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Abstract—Resistive open defects in FinFET circuits are relia-
bility threats and should be ruled out before deployment. The
performance variations due to these defects are similar to the
effect of process variations which are mostly benign. In order
not to sacrifice yield for reliability the effect of defects should
be distinguished from process variations. It has been shown that
machine learning (ML) schemes are able to classify defective
circuits with high accuracy based on the maximum frequencies
Fmax obtained under multiple supply voltages Vdd ∈ Vop. The
paper at hand presents a method to minimize the number of
required measurements. Each supply voltage Vdd defines a feature
Fmax(Vdd). A feature selection technique is presented, which uses
also the already available Fmax measurements. It is shown that
ML-based techniques can work efficiently and accurately with
this reduced number of Fmax(Vdd) measurements.

Index Terms—Resistive open defects, process variations. ma-
chine learning, feature selection

I. INTRODUCTION

Resistive open defects represent themselves as Small Delay
Faults (SDFs) and are reliability threats even if the device
behaves within its specification [1] [2] [3]. An imperfect
connection is the physical source of a resistive open defect. It
has a great potential to degrade further in the field and should
be ruled out before deployment.

Pure random process-induced variability is a substantial
concern in the chip production. But they are mostly benign
and the affected device can be used safely. It is a demanding
challenge to distinguish performance variations due to malef-
icent defects from the effects due to benign process-induced
variability, even if both introduce a similar additional delay
within the specification of the device.

Machine learning-based classification has been used in liter-
ature [4] [5] [6] [7] to identify defects from variations for logic
cells and in [8] for interconnects. Recently, it has been shown
that machine learning-based classification techniques using the
maximum frequencies F c

max(Vdd) of a circuit c ∈ C under
multiple voltages Vdd can distinguish defects on critical paths
from variations with a high accuracy [6]. C is the population
of all produced chips. Let Vop be the set of applied supply
voltages. Vectors Mc = (F c

max(Vdd) | Vdd ∈ Vop), c ∈ C
contain frequencies F c

max(Vdd) under different supply voltages
Vdd ∈ Vop for each circuit c.

The advent of the FinFET technology reduced the effects of
variations to some extent but did not remove it completely [9]
[10]. Adaptive Voltage Frequency Scaling (AVFS) is used as
means to overcome the effects of variations and provides the
necessary infrastructure to measure the vectors Mc. However,

the measurement for numerous devices under multiple voltages
is costly. On the other hand, speed-binning reports of Adaptive
Voltage Frequency Scaling (AVFS) systems contain some
fraction of these vectors. Each speed-binning procedure has a
specific range and resolution for the applied supply voltages,
and Fmax(Vdd) is generated for specific voltages Vdd. To use
the speed-binning report for the aim of defect identification
the missing data has to be measured separately.

This paper proposes an efficient feature selection technique
to identify a minimized set of features Fmax(Vdd), which
takes the already measured timing information from the speed-
binning report into account for an accurate classification.

II. EFFICIENT FEATURE SELECTION

The starting point of the proposed technique is a set of
vectors {Mc | c ∈ C}, where the set of voltages Vop sweeps
from the minimum voltages Vmin over the nominal voltage
Vnom to the maximum voltage Vmax in a certain step width
∆, leading to ⌈Vmax−Vmin

∆ ⌉ + 1 different values in Vop. The
vectors Mc can be obtained by a Monte Carlo technique using
the process variability parameters for timing-aware simulation,
Static Timing Analysis (STA), or even physical measurements
for a set of real devices. The vectors have to include results
of both defective and defect-free devices, and are used as a
dataset for supervised learning as described in [6].

Our proposed feature selection method is a variant of the
methods in textbooks such as [11] [12]. It takes this dataset
to determine a minimized subset Ṽop ⊂ Vop of voltages and
hence features Fmax(Vdd), Vdd ∈ Ṽop, which contains already
available measurements V ′

op ⊂ Ṽop. The new shorter vectors
M̃c = (Fmax(Vdd) | Vdd ∈ Ṽop) are used to train a classifier
for the circuits c ∈ C. The reduced set Ṽop ⊂ Vop is not only
used for reducing the measurement costs, but also for reducing
the noise in the dataset. As a result, the classification precision
with the selected smaller feature set can be even higher than
the precision obtained by using the complete set Vop. It also
proves the robustness of the machine learning-based defect
identification against reduced or missing data.

The special format of our problem allows us to aim for
an optimal, exhaustive solution. The original set of features
determined by Vop is rather small and an exhaustive search of
the 2|Vop|−1−|Vop| possible subsets is practicable. In addition,
so-called wrapper techniques can increase the efficiency [13].

