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Abstract—Conventional logic locking techniques mainly focus
on gate-level netlists to combat IP piracy and IC overproduction.
However, this is generally not sufficient for protecting semantics
and behaviors of the design. Further, these techniques are even
more objectionable when the IC supply chain is at risk of insider
threats. This paper proposes RTLock, a robust logic locking
framework at the RTL abstraction. RTLock provides a detailed
formal analysis of the design specs at the RTL that determines
the locking candidate points w.r.t. attacks resiliency (SAT/BMC),
locking key size, and overhead. RTLock incorporates (partial)
DFT infrastructure (scan chain) at the RTL, enabled with a scan
locking mechanism. It allows us to push all the necessary security-
driven actions to the highest abstraction level, thus making
the flow EDA tool agnostic. Additionally, RTLock demonstrates
why RTL-based locking must be coupled with encryption and
management protocols (e.g., IEEE P1735), to be effective against
insider threats. Our experimental results show that, vs. other
techniques, RTLock protects the design against broader threats
at low overhead and without compromising testability.

Index Terms—Logic Locking, RTL, Design-for-Testability, En-
cryption.

I. INTRODUCTION

The ever-increasing cost/complexity of IC manufactur-
ing/testing and technology shrinking have pushed semicon-
ductor industries to follow the horizontal business model, in
which different IC supply chain steps are outsourced. However,
potential untrustworthy entities may impose security threats,
e.g., IP piracy and IC overproduction [1]. To protect de-
signs against such vulnerabilities, logic locking is known as
a proactive countermeasures, which has received significant
attention in recent years [2]. Logic locking enables the post-
fabrication activation using some extra gates, known as key
gates, where the correct key recovers the original functionality.
The vast majority of existing logic locking solutions have
been proposed and implemented as a post-synthesis process
on the gate-level netlist, e.g., EPIC [3]. However, with the
emergence of satisfiability-based (SAT) attacks [4], all these
techniques are already broken in a very short attack time.
Although numerous countermeasures were introduced to thwart
this attack [5]–[11]. However, these techniques also suffer
shortcomings, such as low output corruptibility, high overhead,
burdensome implementation challenges, and testability issues.
Also, such shortcomings led to emerging new attacks that
undermine the resiliency of these approaches [12]–[20].

More recently, few studies have investigated logic lock-
ing implemented at higher levels of abstractions, such as
high-level-synthesis (HLS) [21]–[24], and particularly register-
transfer level (RTL) [25]–[27]. The preliminary investigation
has shown that synthesizing the locked RTL (or HLL) may
provide superior resiliency against ML-based attacks. However,
more recent studies reveal successful invocation of SMT and
ML-based attacks on these locking techniques at RTL [27],

[28]. Additionally, the definition of threat models might face
significant changes over time invalidating all previous secu-
rity solutions. For instance, insider threats can be realized
in modern companies’ environments in different forms, such
as (i) a rogue employee at a design house as a malicious
actor or (ii) illegal access to a company proprietary through a
compromised cloud/network infrastructure. In such scenarios,
plain information sharing could cause companies’ sensitive
information breaches. Hence, from the design team to verifica-
tion, nearly any individual working within any trusted entity can
be regarded as a threat, which invalidates gate-level locking.

The main goal of the existing HLS/RTL-based logic locking
techniques is to protect the semantics/behavior of the design.
But these methods do not include insider threats in their threat
model. However, insider threats as an alarming issue, can leak
secrets to an untrusted entity. This paper proposes RTLock
as a comprehensive RTL-based logic locking framework to
address this shortcoming in the previous threat models. In this
framework, we push all actions related to the locking flow
towards RTL. RTLock applies the locking to all parts of the
RTL, from the operations to state machines. RTLock analyzes
the RTL to determine the best locking positions based on the
design specifications. Moreover, RTLock selects the candidates
so that once the locked RTL goes through the synthesis, a
more efficient distribution of locking key gates is acquired.
Also, with insider threats, as (i) the locked RTL goes through
the verification process and synthesis, and (ii) the gate-level
design goes through post-synthesis transformations, we show
how coupling IEEE P1735 standard into RTLock minimizes the
possibility of information breach throughout IC supply chain
steps. By doing so, in comparison with other RTL locking
techniques, as shown in Table I, RTLock would support the
design against broader threats.

