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Abstract—In logic circuits, the number of fanouts a gate
can drive is limited, and such limits are tighter in emerging
technologies such as superconducting electronic circuits. In this
work, we study the problem of resynthesizing a logic network with
bounded-fanout gates while minimizing area. We 1) formulate this
problem for a fixed target logic depth as an integer linear program
(ILP) and present exact solutions for small logic networks,
and 2) propose a top-down approach to construct a feasible
solution to the ILP which yields an efficient algorithm for fanout
bounded synthesis. When using the minimum depth achievable
with unbounded fanouts as the target logic depth, our top-down
approach achieves 11.82% better area as compared to the state-
of-the-art with matching or better delays.

Index Terms—Fanout-bounded synthesis, Integer linear pro-
gram, Emerging technologies

I. INTRODUCTION

In digital electronics, the ability to have multiple fanouts
per gate enables compact implementations of complex logic
functions. However, increasing the number of fanouts of a gate
can deteriorate delay performance, and a gate can only support
a bounded number of fanouts. Thus it is important to develop
synthesis algorithms to effectively utilize fanouts.

In the conventional CMOS technology, fanout optimization
has been well-studied, both as a method to improve the critical
path delay [1]–[5] and as a method of optimizing special high-
fanout nets such as clock and reset signals [6]. However, the
techniques developed for CMOS technology are not generally
transferable to many emerging technologies such as supercon-
ducting electronics (e.g., AQFP [7], RQL [8], RSFQ [9]) and
spintronics [10], which generally have tight, explicit fanout
bounds and/or significantly different timing models (clocked
gates, for example). Thus the allowed circuit transformations
in such technologies can be fundamentally different due to lack
of techniques analogous to transistor sizing, and hence fanout
bounded synthesis is considered early in the design process for
emerging technologies. Notably, in superconducting electronic
technologies, splitters are needed to drive multiple fanouts.
However, we can model splitters as buffers with a fanout
capacity of at least two, thus encompassing such scenarios
under generic fanout bounded synthesis considered in this work.

We consider the problem of resynthesizing a logic network
to meet given fanout bounds by means of gate duplication and
buffer insertions such that the total area is minimized, which we
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refer to as fanout bounded synthesis (FBS). An early theoretical
work on FBS by Hoover et al. [11] presented an algorithm that
achieves only a constant factor increase in both the total number
of gates and the depth. Recently, Zhang and Jiang [12] revisited
the problem of FBS targetting emerging technologies and used
several heuristics to obtain a non-trivial algorithm for FBS in
the unit delay model. (Unit delay model is an apt timing model
for technologies with clocked gates such as adiabatic quantum-
flux parametron (AQFP) [13].)

To elaborate, the algorithm of [12] first computes the num-
ber of duplicates for each gate using a recursive evaluation
procedure to check if duplicating reduces buffers without
significantly affecting the delay. Next, for each node in the
reverse topological order, “skewed” buffer trees are constructed
using an algorithm similar to that of [14]. Finally, for nodes
that are equivalent, their buffer trees are considered together
and the load is redistributed. This step does not alter the levels
of the nodes but may remove some unnecessary nodes from
the collection of duplicates. However, the algorithm of [12]
does not always achieve the same minimum possible delay as
the original, fanout unbounded network. Moreover, the skewed
buffer tree construction yields the locally optimal depth for the
buffer tree only when the fanout bound is 2, but we notice that
it can be generalized to higher fanout limits by initializing the
priority queue as shown by Golumbic [15]. Furthermore, the
algorithm does not specify how duplicated copies are assigned
to the original fanouts; if not done properly, this can yield
sub-optimal results. Finally, buffer-forest rebalancing does not
always give the locally-optimal structure as it is performed only
after fixing the levels of duplicated nodes.

