2023 Design, Automation & Test in Europe Conference (DATE 2023)

ChiselFV: A Formal Verification Framework for
Chisel

Mufan Xiang', Yongjian Li** , Yongxin Zhao!**
t Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai, China
! State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China

Abstract—Modern digital hardware is becoming ever more
complex. And agile development, an efficient idea in software
development, has been introduced into hardware. Furthermore,
as a new hardware construction language, Chisel helps to raise
the level of hardware design abstraction with the support of
object-oriented and functional programming. Chisel plays a cru-
cial role in future hardware design and open-source hardware
development. However, the formal verification for Chisel is still
limited. In this paper, we propose ChiselFV, a formal verification
framework that has supported detailed formal hardware property
descriptions and integrated mature formal hardware verification
flows based on SymbiYosys. It builds on top of Chisel and uses
Scala to drive the verification process. Thus the framework can
be seen as an extension of Chisel. ChiselFV makes it easy to verify
hardware designs formally when implementing them in Chisel.

Index Terms—Hardware verification, Formal methods, Hard-
ware description language, Chisel

I. INTRODUCTION

Over the past several years, hardware design has grown to
be ever more and more complex. The increased demand for
high-performance computing systems has led to a larger need
for domain-specific hardware accelerators [1]. The dominant
traditional hardware description languages (HDLs), Verilog
and VHDL, were initially developed as hardware simulation
languages and were only later adopted as a basis for hardware
synthesis. So these languages lack the powerful abstraction
facilities common in modern software languages, leading to low
productivity because it is difficult to reuse components. Chisel
[2], a Scala-embedded hardware construction language, was
introduced to lift digital circuit description to a more software-
like high-level language [3]. Chisel attempts to solve these
problems by providing functional and object-oriented program-
ming support. With these features, Chisel supports advanced
hardware design using highly parameterized generators and
improves the abstraction level of hardware design. However,
Chisel lacks the powerful and easy-to-use formal verification
support that is mature in traditional HDLs.

In hardware development, because of the high cost of trial
and error, verifying the correctness of the design is essential,

*Corresponding authors

This work is supported by National Key Research and Development Program
(2020AAA0107800), National Natural Science Foundation of China (NSFC
62272165), the “Digital Silk Road” Shanghai International Joint Lab of
Trustworthy Intelligent Software (Grant No. 22510750100), Shanghai Trusted
Industry Internet Software Collaborative Innovation Center, and the Strategic
Priority Research Program of the Chinese Academy of Sciences, Grant No.
XDA0320000 and XDA0320300.

especially for trusted systems dealing with human lives, or it
may cause a massive loss if an unexpected event occurs. There-
fore, we need to use many test cases to simulate the design to
find bugs and use formal methods to ensure correctness. There
are many mature verification methods in traditional hardware
languages. However, in Chisel, formal verification work is still
limited, and the previous workflow for low-level RTL cannot
be migrated to Chisel easily.

Currently, there is some work on the Chisel level to verify the
correctness of the design. ChiselVerify is a verification frame-
work inspired by Universal Verification Method(UVM) and
implemented on the Chisel level and supports both coverage-
oriented and constrained random verification (CRV) flows [3].
However, ChiselVerify only focuses on applying testing tech-
niques to hardware verification. Recently, Berkeley provided
Chisel developers with an easy way to formally verify the
designs [4]. They added a formal backend to the FIRRTL
compiler, which converts a high-level intermediate represen-
tation (IR) into a normalized structural representation. The
backend can translate FIRRTL expressions to the bit-vector
expression language defined by the SMTLib format [5], and
then use the Z3 solver [6] to execute the Bounded Model
Checking (BMC) algorithm [7]. However, the current support
for property description is minimal. It only supports assertions
on expressions that return Boolean values, and the verification
algorithm it supports is only BMC. Compared with the existing
formal support for other HDLs, they are very primitive.