The main contributions of this work are summarized as fol-
lows: (1) RTLock is a locking framework at RTL that addresses
locking as an optimization problem relying on integer linear
programming (ILP). RTLock is able to provide the best possible
solution within given constraints in terms of the desired attack
resiliency (SAT/BMC), key size, and overhead. (2) RTLock is
enabled with a novel partial scan insertion+locking mechanism
at RTL representation, allowing designs to be fully locked in

TABLE I: High-level Comparison of RTL-based Logic Locking Techniques

Technique
Against IP Piracy by ↓

Broken by
Insider Oracle Oracle
Threats Less guided

ASSURE [25] ✗ ✓ ✗ SAT [4], ML-based [27]
ASSURE + Scan [26] ✗ ✓ ✓ ML-based [27]

ML-resilient ASSURE [27] ✗ ✓ ✗ SAT [4]

proposed RTLock ✓ ✓ ✓ –
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further steps. It has been done via topological relating scan FFs
and the key gates (+ the semantic/behavior of the design). (3)
We integrate RTLock with IEEE P1735 which allows protecting
the design against potential design house (insider) threats, e.g.,
through the verification stage. (4) We provide detailed security,
testability, and overhead analysis of the RTLock framework.

II. BACKGROUND

A. Threat Model
As shown in Fig. 1, different design-for-trust solutions have

tried to thwart IC supply chain threats. However, each practice
covers a part of threats throughout the IC supply chain. IEEE
P1735 provides encryption and management of IPs mainly at
RTL [29] (see Fig. 1(a)). It is typically developed to address
the threats originating from integration/verification to synthesis
and does not consider threats from the further stages. Gate-
level logic locking, as a post-synthesis process shown in 1(b),
adds protection against untrusted entities in the fabrication
and testing stages. However, with potential insider threats, the
design is plain and ready to be reused for all preceding steps.
RTL-based logic locking migrates the key-based augmentation
to a higher abstraction layer. However, none of the existing
RTL-based locking techniques offer any solution against insider
threats (see Fig. 1(c)). Also, depending on the type of locking,
the test engineer might needed to be trusted, which makes the
locking technique more limited [2].

In RTLock, we assume that every entity in the design process
is untrusted. Hence, the logic locking is done at the earliest
design stage (after RTL design). We also assume that both
broad categories of logic locking threat models, i.e., oracle-
less and oracle-guided, can be applied to RTLock [4], [12].
In the traditional oracle-less threat model, the adversary has
only access to a reverse-engineered netlist with all relative
information, like the location of key gates, locking algorithms,
etc. The adversary can also access the locked RTL, considering
an insider threat exists. Conversely, in the oracle-guided model,
the adversary has access to a reverse-engineered netlist (or
locked RTL), and an unlocked/activated working IC. In this
scenario, as shown in Fig. 1(d), every individual throughout the
IC supply chain is untrusted. We elaborate further in Section
III on how RTLock addresses these threats altogether.

B. Logic Locking: Post- vs. Pre-Synthesis
Logic locking can be applied at different levels of abstrac-

tion, from design specification to transistor level. The ultimate
goal is to add a level of secrecy to the design, via key, to make
its operation dependent on this secret. This secret is known
and can only be initiated in a trusted entity and generally will
be loaded into a tamper-proof memory (TPM). Conventionally,
logic locking has been accomplished as a post-synthesis step of
the design, via key-based XOR, MUX, and LUT key gates. For
multiple reasons, these gate-level logic locking techniques are
no longer desirable: (i) it is applied on an already-optimized
netlist, where the semantic/behavior might be flattened/ab-
sorbed and could be vulnerable to structural-based analyses
[30]. (ii) It does not provide any advantage (security) for the
design team against probable threats within supposedly trusted
entities. For instance, as an insider threat, a rogue employee
might have access to the RTL design, which is not locked.
From the design team perspective, it is more desirable to have
the logic locking more correlated to the highly sensitive and
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Fig. 1: Threat Models for: (a) IP Encryption and Management by IEEE P1735
[29], (b) Gate-level Logic Locking [3], [7], [9]–[11], [31], (c) RTL-based Logic
Locking [25]–[27], (d) Fully Untrusted (Zero-Trust) in RTLock.