In this work, we mitigate the above shortcomings by taking
a rigorous approach. We first formulate the FBS problem for a
target delay D as an integer linear program (ILP) and solve
it for small logic networks to find the optimum area. We
then present a top-down approach to find a feasible (though
not necessarily optimal) solution to the ILP together with an
algorithm to construct a fanout-bounded logic network from
any feasible solution to this ILP. A simple version of the
proposed top-down approach achieves ∼10.9% better area in
comparison to [12] on the same EPFL benchmarks while an
improved version of our algorithm yields ∼11.8% better area.
We remark that for all benchmarks, our approach achieves
matching or better delays as compared to [12] as our algorithms
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always achieve the same delay as the original fanout unbounded
network. In this work, we use and-inverter graphs (AIGs) as
the preferred logic representation in order to perform a fair
comparison with [12], and we use the same assumption that
primary inputs have no fanout bounds. However, our approach
is generalizable to other graph representations and can be
extended to support fanout bounds on primary inputs as well.

Organization of the paper: Section II summarizes concepts
useful to better understand our work and Section III discusses
the ILP formulation and presents our top-down FBS algorithm.
Section IV presents experimental results, and Section V con-
cludes the paper with a brief discussion.

II. BACKGROUND

This section gives background on and-inverter graphs
(AIGs), the unit delay model, and node equivalence.

A. And-Inverter Graphs

The and-inverter graph (AIG) is a directed acyclic graph
(DAG) representation of logic where nodes represent primary
inputs or 2-input AND gates, and edges can be inverted or
regular indicating the presence or absence of inverters. The AIG
is a universal representation (i.e., AIGs can represent arbitrary
logic functions), and is supported by numerous logic synthesis
tools and libraries such as ABC [16].

B. Unit Delay Model

In this work, we use the unit delay model where each gate
incurs a unit delay. The arrival time (or level) of a node n,
denoted by tarrn , is defined to be 0 if n is a primary input
and 1 + maxm∈FI(n) t

arr
m otherwise where FI(n) is the fanin

nodes of n. The overall circuit delay (i.e., circuit depth) is
the maximum arrival time of any primary output. For a given
target delay D, the required time of a node n denote by treqn

is defined to be D if all fanouts of n are primary outputs and
minm∈FO(n) t

req
m − 1 otherwise, where FO(n) is the fanout

nodes of n. A critical path is an input-to-output path of nodes
where each node n on the path satisfies treqn = tarrn .

C. Node Equivalence

We say two nodes in a logic network are equivalent if their
outputs are the same under all possible values of primary
inputs. If two or more nodes are equivalent, their fanouts can
be redistributed among themselves without altering the overall
functionality of the network. As identifying all such node
equivalences is computationally expensive, the equivalence is
often considered with respect to a small cut. An example of
this is structural hashing which was originally used in IBM
CAD tools [17]; For AIGs, a widely used structural hashing
technique is to identify gates with signatures consisting of their
fanins (including flags denoting the presence of inverters).

In this work, we use an AIG data structure that internally
uses structural hashing to avoid multiple equivalent nodes in the
input network. However, for the output circuit, the algorithm
may need some explicitly duplicated gates, thus we disable
structural hashing for the output network.

III. FANOUT-BOUNDED SYNTHESIS

In this section, we first present our ILP formulation of FBS
and then present our top-down algorithm.

A. Optimum Fanout-Bounded Synthesis ILP Formulation

We formulate the minimum area FBS problem for a prede-
fined depth bound D as an ILP. We remark that our ILP does
not consider logic restructuring; instead, it determines how to
duplicate gates and add buffers to the original network in the
best possible way to meet the fanout bounds.

Let I be the set of all primary inputs of the input network,
let G be the set of all gates, and let N = I ∪ G be
the set of all nodes. For example, in the example network
shown in Fig. 1, I = {i1, . . . , i4}, G = {n1, . . . , n7} and
N = {i1, . . . , i4, n1, . . . , n7}. For a node n ∈ N , let FO(n)
be the fanout nodes of n. Let kn be the number of primary
outputs directly connected to node n. Thus, for example, for the
network in Fig. 1, we have FO(n1) = {n3, n4} and FO(n3) =
{n4, n5, n6}, and kn2 = kn4 = kn5 = kn6 = kn7 = 1. Let cg
and cb be the area of a gate and a buffer and let fg and fb be
the fanout capacity of a gate and a buffer.