Traditional HDLs have mature hardware verification tech-
niques but cannot be directly migrated to Chisel. For ex-
ample, SystemVerilog Assertions (SVA) [8] can be used to
describe properties. SVA is a language construct that provides
a powerful way to write constraints, checkers, and cover points
for hardware designs. It supports complex temporal property
descriptions. It can be synthesized with SystemVerilog code
by Yosys [9] and converted to a transition system, which can
be solved by various model checking algorithms based on
SAT/SMT solvers. Currently, Chisel is mainly used to con-
struct hardware generators at the high level and then generate
SystemVerilog code for synthesis. It is not feasible to define
property descriptions in SystemVerilog because the generated
SystemVerilog code is difficult to read, making it hard to find
the corresponding signals in Chisel when the design is complex.
In addition, Chisel’s advantage is high parameterization, but in
the generated SystemVerilog, the module instantiation has been
completed, so the property needs to be redefined every time the

978-3-9819263-7-8/DATE23/© 2023 EDAA

module is instantiated, which is not desirable.

Therefore, we choose to define properties on Chisel and
strive to make Chisel have the same formal support as tra-
ditional HDLs. Our main contribution is to propose ChiselFV,
which can be found in the GitHub repository [10]. We also
provide the workflow of formal verification on the Chisel level
and detailed application of ChiselFV on the actual case. The
contribution of this work is as follows:

o ChiselFV. We propose a formal verification framework for
Chisel, which can be used to describe hardware properties
on the Chisel level. And we integrated the verification
algorithm engine to perform verification in one click. At
the same time, our ChiselFV can describe the temporal
properties and free constant definition, which greatly en-
hances the hardware properties description capability.

« Verification flow on Chisel level. We propose a hardware
verification workflow based on ChiselFV. With ChiselFV,
we can synchronize the hardware properties description
with the agile development process, thereby avoiding the
design of complicated hardware properties in low-level
hardware. The hardware verification flow can seamlessly
integrate into the agile hardware development process.
We use the formal verification process of a multi-ported
memory and a textbook five-stage pipeline design to
illustrate this point. And a design problem was found while
verifying the processor.

This paper is organized into four sections. Section II details
the design and supported verification ability of ChiselFV.
Section III describes the formal verification process of a multi-
ported memory and a five-stage pipeline processor based on
ChiselFV. Related work is in Section IV. Section V concludes.

II. FORMAL VERIFICATION IN CHISEL

This section gives the structure of ChiselFV, details the prop-
erty description and verification engine support in ChiselFV,
and the methodology to verify with ChiselFV.

A. Framework Structure

ChiselFV is based on Chisel and can be seen as an extension
of formal verification in Chisel. It is mainly implemented
using Scala and provides the ability to describe Chisel module
properties and automate formal verification. The figure Fig 1
shows the structure of ChiselFV.

As shown in Fig 1, ChiselFV is mainly an extension of
Chisel’s SystemVerilog generation and adds support for formal
verification syntax. It also integrates the verification frontend
and backend based on SymbiYosys, enabling one-key verifi-
cation. The SystemVerilog generation is performed by calling
the generation process in Chisel. For property descriptions,
ChiselFV compiles the properties defined in Chisel into SVA
code. Some auxiliary circuits will be generated to complete
the property definition for complex property descriptions. And
the configuration generator generates SymbiYosys-supported
verification tasks configuration file .sby.

Hardware developers can construct hardware modules in
Chisel, and Chisel’s compiler can compile Chisel modules to

ChiselFV

Formal Extensions
for Chisel

Verification Backend

SymbiYosys
SystemVerilog BMC
SV Assertions sby file k-induction
Generator

Configuration
Generator

Figure 1: ChiselFV Structure

SystemVerilog. The starting point of our work is to inject sup-
port for formal property descriptions in this stage. Besides the
SystemVerilog generation, we also add support for generating
SystemVerilog Assertions and verification configuration files.

Chisel Module

Function
interface

Dynamic

compile template

v

SystemVerilog with Assertions

Figure 2: Technique in Chisel Compilation Extensions

As shown in Fig 2, we mainly use two techniques to extend
the Chisel compilation process. The first is to use the Chisel
hardware description abilities to implement the hardware code
fragments equivalent to the property descriptions and encap-
sulate them into functions, providing an interface to call. This
way, we implement a part of the formal property description
syntax support. Such as to achieve the support for the temporal
property description introduced in the following section, we
mainly try to encapsulate the ShiftRegister instance provided
by Chisel into a function and provide an interface to call.