critical operations. However, this becomes impossible due to the
flattening, merging, and other optimization heuristics applied
during synthesis. RTL-based logic locking can facilitate the
designer to resolve these issues altogether. RTL-based logic
locking commonly consists of control flow (FSM), arithmetic,
and constant locking used in the existing RTL-based techniques
[25]–[27]. However, as reflected in Table I, each has just tried
to concentrate on a specific threat model, which significantly
restricts their applicability and efficiency.

III. PROPOSED SCHEME: RTLOCK

In RTLock, three main steps are integrated into the regular
IC supply chain flow. Fig. 2 shows the main steps of the IC
supply chain equipped with locking through RTLock, where
these three steps are highlighted in green. Step 1 is our novel
scan-aware functional RTL locking, allowing us to apply
all locking-oriented modifications on the RTL. Step 2 is the
P1735-based RTL encryption, which will be done after the
design integration. We demonstrate that P1735 is a must as
part of the solution against insider threats, as it supports the
verification fully encrypted. Since RTLock is a scan-aware RTL
locking, to ensure maximum test/fault coverage, manual scan
inserted+locked at RTL is integrated with other DFT structures
added by the DFT synthesis in step 3. The following discusses
the details of these three steps, as shown in Fig. 4:

A. Locking Procedure in RTLock
The locking part of RTLock includes seven major steps to

transform a hardware description language (HDL) design into
a functionally locked and scan-chain enabled+locked RTL. In
the framework, we consider both the design and performance
parameters to lock a design effectively. A set of design assets,
critical locations, and operations are considered for design
parameters. These performance parameters are related to the
effectiveness of locking against SAT/BMC attacks and the over-
heads incurred during this process. Additionally, the framework
facilitates the designer to choose the locking case combinations
that satisfy the specification in terms of power, performance,
and area (PPA) analysis. The following describes the steps:
(1) Analyzing the RTL: Initially the designer sets a specifica-
tion list based on the design and performance parameters to be
achieved. This list works as the input to an optimization tool
(described in step 4) to efficiently choose locking candidates.
In this step, the designer tracks the assets, critical operations,
functionalities, and structures like state transitions of the design.
For extracting the design’s finite state machine (FSM), an in-
house open-source tool [32] is used. The tool automatically
identifies the control FSM of the design in text/graph format.
For tracking the flow of assets, operations, and states, the
design’s control data flow graph (CDFG) is analyzed using the
JasperGold formal verification tool.
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Fig. 2: RTLock-enabled IC Supply Chain.