Let n ∈ N be a node in the input logic network. We say a
node m in a fanout bounded version is n-equivalent if one of
the following holds:

1) n is a primary input and m is the corresponding primary
input in the fanout bounded version,

2) n has fanins n1, n2 and m has fanins m1,m2 such that
m1 is n1-equivalent and m2 is n2-equivalent, or

3) m is a buffer such that its fanin m1 is n-equivalent.
Note that by the third criterion, any buffer in a buffer tree rooted
at an n-equivalent gate is also n-equivalent. According to this
definition, in the network shown on the right of Fig. 1, there
are two n1-equivalent gates and two n3-equivalent gates (rep-
resented by overlapping circles). The two buffers represented
as triangles in level 2 are also n2-equivalent.

1) Variables: We use two kinds of integer variables. For
each node n ∈ G and for each level ℓ ∈ {0, . . . , D}, the
variable gn,ℓ denotes the number of n-equivalent gate copies
in level ℓ in the fanout bounded version. Similarly, the variable
bn,ℓ denotes the number of n-equivalent buffers in level ℓ in
the fanout bounded version. For example, for the logic network
shown on the left of Fig. 1, the introduced variables take the
following values: gn1,1 = 2, gn2,1 = 1, gn3,2 = 2, gn4,3 =
1, gn5,3 = 1, gn6,3 = 1, gn7,3 = 1, bn2,2 = 2 and gn,ℓ = 0 for
all unspecified variables gnq,ℓ with q ≤ 7 and ℓ ≤ 3.

ℓ = 1

ℓ = 2

ℓ = 3

ℓ = 4

n1 n2

n3

n4 n5 n6 n7

ℓ = 1

ℓ = 2

ℓ = 3

ℓ = 4

i1 i2 i3 i4

o1 o2 o3 o4 o5

n1 n2

n3

n4 n5 n6 n7

i1 i2 i3 i4

o1 o2 o3 o4 o5

Fig. 1: Example logic network (left) and a possible fanout
bounded version assuming a fanout limit of 2 (right).
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2) Constraints: Next, we introduce constraints to ensure that
the variables correspond to a valid fanout bounded version
of the input network. To this end, consider a fixed level
L ∈ {1, . . . , D} and a fixed gate n ∈ G. Let a(n,L) denote
the total fanout capacity of all n-equivalent gates/buffers that
are placed in levels strictly less than L, namely a(n,L) =∑L−1

ℓ=0 (fb · bn,ℓ + fg · gn,ℓ). Let r(n,L) be the total fanout
requirement of n-equivalent gates/buffers by all gates and
buffers in level L or below. Note that each copy of a fanout
of an n-equivalent gate and each n-equivalent buffer increases
the fanout requirement by one. Thus we have r(n,L) =∑L

ℓ=1

(
bn,L +

∑
m∈FO(n) gm,L

)
.

Now, observe that in any variable assignment that corre-
sponds to a valid fanout bounded version with depth D, it must
hold that a(n,L) ≥ r(n,L) for all n ∈ G and L ∈ 1, . . . , D.
One can easily verify this for L = 1; for any gate n ∈ G,
its fanouts can never be in the same level, thus both r(n, 1)
and a(n, 1) are zero. Suppose that a(n,L) ≥ r(n,L) holds
for any valid depth-D fanout bounded version. We inductively
show that a(n,L+ 1) ≥ r(n,L+ 1) must also hold. The total
number of connections between n-equivalent gates/buffers and
their fanouts that must cross the boundary between level L and
L+1 is at least

∑
m∈FO(n) gn,L+1+bn,L+1. The total remaining

capacity of n-equivalent gates/buffers that are at levels below
L is a(n,L) − r(n,L). Thus the additional capacity needed
for the crossing connections must be provided by n-equivalent
gates/buffer at level L. Namely, we must have fg · gn,L +
fb · bn,L ≥

∑
m∈FO(n) gn,L+1 + bn,L+1 − (a(n,L)− r(n,L)),

which yields a(n,L+1) ≥ r(n,L+1) after rearranging. Next,
there must be sufficient capacity remaining in n-equivalent
gates/buffers to support the primary outputs (if any). Namely,
for all n, it must hold that a(n,D + 1)− r(n,D) ≥ kn.