Using function encapsulation and providing interfaces, there
is a specific limitation, which needs to ensure that Chisel’s
hardware description abilities can implement the property de-
scription, and the second technique, dynamic template, is more
flexible. Dynamic template mainly depends on the BlackBox
class provided by Chisel. We write SystemVerilog fragments
and encapsulate them into a new Chisel module by inheriting
BlackBox, which will be injected into the Chisel module during
compilation. At the same time, we can pass external parameters

to the code fragment, and the template will automatically apply
them to the instance dynamically during compilation.

Finally, we provide the automatic generation of verification
configuration files. ChiselFV can generate the corresponding
verification configuration file according to the verification al-
gorithm and parameters specified by the user. Here we use the
.sby format, which is supported by SymbiYosys [11]. ChiselFV
can also automatically call the backend to verify according to
the specific verification algorithm and parameters.

B. Formal Description Syntax

We define the property description syntax in Fig 3. The
primary verification task in ChiselFV is: when the assumption
defined in assume block is true and whether the circuit assertion
defined in assert block is true or not.

(ChiselData) ::= circuit node in Chisel
(num) ::= nonnegative integer
(anyConst) ::= circuit node with any constant value
defined by Chisel extension support
(valueExpr) ::= past((valueExpr), (num))|(ChiselData)
|(anyConst)

[

— CL0

(comparisonOp) ::= © %’ >0

427

(logicalOp) ::= ‘&&’| ‘|’

(booleanExpr) ::= (valueExpr) (comparisonOp) (valueExpr)
|(booleanExpr) (logicalOp) (booleanExpr)
|!” (booleanExpr)
|‘true.B’| ‘false.B’

(assumption) ::= assume((booleanExpr))
(assertion) ::= assert({booleanExpr))

lassertNextStepWhen(

booleanExpr), (booleanExpr))
p p
assertAfterNStepWhen(
Y

(booleanExpr), (num), (booleanExpr))

|assertAlwaysAfterNStep(
(booleanExpr), (num), (booleanExpr))

Figure 3: Syntax of Property Descriptions

For the property definition, the basic syntax is inherited from
Chisel. It means that the data nodes with return type Bool
in Chisel can be defined as property descriptions (defined as
(booleanExpr) here).

In addition, we mainly enhance the description support for
temporal properties and free constants. The following gives a
detailed introduction.

1) Immediate Assertions: ChiselFV supports the basic im-
mediate assertion types. In ChiselFV, we can use the syntax
assume(expr) to define an assumption that must always be
true, and use the syntax assert(expr) to provide an assertion.
The model checker will try to find a counter-example to the

assertion or prove its correctness. Note that the search space
is the circuit state after the first reset, i.e., without considering
the Chaos before the first reset.
2) Temporal Assertions: ChiselFV provides rich support for
temporal property descriptions.
a. past(expr, num):
It can be used to get the value of a signal at time <num>
before the current time.
b. assertAfterNStepWhen(cond, num, expr):
It can be used to assume that when the cond is true, the
expr signal is true in num steps. In SVA syntax, it is
similar to the statement cond -> ##num expr. Addition-
ally, assertNextStepWhen(cond, expr) is equivalent to
assertAfterNStepWhen(cond, 1, expr).
c. assertAlwaysAfterNStep(cond, num, expr):
It can be used to assume that when the cond is true, the
expr is always true after num steps. In SVA syntax, it is
similar to the statement cond -> ##[num:] expr.

3) Universal Quantification: In ChiselFV, we provide sup-
port for universal quantification. Although we describe a fixed-
width number in hardware circuits, this still greatly improves
the expressiveness of property description. In the implemen-
tation, we treat it as a node equivalent to an input node and
constrain the same value at every clock cycle. In ChiselFV, we
can call anyconst(w) to get any value of fixed-width w.

C. Verification Engines

In ChiselFV, we select three mainstream algorithms as
backend engines: BMC [12], k-induction [13] and PDR [14]
algorithm. They are all typical model checking algorithms that
rely on SAT/SMT solvers. After the front-end of ChiselFV, the
hardware design and property definition are transformed into a
transition system, and the property is to be verified. The BMC
algorithm mainly verifies whether the model is safe within k
steps. It can only try to find whether the model is wrong within
some steps but cannot prove the correctness of the model. The
k-induction algorithm tries to confirm that the property to be
verified is an invariant of k steps. The PDR algorithm is to
enhance the property step by step, trying to get an invariant
of one step. The latter two may provide evidence of system
correctness and can find errors. These three algorithms have
their advantages and disadvantages. The BMC algorithm and
k-induction are more intuitive and straightforward, but they
cannot solve all problems. The PDR algorithm is more complex
and can solve more problems as a supplement.