(2) Selecting Locking Candidates: Based on the selected
locking points in the design, RTLock supports three major
classes of locking candidates at the RTL abstraction:
• Constant Locking: Constants of the design can be locked
in various ways. One way is to use Boolean functions to
relate the constant value and the locking key. For example,
by XOR/XNORing each bit of the constant with a single
key-bit. Alternatively, RTLock can substitute the original value
with a key value stored in the design.
• Arithmetic Operations Locking: Arithmetic operations can
also be locked in multiple ways. Locking key bits can be
evaluated in conditional statements executing incorrect func-
tionality for each wrong key condition. Note that, for the pairing
of operators, RTLock has done it in a uniform and specific
distribution (e.g., + is only paired with −), making it resilient
against ML-based operator-wise attack [27]. Another way to
lock is to use certain key bits as the operand itself.
• FSM-based Locking: RTLock extends the locking candidates
at RTL by extracting and targeting the state machine of the
design. The designer can add locking-oriented augmentation
on the control flow that adds protection for the asset transi-
tion/propagation, the flow of critical operations, etc. Some of
the utilized methods in RTLock for the generic FSM locking
scenarios (Fig. 3) are as follows:
(i) Initialization Locking: Applying the incorrect key can force
the design’s state machine to return to or stay in the initializa-
tion state rather than move to the supposedly next state. As a
result, the output register shows the initialized values. As an
example (3(b)), while applying the incorrect key, the FSM will
keep looping in the state ”init lock” through transition ”t2F ”.
(ii) Incorrect State Transition: When applying incorrect keys,
the design can deviate from the expected sequence of state
transitions. For example, the actual sequence of state machine
shown in Fig. 3(a) would be ”t1 → t2 → t3 → t4”. However,
using this method, the traversal can be manipulated as shown
in Fig. 3(c), in which the state ”init” is bypassed.
(iii) Skipping State: Each state of the FSM contributes to the
correct functionality of the design. Skipping any intermediate
states will result in malfunction and output corruptibility. This
scenario can be created by applying the locking key condition at
the next state assignment. So, with one or more states eluded,
higher output corruptibility will happen. Fig. 3(d) shows an
example of a skipping state in which ”init” has been skipped.
(iv) Bypassing State: One or more states can be created with
dummy statements to facilitate locking. These fake states can
replace the actual state transition. For example, as shown in
Fig. 3(e), let us consider state ”bypass” as the fake state, and
when the key is wrong, the state traversal becomes ”idle →

   (a)                   (b)                         (c)                     (d)                    (e)  
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Fig. 3: Typical and Generic Case Studies for FSM Locking in RTLock.

bypass → next” instead of ”idle → init → idle → next”.
(v) Locking Inherent Signals: Each state in the FSM is re-
sponsible for a set of signal assignments. Changing the signal
assignment can lead to incorrect initialization of variables and
wrong state traversal. The signal assignments within the FSM
states can be locked to protect assets and states. Each instance
of FSM locking can be executed with a single key bit.
(3) Database Creation: In this step, performance metrics for
locking cases are evaluated and stored. Each locking case con-
sists of a locking point and a candidate. For each locking point,
there may be more than one locking candidate. For example, a
constant can be locked by adding fake arithmetic or Boolean
operations. RTLock considers these scenarios as individual
cases. The framework synthesizes the locked design cases into
gate-level netlists to analyze the performance parameters based
on the attack resilience (SAT/BMC time) and incurred area
overhead. This process stores information on the case number
index, key size, overhead, and attack resilience (CPU time) and
creates a database for all the cases. The database creation for
each locking case is done offline.
(4) Selection of Cases: After database creation, an optimization
problem arises to efficiently choose the best combination of
the available cases from the database. For this, we utilize
integer linear programming (ILP) [33] to generate reliable
solutions for the optimization problem. For our case, the
designer performance specification works as constraints, and
the database cases work as inputs to the ILP tool. The locking
candidates for a design are selected by solving the following
ILP constraints/objectives:
n∑

i=1

TiCi+(%added Res.) ≥ Tspec....
n∑

i=1

AiCi−(%shared Ov.) ≤ Aspec

(1)x∑
j=1

C1j ≤ 1;

x∑
j=1

C2j ≤ 1; .....

x∑
j=1

Cmj ≤ 1......min F =
∑
i

Ci (2)

Equation 1 describes the attack resilience and area overhead
constraints for the locking cases. Here, Ti is the attack re-
silience and Ai is the area overhead from case i from the
candidate list of m cases. Tspec and Aspec define the designer
specification for the attack resilience and area overhead, respec-
tively. We introduce two parameters, i.e., (added Res.) to model
the increase in the attack resilience while merging multiple
cases and (shared Ov.) to model the shared hardware resources
leading to reduced area overhead, respectively. We set the
percentage to (10-20)% depending on various designs. In the
left part of Equation 2, Cij denotes locking cases for locking
point j and ensures that mutual exclusiveness is achieved. The
right side of Equation 2 describes the objective function as the
minimum number of chosen candidates satisfying the stated
constraint equations. The output of the ILP tool is the 0/1 binary
selection of locking candidates and the final locking key size
is the summation of chosen candidates’ key sizes.
(5) Update RTL: With the selected locking candidates at
hand, the next step is to combine the candidates to build the

!