We thus get the following ILP formulation for FBS under a
predetermined depth bound D, where the objective function is
to minimize the total area.

Minimize
∑

n∈G

∑D
ℓ=1(cg · gn,ℓ + cb · bn,ℓ) subject to

a(n,L)− r(n,L) ≥ 0 ∀n ∈ N, 1 ≤ L ≤ D,

a(n,D + 1)− r(n,D) ≥ kn ∀n ∈ N,

gn,0 = 0, bn,0 = 0 n ∈ N,

gn,L, bn,L ∈ Z ∀n ∈ N, 1 ≤ L ≤ D.

Let OPT be the optimum area of a fanout bounded version
of the input network with maximum depth D. As any valid
network corresponds to a feasible ILP solution, the value of the
ILP is at most OPT. We now give an algorithm (Algorithm 1)
to construct the corresponding depth-D fanout bounded version
of the input network from any feasible ILP solution, thus
showing that our ILP in fact finds the optimal area.

The algorithm first sorts all variables gn,ℓ, bn,ℓ in the increas-
ing order of ℓ. Then, considering the variable values in that
order, construct the gn,ℓ gate copies or bn,ℓ buffers in a new
network. To do so, for each n ∈ N , the algorithm maintains
a queue of currently constructed n-equivalent gates/buffers
together with their remaining fanout capacities. Each time it
uses such node, it decrements the remaining capacity; once it

Algorithm 1: Algorithm for constructing a fanout
bounded network using a feasible solution to the ILP.

input : Input network ntk, parameters fg, fb, and a feasible ILP
solution gn,L, bn,L for n ∈ N and 0 ≤ L ≤ D.

output: A fanout bounded version of ntk.
1 Let newsig be a map from nodes in ntk to a queue of pairs (new

node, remaining capacity)
2 for all p ∈ primary inputs of ntk do
3 newsig[p]← newntk.create pi()

4 Let data be an empty list.
5 for all nonzero gn,L do Add (L, n, “gate”) to data
6 for all nonzero bn,L do Add (L, n, “buff”) to data
7 Sort data in the ascending order of levels.
8 for all (ℓ,m, t) ∈ data in the ascending order of levels do
9 if t = “gate” then

10 Look up fanins of m in newsig.
11 newgate ← Create a new gate by choosing the first available

equivalent fanins in newsig.
12 Decrement the remaining capacity for used fanin nodes and

remove them from the queue if the remaining capacity
reach zero.

13 newsig[m].push((newgate, fg))

14 else
15 newbuff ← Create a new buffer by choosing the first

available equivalent node in newsig[m].
16 Decrement the remaining capacity for the used fanin.
17 Pop from newsig[m] if remaining capacity is zero.
18 newsig[m].push((newbuff, fb))

19 return the constructed network.

reaches zero, the gate/buffer is removed from the queue. Since
the algorithms constructs nodes in a level-by-level fashion
using a feasible variable assignment that satisfies availability-
requirement constraints, we can see that the algorithm always
has sufficient equivalent signals in the corresponding queues
when executing Line 11 and Line 15.

Remark: Recall that, in technologies such as AQFP, there
is an additional requirement that the inputs of each gate
must arrive at the same time. In our ILP formulation, this
is easy to ensure; we simply re-define a(n,L) and r(n,L) to
be, respectively, the available fanout capacity by n-equivalent
nodes in level L − 1 and the required fanout capacity of n-
equivalent nodes due to nodes in level L.

B. Top-Down Fanout-Bounded Synthesis

Although solving the ILP introduced in Section III-A gives
the optimal solution, solving it optimally for large networks can
be prohibitively expensive in general. Thus we now show how
to find a good (but not necessarily optimal), feasible solution
to the ILP using a top-down approach.