1 Check.kInduction(() => new Memory, 20)

Listing 1: A Code Clip to Call Formal Verification

In ChiselFV, we can call the verification engines with a
simple line of code. As shown in Listing 1, this code can
verify the property defined in the Memory module using the
k-induction algorithm for 20 steps.

At the same time, the front-end and back-end engines in
ChiselFV are separated, which makes the back-end have good
extensibility. ChiselFV supports replacing different engines and
replacing the SAT/SMT solvers used.

D. Methodology

Next, we discuss the workflow of designing and formal
verifying a circuit in Chisel with the help of ChiselFV.

The first step of this workflow is to clarify the design
requirements of the circuit, that is, to analyze what functions
the circuit needs to implement, and then it can be used as our
verification requirements. At the same time, we need to design
the structure of the circuit.

Next, we use Chisel to implement the hardware module and
the property description. This is the most challenging step
in the process. This paper does not discuss using Chisel to
implement hardware modules because this is not our primary
research focus. However, formalizing the property description
from natural language is still difficult. On the one hand, it
depends on the experience of formal verification engineers, and
on the other hand, there are also some fixed patterns and tricks.
Our ChiselFV provides sufficient formal property description
capabilities, which will be more intuitive to show in the next
section, Case Studies.

After describing properties in ChiselFV, we can directly call
the verification function to verify and get the result. The result
may be a failure, which means that the property is violated in
the circuit, and we get a counter-example; it may be a success,
which means that the property will always be true; it may be
unknown, which means that the current algorithm engine cannot
solve the property. We can consider changing the algorithm
engine or modifying the property expression.

III. CASE STUDIES

This section uses the ChiselFV framework to make formal
verification for multi-ported memory and a typical five-stage
pipeline design in textbooks. Due to the length of the paper,
more cases are placed in the GitHub repository [10].

A. Multi-ported Memory

Multi-ported Memories are essential for high-performance
parallel computation systems. VLIW and vector processors,
and other processing systems often rely upon multi-ported
memories for parallel access, hence higher performance [15].

However, implementing multi-ported Memory is quite ex-
pensive, so FPGA manufacturers often only provide dual-ported
block memory, and hardware engineers need to use the existing
dual-ported block memory to design multi-ported Memory.
Based on the previous work [16], we implement three high-
parameterized multi-ported memories in Chisel, whose code
can be found in GitHub repositories [17].

In this paper, our focus is not on the design itself, so we
abstract the multi-ported Memory. We are only concerned about
its input and output. The basic IO of a multi-ported memory
with m write ports and n read ports is shown in Fig 4.

At the same time, we need to design the verification require-
ments, that is, what we need the multi-ported Memory to do.
As shown in Fig 5, the property can be described as: at any
time, any write port ¢ can write data; to any address addr,
and then after any time ¢, if there is no write operation to the
same address during this period, datas read from the address
should be the same as data;.

m Write / n Read RAM

wr_ena 0
— wr_addr 0

— wr data 0 rd_addr 0

rd dataQ ——m

— wr_enal
—* wr _addr1l
—— wr datal rd_addr 1 [«

rd datal f——
— > wr_enam-1 :
— wr_addrm-1 rd_addrn-1 [&———
— wr_datam-1 rd_datan-1 F——

Figure 4: M write ports / N read ports Memory

forany time ¢
without writing
into addr

Read data, from addr
from read-port j

Q

write|data, into addr
from write=port I

Passert: data, = data,

Figure 5: The property we need to verify in multi-ported
memory

Next, we need to implement the module in Chisel and define
the property. The Chisel implementation is in the repository
[17], and the property definition can be found in the case
folder of the ChiselFV project [10]. Here, we need to use the
anyconst keyword to construct an arbitrary value of addr and a
register data to store the value written to memqq,. Whenever
any write port writes to the addr address, the written value
is recorded in the register data, and whenever any read port
reads from the addr address, the read result is asserted to be
the same as the value in data. The simplified code for the
property definition is shown in Listing 2. It is necessary to
add the assumption that different ports do not write to addr
simultaneously. The k-induction algorithm, within five steps,
quickly proves the model and property, and the detailed code
is in the repository.