!



Design 
at RTL

constraints.xml

PPA
Resiliency
Corruptibility
Asset

Analyze
RTL

- FSMx + PyVerilog
- CDFG by JasperGold

1

List All Options of
Obfuscation (Cases)

2

- Control Flow (FSM)
- Arithmetic Operations
- Constants

3Create
Database

Insertion of 
key gates in 
possible 
locations

- Cases
- PPA Metrics
- Resiliency  
aMetrics
- Corruptibility
- Overall 
aPerformance

4

Selection
 of Cases

- Constrained
aOptimization
- ILP-based 

5
Update
RTL 

6

Verification

Meeting the 
Constraints

Violation?

Pass? 

7

Enable 
Scan Chain

- Partial Scan Insertion
- Based on Locality
- Obfuscation with
    - LFSR + Counter

Obfuscated RTL

constraints.xml

Design 
at RTL

Update 
RTL 5

Scan-aware 
Locked RTL

- FSMx + PyVerilog
- CDFG by JasperGold

Analyze RTL
1

- Control Flow (FSM)
- Arithmetic Operations
- Constants

List All Options of
Obfuscation (Cases)

2

- Cases
- PPA Metrics
- Resiliency  Metrics
- Corruptibility
- Overall  Performance

Create 
Database

Constrained
Selection 

Cases 
Selection

4

3

Pass? 

- Partial Scan Insertion
- Based on Locality
- Obfuscation with
    - LFSR + Counter

Enable 
Scan Chain

Meeting the 
Constraints

Verification
6 7

Fig. 4: Main Steps of RTLock for Scan-Aware RTL Locking.

functionally locked RTL. This step can be revisited multiple
times in case the designer’s specifications are not met yet.
(6) Design Verification: In this step, the locked design is
evaluated based on the defined parameters (overheads, attack
resilience, and output corruptibility). This step checks whether
the input specification for the design is met and the locking acts
as expected while applying correct/incorrect key combinations.
The functional verification (IP-level) can be performed with
a simulation-based approach or a more exhaustive logical
equivalence checking by formal verification. If the verification
fails (specification-wise), the design goes back to step 4.
(7) Partial Scan Chain Insertion + Locking: RTLock per-
forms a partial locking oriented scan chain insertion at the RTL
to enhance resiliency against oracle-guided attacks and push the
security-oriented activities towards RTL, as full scan insertion
manually can incur high overhead compared to industry level
DFT synthesis tools. From the SCOAP analysis presented in
[34], it is evident that the extraction of keys can be made more
difficult by the low observability of the key-related registers.
Based on this rule, we choose the candidates for the partial
RTL scan registers within n combinational logic levels from
the key inputs, where n is an arbitrary number. We select the
scan locking key size based on the candidate registers and
the overhead specification. Additionally, inspired by [11], we
utilize a counter-LFSR-based scan locking. After this step, the
augmented RTL is ready for the next design steps.

B. IP Encryption for Integration/Verification

To be resilient against insider threats, logic locking at the
earliest design stage might be desirable. However, logic locking
before verification becomes challenging as the verification
requires a white-box definition of each module. Hence, to
mitigate insider threats through RTL-based logic locking, IP
encryption-based transformation is required that can be auto-
mated by a tool or processed by a trusted group in the IP
design house [35]. The main aim here is to protect the locked
IP against insider threats in the integration/verification team.
Since the high-value IP under consideration is already locked,
the encryption will be accomplished on a wrapped version of
the IP fed by the logic locking key. Note that it is inevitable
that the encryption methodology must rely on state-of-the-art
recommendations such as using authenticated encryption with
associated data (AEAD) [36], and the latest edition of standards
like IEEE P1735 [29] must be engaged. After encryption, to
access the locked IP, the integration/verification engineers, with
provided private secret to the desired tool, such as Synopsys
Synplify/Verdi or Cadence IES, gain the permission to operate
on black-box IP design data without the possibility of either
pirating the locked IP or retrieving the locking key.