Namely, we consider the gates n ∈ G in the reverse
topological order, and for each n in this order, determine
values for gn,L and bn,L such that a(n,L) − r(n,L) ≥ 0
and a(n,D + 1) − r(n,D) ≥ kn are satisfied. Note that by
considering nodes in the reverse topological order, when we
consider a node n, we already know the levels of all fanouts
of n-equivalent gates/buffers except for those fanouts that arise
due to fanins of n-equivalent buffers. We call those fanouts
external fanouts of n-equivalent gates/buffers.

Observe that duplicating a gate will increase the fanout
requirement of two (or more if using higher-fanin gates) other
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Algorithm 2: Algorithm for determining gn,L and bn,L
values for a node n ∈ N , given ℓmin

n and the levels of
all external fanouts of n-equivalent gates/buffers.

input : Input network ntk, parameters fg, fb, a node n, tarrn , and a
list folevn of levels of n’s fanouts.

output: Values of gn,L, bn,L variables for L = 1, . . . , D.
1 Set gn,L, bn,L = 0 for all L
2 for t = 1 to length(folevn) do
3 Let rem← length(folevn)− t · fg
4 if rem ≤ 0 then
5 for i = 1 to length(folevn) in steps of fg do
6 Increment gn,folevn[i]−1.
7 return variable values

8 s← rem mod (fb − 1)
9 if s > 0 then

10 Add fb − s many copies of ∞ to folevn (i.e., dummy
fanouts with unbounded required time).

11 Use the skewed buffer tree construction from [12] until we have
t buffer trees.

12 if the root levels of all buffer trees are at least tarrn then
13 Set gn,L and bn,L according to the construction.
14 return variable values

nodes. In contrast, adding a buffer only increases the fanout
load by one. Moreover, it is natural to assume that the area
of a buffer is not more than that of a gate, and the fanout
capacity of a buffer is usually more than that of a gate. Thus,
when determining the values for gn,L and bn,L, our top-down
approach prefers buffers over gate-duplication.

However, we cannot completely eliminate gate duplication
because the addition of buffers can increase the critical path
length. Recall that tarrn is the minimum level for node n even if
we assume unbounded fanout capacities. Thus, for any ℓ < tarrn ,
setting gn,ℓ to a non-zero value makes the solution infeasible.
Similarly, for any ℓ ≤ tarrn , setting bn,ℓ to a non-zero value also
makes the solution infeasible.

Given a gate n ∈ G, the levels of external fanouts of n-
equivalent gates/buffers, and the minimum possible level of n
(i.e., tarrn ), we use Algorithm 2 to determine the values of gn,L
and bn,L variables. We run Algorithm 2 for each node in the
reverse topological order to determine values of gn,ℓ and bn,ℓ
for all gates n ∈ G, and then use Algorithm 1 to construct the
corresponding fanout bounded network.

Our top-down approach is fundamentally different from the
work of Zhang and Jiang [12]. In [12], a set of n-equivalent
gates and their corresponding levels are already determined

n n

n

n

n

ℓ = 4

ℓ = 5

ℓ = 6

ℓ = 7

(a) (b) (c) (d)

Fig. 2: A fanout net for a node n with levels of fanouts already
decided (a), two possible outcomes for the fanout net of n if
the algorithm of [12] is used (b and c), and the optimum buffer
tree for n (d) when fb = fg = 3 and cg > cb.