The detailed steps of the proposed feature selection method
can be seen in Algorithm 1. N is defined by the user and given
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to the algorithm as the maximum number of features. ACC is a
2D array with two rows and i columns. The first row stores the
classification accuracy for each round of i subset selection, and
the second row presents the corresponding subsets of voltages.
The ordered subsets of voltages according to their obtained
accuracy is called the Importance List in this work, in a way
that the first element in this list is the most important voltage
set (Ṽop). i is the number of possible subset selections with the
size of N − |V ′

op| from the remaining voltages (Vrem), which
is determined by the binomial coefficients. For instance the
number of possible 2-tuple voltages from the set of |Vrem| =
12 voltages is C2

12 = 66.

Algorithm 1 Algorithm for Selection of the Most Efficient
Features in ML-based Defect Identification
Input: Original Dataset {Mc | c ∈ C}, Operating V Set Vop,

Preselected V Set V ′
op, Max Number of Features N

Output: Optimum Set Ṽop

Initialisation :
1: Remaining V Set Vrem := Vop \ V ′

op;
2: Classification Accuracy ACC = [0..1][0..i− 1]

Loop Process for each Selected Subset:
3: for i = 1 to

( |Vrem|
N−|V ′

op|
)

do
4: Select A New Voltage Set V i

op in which
V i
op ⊂ Vrem & |V i

op| = N − |V ′
op|

5: Vector M i
c := (Fmax(Vdd) | Vdd ∈ V i

op

⋃
V ′
op);

6: Dataset DSi := {M i
c | c ∈ C};

7: Create RF Classifier with DSi;
8: ACC[0][i] := Acci;
9: ACC[1][i] := V i

op;
10: end for
11: Sort ACC[][] Descending based on ACC[0][];
12: Importance List := ACC[1][];
13: Ṽop := ACC[1][0];
14: return Ṽop

III. CLASSIFICATION RESULTS

The approach has been applied on datasets generated for 3
multiplier circuits with different operand sizes as case studies.
The circuits are synthesized by a commercial synthesis tool
under tight timing constraints, which results in circuits with
440, 1987, and 7444 cell instances for Multipliers with 8, 16,
and 32-bit operands respectively. For a fair comparison, the
2-input gate equivalents are 31.5, 45.5, and 56 on the longest
paths for each of the multipliers.

The original datasets for each feature selection contain
Fmax(Vdd) for 13 different supply voltages between 0.4V and
1.0V, with the step of 0.05: Vop = {0.4, 0.45, .., 0.95, 1.0}.
The details of the circuits and datasets can be found in [6].

To select the most effective feature combinations two sce-
narios for the preselected voltage conditions are considered:

- Cond.1: One feature is preselected corresponding to the
Fmax(Vdd) measurement at the nominal voltage Vdd = 0.7 V .
One Single or two 2-Tuple voltages are selected from the Vrem.

- Cond.2: Three features are preselected correspond-
ing to the maximum, minimum, and nominal voltages

0.4 V, 0.7 V, 1.0 V , and the feature selection method selects
one Single voltage from the Vrem.

The feature selection algorithm reports the importance list
for each of the scenarios and creates the classifiers for each
Ṽop. The most relevant metric for our problem is precision,
which corresponds to the possible yield loss, while the fault
coverage mainly depends on the design and the test program.
The classification precision by having the most important
voltage in the Ṽop and when all the voltages are available
is presented in Tab. I.

TABLE I
CLASSIFICATION PRECISION FOR THE TOP SELECTED VOLTAGES FROM
THE IMPORTANCE LIST (Prec.sel) VS. FOR ALL VOLTAGES (Prec.all)

Cond. Circuits Single/2-Tuple Sel. V Prec.sel Prec.all

Mul.8 Single [1.0] 0.881 0.916

2-Tuple [1.0,0.4] 0.914 0.916

1 Mul.16 Single [1.0] 0.741 0.784

2-Tuple [1.0,0.6] 0.782 0.784

Mul.32 Single [1.0] 0.674 0.719

2-Tuple [1.0,0.8] 0.718 0.719

Mul.8 Single [0.5] 0.921 0.916

2 Mul.16 Single [0.9] 0.801 0.784

Mul.32 Single [0.9] 0.721 0.719

It can be seen in Tab. I that with the selection of only one
or two additional features the RF-based defect identification
can already obtain a precision close to the one when all 13
features are available or even higher, with at least 77% savings
in computational or measurement effort.
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