C. Optimizing Testing Procedure

Since scan chain insertion+locking has been done partially
at RTL, as a post-synthesis step, scan chains for the rest of
the registers must be inserted at DFT synthesis. However, this
decouples the scan chain corresponding to the pre-synthesis
from the part inserted by the DFT tool. Hence, stitching
of these two parts must be done. RTLock accomplishes this
step effortlessly (just by connecting chains to build a longer
chain). Additionally, as industry-level DFT compilers add the
scan chain in an optimum way, hybrid manual+automatic scan
chain insertion in RTLock may have a significant impact on
PPA metrics. Hence, supported by the commercial DFT, scan
chain re-ordering will be done for these parts. Using such a
mechanism reduces the overhead of manual scan insertion.

IV. SECURITY ASSESSMENT OF RTLOCK

The main purpose of RTLock is to prevent IP piracy against
a wider threat model, including insider threats. Although
the combination of IEEE P1735-based with RTL-based func-
tional+scan locking can thwart malicious actions by insider
threats, other oracle-less (OL) and oracle-guided (OG) attacks
on logic locking are still applicable. The following justifies how
ILP-based RTL-based locking will be against these attacks.
Against OG SAT Attack: Proper implementation of RTLock
makes the SAT attack impractical (the SAT attack requires full
scan access), as step 7 will enable the scan insertion+locking.
Nonetheless, the RTLock maximizes the SAT resilience based
on the ILP-based locking. In the results section, we also
reported the SAT attack time while it is not enabled.
Against OG BMC-based Attack: RTLock has been built in a
way that any algorithmic attack can be used for building
the candidate database, and ILP-based candidate selection can
efficiently choose the best options based on the targeted attack
procedure. In this case, locking candidates are selected in a way
that provides deeper resiliency against the BMC attacks. For
instance, since unrolling (depth of attack) plays an important
role in the scalability of the BMC attack, in FSM locking,
deeper states vs. shallow states are selected that enforce the
BMC to run for much more clock cycles for executing the
attack. Another example is dominant operations in arithmetic-
wise candidates. Once an operation is dominant, it will be
executed after a set of operations (sequentially), where BMC re-
quires more iterations to retrieve the satisfiability assignments.
Against OL Removal Attack: Signal Probability skew (SPS)
based removal attacks [12] depend on the existence of a point
function in the design and low output corruptibility. The attack
identifies and remove this point function, thus rendering the
keys useless. RTLock achieves high corruptibility by introduc-
ing keys at the RT level. Also, RTLock does not introduce any
point functions in the design, thus foiling the removal attack.
Against OL ML-based Attack: The main limitation of gate-
level locking techniques considering the structural attacks is
that the key gates are introduced at the already optimized
design [18], [37]. Introducing locking gates at the gate level can
deviate the design from optimization minima, which are used
by ML-based attacks to discern the values of the unlocking key
bits. The introduction of keys at RTL by RTLock ensures that
the design optimizes uniformly in the synthesis stage, making
it harder for ML-based attacks to be successful. We show the
ML-based attack results in Section V, where the keys were
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extracted with high accuracy in the case of gate-level locking
techniques, but with RTLock the accuracy fell significantly.
Against OG Bypass Attack: The bypass attack [13] utilizes the
low corruptibility feature of the SAT-resistant locking tech-
niques and creates a bypass circuitry to flip the output for
the protected input patterns by the locking. For point function-
based locking such as SARLock and Anti-SAT [5], [6], a bypass
circuit for a single input pattern is sufficient to unlock the
design. But RTLock ensures high output corruptibility in the
design. To account for the incorrect outputs, the size of the
bypass circuitry makes the bypass attack on RTLock infeasible.
Against OG SMT Attacks: The SMT-based attack extracts the
behavioral traces on HLS-generated RTL, allowing to recover
the locking key [28]. This attack relies on finite state machines
with the datapath (FSMD) structure of HLS-based RTLs for
the attack purpose. Therefore, it can be highly efficient once
datapath and FSM are fully separated in the RTL [22]. However,
for the designs implemented in RTL, the datapath and FSM are
not necessarily decoupled. The FSM-based locking in RTLock,
particularly methods like incorrect state transition, creates un-
desirable state sequences. Each key value creates an incorrect
RTL-FSMD (trace) in this case. For n locked transitions, 2n
traces will be built, which must be checked by the SMT attack.
Additionally, RTLock targets arithmetic operations on which
the SMT and KLEE used in the SMT attack are not efficient
enough against operations like multiplication and shift, creating
hard instances for the SMT (exponential attack time).