when the buffer-forest rebalancing algorithm is run. This can
lead to some redundant gate copies that remain in the network
even after rebalancing is performed. In contrast, our algorithm
only creates as many n-equivalent gates as we absolutely need
(and decides their levels), thus redundant gate copies are never
created. Moreover, in the “skewed buffer tree construction”
and “buffer-forest rebalancing” algorithms of [12], there can be
situations where it does not construct the best buffer tree/forest
when fg, fb > 2 and cg > cb. To see this, suppose that
fg = fb = 3 and cg > cb and consider the fanout net of
Fig. 2 (a). The algorithm of [12] may either duplicate n to
produce the structure of Fig. 2 (b) with cost 2 · cg or it may
construct the skewed buffer tree of Fig. 2 (c) where n is placed
at level 4. However, the buffer tree shown in Fig. 2 (d) is better
than both the options; it has a lower area than the one in Fig. 2
(b) and gives a better placement for node n than the one in
Fig. 2 (c). In contrast to [12], our algorithm always constructs
the optimum buffer forest for given levels of external fanouts
and tarrn . Namely, for r = 1, 2, . . ., we consider r copies for
the root gate, employ a modified version of the algorithm of
Golumbic [15] to derive r buffer trees, and find the minimum
value of r such that roots of all trees meet the arrival time
requirement.

C. Allowing Over-Duplication

The previous sections explained how to find the smallest
buffer forest for a given fanout net without increasing the
circuit delay, where we preferred buffers over gate duplication.
Consider a scenario where we may have the option of placing
two copies of a node n at level tarrn + 1, but we end up
placing a single copy of n at level tarrn as we locally minimize
duplication. However, this can force duplication of more than
one of n’s fanin nodes as their fanout nets might not have
enough room to add buffers. However, we might avoid all those
duplicates if we had duplicated n instead.

Motivated by this, we now present an improved version of
our top-down approach which we call top-down with over-
duplication. Namely, for the fanout net of a given node n,
instead of stopping the algorithm Algorithm 2 at minimum
possible number of trees t, we continue increasing t and
construct the corresponding buffer forests. For each such buffer
forest, we consider the overall area incurred by the fanout net
of the considered node and the fanout nets of its fanin nodes,
assuming that we do not use over-duplication for those fanin
nodes. Then for node n, we choose the buffer forest that gives
the minimum overall area computed in the above step.

There are two issues with this approach: First, due to the top-
down implementation, when considering node n, all levels of its
fanouts (including their potential copies) are known. However,
for a fanin m of n, there can be some fanouts that are yet to
be considered by the algorithm, and hence their final levels are
not known. Secondly, Suppose that a node m has k fanouts.
For each of those fanouts, the cost of the fanout net of m
will be re-evaluated multiple times. I.e., the fanout net of m
is evaluated at least k-times. Since each evaluation also takes
time at least linear in k, the total work involved in evaluating a
node’s fanout net can be very expensive for high-fanout nodes.
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TABLE I: Exact fanout-bounded synthesis results using ILP
from Section III-A solved with Gurobi optimizer [18].

Input network Output network

Benchmark Gates Levels Gates Buffers Total Levels Time(s)

adder 1019 255 1021 126 1147 255 8538.26
bar 3141 12 3901 0 3901 12 242.97
cavlc 662 16 733 13 746 16 12.14
ctrl 108 8 123 3 126 8 0.24
dec 304 3 768 0 768 3 0.21
i2c 1162 15 1255 113 1368 15 59.27
int2float 214 15 224 7 231 15 2.76
router 177 19 180 5 185 19 1.52
adder1 7 4 7 0 7 4 0.01
adder8 77 17 78 7 85 17 0.37
mult8 439 35 447 13 460 35 1129.73
counter16 49 13 55 4 59 13 0.10
counter32 125 19 139 11 150 19 2.55
counter64 285 25 311 28 339 25 11.71
counter128 613 31 650 76 726 31 67.21
c17 6 3 6 0 6 3 0.03
c432 121 26 136 6 142 26 1.92
c499 387 18 410 42 452 18 8.15
c880 306 27 322 28 350 27 16.84
c1355 388 17 412 44 456 17 3.92
c1908 286 21 318 32 350 21 6.31
c2670 169 9 178 9 187 9 0.33
c3540 789 32 905 127 1032 32 3521.49
c5315 1294 26 1403 118 1521 26 553.95
c7552 1385 33 1562 192 1754 33 1335.10
sorter32 480 15 512 0 512 15 4.31
sorter48 984 25 984 64 1048 25 68.47

To circumvent the first issue, we propose to use a proxy
level for the so-far unconsidered nodes; namely, we use their
maximum possible level (i.e., the required time) as the proxy
level. To mitigate the effects of the second issue, we set a
constant bound Fmax (e.g., 10) and ignore nodes with more
than Fmax fanouts when computing the overall area impact.