1 val addr = anyconst(addrW)

2 val data = Reg(UInt(w.W))

3 for (i <- @ until m) {

4 when(io.wrAddr(i) === addr && io.wrEna(i) =
== true.B) {

5 data := io.wrData(i)

6 }

73

8 for (i <- @ until n) {

9 when(io.rdAddr(i) === addr && hasWritten) {
10 assert(io.rdData(i) === data)

11 }

12 3}

ability provided by ChiselFV to get the information of each
instruction execution process and output it simultaneously when
the execution is completed.

Listing 2: Verification Code of Multi-ported Memory Module

B. Five-stage Pipeline

In the classic architecture textbooks [18], a simple five-stage
pipeline is given. This processor design has five pipeline stages:
instruction fetch and decode, execution, memory access, and
write back. It implements four typical instructions in the RISC-
V instruction set, including 1d, sd, add, and beq. It avoids data
hazards by forwarding and stalling. On branch prediction, it
adopts the way of assuming that the branch will not be taken
to handle control hazards. If the prediction is wrong, a nop
instruction will be inserted in the middle. The book uses the
Verilog language to implement the processor. In our work, we
first use Chisel to implement the processor and then use the
ChiselFV framework to verify it formally. The implementation
and verification code are in the GitHub repository [19].

Our verification solution is mainly inspired by the RISC-V
Formal Verification Framework [20]. They provide a framework
for verifying RISC-V processors at the SystemVerilog level,
using SVA to define properties and then using verification tools
to verify. However, for the reasons mentioned in Section I, that
is, the poor readability of the SystemVerilog code generated
by Chisel, we try to migrate the RISC-V Formal verification
framework to the Chisel level by ChiselFV.

TestBench
i Spec
Chip RVFI P
RVFI SpecOut
Check

Figure 6: Chisel Version RISC-V Formal Verification Frame-
work

The verification solution is shown in Figure 6. The pipeline
processor is implemented in the Chip module, and the Chip
needs to provide the RISC-V Formal Interface (RVFI) to output
the critical information of each instruction execution process.

The RVFI interface definition is shown in Listing 3. For
each instruction, we get its instruction content, decoding result,
PC register update before and after execution, source operands,
destination operands, and register state before instruction ex-
ecution. Extracting RVFI from Chip is a crucial step in the
verification implementation. We need to use the temporal

1 class RVFI_IO extends Bundle {

2 val valid = Output(Bool())

3 val insn = Output(UInt(32.W))

4 val pc_rdata = Output(UInt(64.W))
5 val pc_wdata = Output(UInt(64.W))
6 val rs1_addr = Output(UInt(5.W))

7 val rs2_addr = Output(UInt(5.W))

8 val rsl_rdata = OQutput(UInt(64.W))
9 val rs2_rdata = Output(UInt(64.W))
10 val rd_addr = Output(UInt(5.W))

11 val rd_wdata = Output(UInt(64.W))
12 val mem_addr = Output(UInt(32.W))
13 val mem_rdata = Output(UInt(64.W))
14 val mem_wdata = Output(UInt(64.W))
15 val regs = Vec(32, Output(UInt(64.W)))

16 }

Listing 3: RVFI Definition

Next, we need to define the Spec module and Check modules.
For each instruction or small property that needs to be verified,
a separate Check module is used to describe it. Its input is
RVFI, and its output is SpecOut, which is the correct state
information after the instruction execution. Define the Check
module, the input is RVFI from the Chip and SpecOut from
some Spec, and assert the consistency of the two signals to
verify the correctness of the execution of each instruction
of the processor. In the current version, we have verified
the correctness of the execution of the add, 1d, and beq
instructions. The specific verification design can be found in
the GitHub repository.

