the accuracy loss due to pruning is in part compensated by tuning
the confidence threshold (as discussed in Subsection VI-A).

For example, considering the first run on the GTSRB dataset,
AdaPEx changed the pruning rate four times (between 5, 20, and
30% pruning rates, requiring four FPGA reconfigurations that
took 580 ms in total). With these pruning rates, four confidence
thresholds (30, 40, 55, and 60%) were used. Such trade-off can
only be exploited by AdaPEx since it simultaneously searches for
the best match between pruning rate and confidence threshold.

Regarding energy efficiency, AdaPEx shows also a highly
positive impact. Figure 6 bars show that AdaPEx reduces the
average EDP in 2× on CIFAR-10 and 2.55× on GTSRB w.r.t
original FINN accelerator. In general lines, by selecting pruned

Figure 6. Average EDP normalized w.r.t original FINN accelerator (bars) and
QoE (curves) for CIFAR-10 and GTSRB datasets.

early-exit CNNs, AdaPEx gets the best from both optimizations,
resulting in a overall efficiency higher than the baselines pruning
only (PR-Only that cannot exploit easy images to lower the
latency) or early exiting only (CT-Only that cannot alleviate
some the power cost of large models).

VII. CONCLUSIONS

We showed that combining pruning and early-exit enlarges
the design space; and, that with a simple, and yet effective,
adaptation mechanism these optimizations can be used dynami-
cally. The approach grants AdaPEx inferences of higher quality
(up to 15% higher QoE) and energy efficiency (up to 2.55×
lower EDP) compared to a state-of-the-art CNN accelerator.
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