IV. EXPERIMENTAL RESULTS

In this section, we present the experimental results obtained
from our ILP formulation and the top-down FBS algorithm and
compare the results against those of [12].

First, for a set of small benchmarks, we use the ILP to find
the exact solutions; Using the minimum possible circuit delay
for the fanout-unbounded input network as the delay bound, we
write the ILP introduced in Section III-A, and solve it using
Gurobi optimizer [18] using an academic product license. In
the ILP formulation, we use the same setting as [12] where we
have a fanout bound of 2 and unit-area AND gates and buffers.
The experiment was run on a MacBook Pro M1 with 10 cores
of CPU, 16 cores of GPU, and 32 GB of RAM. The results are
shown in Table I. The first 8 benchmarks are from the EPFL
logic synthesis benchmarks suite [19] whereas the rest of the
benchmarks are a subset of those used in [20].

Next, we evaluate our algorithm on the benchmarks of [20].
As we show in Table II, our initial top-down approach already
achieves the optimum on several benchmarks. With over-
duplication allowed, our approach performs even better and
achieves results that are optimum or closer to optimum on some
additional benchmarks. We recall that both our approaches do
not increase the number of logic levels of the input network
(computed with no restrictions on the number of fanouts).

TABLE II: Results of the top-down fanout bounded synthesis
on benchmarks of [20].

Naive top-down With over-duplication

Benchmark Gates Buffers Total Gates Buffers Total

adder1 7 0 7 7 0 7
adder8 77 8 85 77 8 85
mult8 441 19 460 441 19 460
counter16 52 7 59 52 7 59
counter32 130 20 150 130 20 150
counter64 298 41 339 298 41 339
counter128 638 88 726 638 88 726
c17 6 0 6 6 0 6
c432 132 13 145 134 9 143
c499 409 44 453 410 42 452
c880 306 47 353 306 47 353
c1355 412 44 456 414 42 456
c1908 314 44 358 314 44 358
c2670 172 18 190 172 18 190
c3540 819 256 1075 825 237 1062
c5315 1311 288 1599 1378 153 1531
c6288 1903 7 1910 1903 7 1910
c7552 1393 420 1813 1422 364 1786
sorter32 512 0 512 512 0 512
sorter48 984 64 1048 984 64 1048
alu32 1512 434 1946 1513 432 1945

We then present the results (Table III) of our top-down
algorithm on the full set of EPFL benchmarks, together with
the results of [12] for a comparison. Similarly to [12], our
algorithm was also run after one round of resyn2 command
in ABC. Note that the quality of results (QoR) measure used
in [12] is slightly different, and if we were to use their QoR
measure on our results, our approach would score even higher.
Namely, the QoR measure used in [12] is size(G)/size(G′)+
depth(G)/depth(G′) where G is the original input network
and G′ is the fanout bounded version produced by the algo-
rithm. In our approach, the depths of G and G′ are always
equal, whereas in [12], depth(G) ≤ depth(G′) with strict
inequality for some benchmarks (e.g., “sqrt”).

In our top-down approach (without over-duplication), the
average improvement over all standard EPFL benchmarks is
10.93%. However, for benchmark “bar”, our algorithm’s result
is 12.2% worse. Remarkably, combining the top-down algo-
rithm with the over-duplication step from Section III-C achieves
the same results as [12] for that benchmark, while increasing
the average improvement over all EPFL benchmarks to 11.82%.
Notably, our method results in fanout bounded circuits that are
much closer to the optimum results on several benchmarks (e.g.,
on benchmarks adder, cavlc, int2float, and router).

As per the running time, both our top-down algorithms can
be implemented to run in O(n log n) time where n is the size
of the input network, and hence it scales well to large networks.
The over-duplication version is only a constant factor slower
(recall that we restrict over-duplication to nodes with a constant
number of fanouts) than the naive top-down version due to the
recomputation of costs in the over-duplication step.