Eventually, we found that there was an error in the design
of this processor. As shown in Table I ChiselFV gives an
execution path that would fail. For the beq instruction, we need
to compare the value of the two source operands, but in the
original design, these two source operands were not considered
data hazards. Instead, they were directly taken from the register.
Later, we modified the design on the Chisel version and passed
the relevant verification.

Table I: ChiselFV Output Counterexample

binary instruction PC related regs
0x00000013 | NOP oxFFFFFFEC | X17:0

x20: 0
0x0000F883 | 1d x17, 0(x1) 0x0 X 80000001
0x00508A83 | 1d x21, 5(x1) Ox4 gg 8"80000001
0x00108C93 | addi x25, xI, 1 | 0x8 i% 8"80000001

XT7: 0x80000001
0x03488063 | beq x17, x20, 32 | 0xC x20: 0

wrong branch taken

xI7: 0x80000001
0x00000013 | NOP - 0. 0
OXFC108AE3 | - 0x2C x17: 0x80000001

x20: 0

IV. RELATED WORK

This section presents a brief overview of the formal verifi-
cation in hardware.

Formal verification of hardware mainly uses model checking.
Model Checking is a method that can be fully automated but
has a state explosion problem. To counter this problem, new
technologies are introduced to reduce the state space of the
transition system.

At the turn of the last century, a new generation of Boolean
satisfiability (SAT) solvers such as Chaff [21] and Satisfiability
Modulo Theories (SMT) [22] brought about a leap in the
performance and scalability. Therefore, many model checking
algorithms based on SAT/SMT solvers have been widely ap-
plied in hardware verification, such as BMC [23], k-induction
[24], IC3/PDR [25], etc.

Besides the algorithms, the hardware model checking tools
are also an important research direction. Aina Niemetz, Clifford
Wolf’s work [26] proposed BtorMC, a model checker built on
Boolector. BtorMC supports the format Btor2, a new word-
level model checking and witness format. Pono, a flexible
and extensible SMT-based model checker, is designed to be
both a research platform for developing and improving model
checking algorithms and a performance-competitive tool that
can be used for academic and industry verification applications
[27]. SymbiYosys is an open-source frontend driver program
for Yosys-based formal hardware verification flow [11]. Chis-
elVerify [3] and Chisel’s formal support [4], detailed in Chapter
I, are both verification work at the Chisel level.

In addition to Chisel, there are other languages used to
generate HDLs. SpinalHDL [28] is similar to Chisel, an HDL
generation tool built at the Scala level, with support for basic
formal property descriptions and tool calls. Amaranth HDL
[29], on the other hand, chooses to use Python to build the
hardware.

V. CONCLUSION AND FUTURE WORK

In this paper, we introduce ChiselFV, a formal verification
framework for Chisel. ChiselFV provides a workflow for formal
verification of Chisel modules, which can be combined with
Chisel-based hardware design development to significantly im-
prove the efficiency and simplicity of hardware development
and verification. ChiselFV provides strong property description
support, which enables verification work previously done at the
low-level RTL level, but can be done in Chisel, improving the
level of hardware verification.

In the future, we will provide more advanced support for
Chisel’s formal verification. Currently, our verification backend
is to convert it to SVAs and then perform the verification
process. This means we cannot symbolize the module’s param-
eters in Chisel and must instantiate it before verification. We
will further develop a verification backend for Chisel, which
will be able to symbolize the parameters of the modules for
formal verification. At the same time, we will apply ChiselFV
to more open-source Chisel projects to continuously improve
the usefulness of ChiselFV.

(1]
[2]

(3]

(4]
[3]

(6]

(71
(8]
(9]
[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]

REFERENCES

W. J. Dally, Y. Turakhia, and S. Han, “Domain-specific hardware accel-
erators,” Communications of the ACM, vol. 63, no. 7, pp. 48-57, 2020.
J. Bachrach et al., “Chisel: constructing hardware in a scala embedded
language,” in DAC Design Automation Conference 2012. 1EEE, 2012,
pp. 1212-1221.

A. Dobis, T. Petersen et al., “Chiselverify: An open-source hardware
verification library for chisel and scala,” in 2021 IEEE Nordic Circuits
and Systems Conference (NorCAS). 1EEE, 2021, pp. 1-7.

, “Open-source verification with chisel and scala,” arXiv preprint
arXiv:2102.13460, 2021.