V. CONCLUSION

In this work, we formulate the problem of FBS for a fixed
target delay as an ILP, and we show how to find a feasible solu-
tion to the ILP using a top-down approach. As compared to the
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TABLE III: Results of the top-down fanout bounded synthesis algorithm on EPFL benchmarks.

Input network Output of [12] Output (top-down) Output (top-down with over-duplication)

Benchmark And gates Levels Total gates Levels And gates Buffers Total gates Impr.% Time (s) And gates Buffers Total gates Impr.% Time (s)

adder 1019 255 1273 255 1020 128 1148 9.82 0.00 1020 128 1148 9.82 0.08
arbiter 11839 87 22911 87 11839 10176 22015 3.91 0.01 11839 10176 22015 3.91 0.04
bar 3141 12 3901 12 3425 952 4377 -12.20 0.00 3901 0 3901 0.00 0.01
cavlc 662 16 840 16 663 128 791 5.83 0.00 677 100 777 7.50 0.00
ctrl 108 8 147 8 108 26 134 8.84 0.00 114 14 128 12.93 0.00
dec 304 3 768 3 768 0 768 0.00 0.00 768 0 768 0.00 0.00
div 40772 4361 79413 4365 41087 12126 53213 32.99 0.04 41131 12038 53169 33.05 1.72
hyp 211330 24794 332744 24817 211458 45199 256657 22.87 0.20 212237 43641 255878 23.10 41.01
i2c 1162 15 1530 15 1162 264 1426 6.80 0.00 1171 247 1418 7.32 0.01
int2float 214 15 251 15 214 23 237 5.58 0.00 216 19 235 6.37 0.00
log2 29370 376 56617 376 29893 15018 44911 20.68 0.03 29857 15045 44902 20.69 1.08
max 2834 204 4157 206 3094 997 4091 1.59 0.00 3096 993 4089 1.64 0.09
mem ctrl 45614 110 63788 110 45662 15326 60988 4.39 0.04 46140 14642 60782 4.71 2.18
multiplier 24556 262 31930 262 24567 7011 31578 1.10 0.02 24618 6909 31527 1.26 0.90
priority 676 203 795 203 676 59 735 7.55 0.00 676 59 735 7.55 0.05
router 177 19 222 19 177 8 185 16.67 0.00 177 8 185 16.67 0.00
sin 5039 177 10329 178 5415 2747 8162 20.98 0.01 5431 2677 8108 21.50 0.13
sqrt 19437 4968 32141 5449 20152 9432 29584 7.96 0.02 20152 9432 29584 7.96 0.65
square 16623 248 27556 248 16625 1533 18158 34.11 0.01 16720 1343 18063 34.45 1.44
voter 9756 57 13158 58 9810 1185 10995 16.44 0.01 9810 1185 10995 16.44 0.06
sixteen 11976864 99 24461292 99 11976864 9510308 21487172 12.16 23.61 12084231 9443891 21528122 11.99 527.31
twenty 15317374 86 31481612 86 15317374 12493285 27810659 11.66 29.84 15460597 12411371 27871968 11.47 520.78
twentythree 17168790 94 35358029 94 17168790 14056097 31224887 11.69 32.97 17316727 13968865 31285592 11.52 655.45

Average 10.93 11.82

state-of-the-art, our top-down algorithm with over-duplication
achieves 11.82% improved area while achieving matching or
better delays. Both our ILP and the top-down approach are very
versatile and can be adapted to consider additional technology-
specific constraints in emerging technologies such as the path
balancing constraints of the AQFP technology.

We hope that our ILP would serve as a theoretical basis for
future research in FBS for emerging technologies with hard
fanout constraints. The exact results produced by the ILP serve
as the ground truth for evaluating future FBS algorithms.

Our over-duplication heuristic with a local cost function
helps in improving overall area reduction as compared to the
simple top-down approach. We believe this motivates further
research on whether there are other efficiently computable such
heuristics that yield even better results.
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