C. Barrett, A. Stump, C. Tinelli et al., “The smt-lib standard: Version
2.0,” in Proceedings of the 8th international workshop on satisfiability
modulo theories (Edinburgh, UK), vol. 13, 2010, p. 14.

L. d. Moura and N. Bjgrner, “Z3: An efficient smt solver,” in International
conference on Tools and Algorithms for the Construction and Analysis of
Systems. Springer, 2008, pp. 337-340.

A. Biere, A. Cimatti et al., “Bounded model checking.” Handbook of
satisfiability, vol. 185, no. 99, pp. 457-481, 2009.

S. Vijayaraghavan and M. Ramanathan, A practical guide for SystemVer-
ilog assertions. Springer Science & Business Media, 2005.

C. Wolf, “Yosys open synthesis suite,” 2016.

Chiselfv. [Online]. Available: https://github.com/Moorvan/ChiselFV
Wolf. Symbiyosys (sby) — front-end for yosys-based formal verification
flows. [Online]. Available: https://github.com/YosysHQ/SymbiYosys

A. Biere, A. Cimatti et al., “Symbolic model checking without bdds,”
in International conference on tools and algorithms for the construction
and analysis of systems. Springer, 1999, pp. 193-207.

M. Sheeran, S. Singh, and G. Stilmarck, “Checking safety properties
using induction and a sat-solver,” in International conference on formal
methods in computer-aided design. Springer, 2000, pp. 127-144.

A. R. Bradley, “Sat-based model checking without unrolling,” in In-
ternational Workshop on Verification, Model Checking, and Abstract
Interpretation. Springer, 2011, pp. 70-87.

A. M. Abdelhadi and G. G. Lemieux, “Modular multi-ported sram-
based memories,” in Proceedings of the 2014 ACM/SIGDA international
symposium on Field-programmable gate arrays, 2014, pp. 35-44.

M. Xiang, Y. Li et al., “Parameterized design and formal verification
of multi-ported memory,” in 2022 26th International Conference on
Engineering of Complex Computer Systems (ICECCS). 1EEE, 2022,
pp. 33-41.

Design and verification of multi-ported memory. [Online]. Available:
https://github.com/VerificaticationStudio/MultPortedRAM

D. Patterson and J. Hennessy, “Computer organization and design risc-v
edition,” 2017.

Risc-v formal framework in chisel. [Online]. Available:
https://github.com/Moorvan/RISCV-Formal-Chisel
Risc-v formal verification framework. [Online]. Available:

https://github.com/SymbioticEDA/riscv-formal

M. W. Moskewicz, C. F. Madigan et al., “Chaff: Engineering an efficient
SAT solver,” in Proceedings of the 38th Design Automation Conference,
DAC 2001, Las Vegas, NV, USA, June 18-22, 2001. ACM, 2001, pp.
530-535.

C. Barrett and C. Tinelli, “Satisfiability modulo theories,” in Handbook
of model checking. Springer, 2018, pp. 305-343.

A. Biere, A. Cimatti e al., “Symbolic model checking without bdds,”
in Tools and Algorithms for Construction and Analysis of Systems, 5th
International Conference, TACAS ’99, vol. 1579. Springer, 1999, pp.
193-207.

C. Tinelli, “Smt-based model checking.” in NASA Formal Methods, 2012,
p- L.

A. R. Bradley, “Sat-based model checking without unrolling,” in Verifi-
cation, Model Checking, and Abstract Interpretation - 12th International
Conference, VMCAI 2011, Austin, TX, USA, January 23-25, 2011. Pro-
ceedings, vol. 6538. Springer, 2011, pp. 70-87.

A. Niemetz, M. Preiner et al., “Btor2, btormc and boolector 3.0,” in
International Conference on Computer Aided Verification. — Springer,
2018, pp. 587-595.

M. Mann, A. Irfan et al., “Pono: a flexible and extensible smt-based model
checker,” in International Conference on Computer Aided Verification.
Springer, 2021, pp. 461-474.

Spinalhdl. [Online]. Available: https://github.com/SpinalHDL/SpinalHDL
Amaranth hdl. [Online]. Available: https://github.com/amaranth-
lang/amaranth

	Select a link below
	Return to Previous View
	Return to Main Menu