V. RESULTS AND ANALYSIS

We have tested the proposed RTLock framework on a set
of HDL benchmark designs, listed in Table II, ranging from
small to moderate sizes. These benchmark selections constrain
the key size of the locking techniques to unbiasedly realize
the resilience against SAT attack. The attack is done by
using the SAT tool developed by P. Subramanyan [38]. For
evaluation purposes (running post-synth attacks), all the designs
are synthesized using NanGate 15nm technology library using
the Synopsys DC compiler. To comparatively evaluate the
resiliency of RTLock against different attacks, we consider
multiple locking techniques, including RND and MUX2 [3],
SLL [31], TOCMUX/XOR [39], and IOLTS [40]. All the
experiments are carried out on an Intel Xeon E-2224 32-core
processor and 32GB RAM.

TABLE II: The Main Specifications of the Benchmark Circuits.
Circuits #PI/PO #Gate #FFs Keys Circuits #PI/PO #Gate #FFs Keys

b05 3/36 1030 34 19 b15 38/70 9029 416 38
b14 34/54 10325 215 38 SHA1 516/162 10979 849 31

Fibo. 10/91 3449 287 24 AES 390/130 26720 2332 45

Table III shows the comparative analysis of the SAT attack
[4] when timeout is set to 12h. For comparison purposes, the
area overhead across benchmarks for all techniques has been
kept at 15%. From the results, it is evident that the proposed
RTLock provides SAT resilience from 102−105 for significantly
smaller key sizes. This improved resiliency can be associated
with creating cases based on the ILP-based analysis of a wide
range of candidates suitable to the locking point. Note that
increasing the key size, with less impact on the overhead,
boosts the robustness achieved by ILP. For instance, for all
cases shown in Table III, with doubled key size, the SAT cannot
break AES, SHA1, b14/b15 within the timeout. Also, The scan
locking at the later stage adds one more PSPACE dimension

to the problem size. Due to low scalability, with the same key
size, none of the circuits can be broken using the BMC attacks.
TABLE III: SAT Time for Locking Techniques at SAME (15%) Area Overhead.

Method
Benchmark Circuits

AES SHA1 b14 b15 Fibo. b05

∥k∥ t ∥k∥ t ∥k∥ t ∥k∥ t ∥k∥ t ∥k∥ t

RND [3] 498 8.2 360 3.13 310 5.6 302 6.7 247 3.7 151 2.1
SLL [31] 562 181.2 492 242 417 119 425 126 326 97 182 23

TOCMUX [39] 352 1.8 283 2.3 251 2.2 247 2.7 213 2.1 131 1.1
TOCXOR [39] 287 16.9 244 13.3 213 8.2 227 9.7 207 8.1 112 5.5

IOLTS [40] 986 3.1 793 0.92 632 1.1 641 1.4 473 1.2 254 1.1

RTLock∗ 35 36350 25 16758 32 4286 32 9619 16 2094 16 911
∗:RTLock without scan locking ∥k∥: key size ∥t∥: attack time (second)

TABLE IV: ML-based Attack [18], [37] Accuracy on Locking.

Circuits

ML Accuracy (%) on Locking Solutions

TOCMUX [39] IOLTS [40] MUX2 [3] RTLock∗

∥key∥ Acc% ∥key∥ Acc% ∥key∥ Acc% ∥key∥ Acc%

AES 352 {97.4, 96.6}∗ 986 {99.1, 99.4} 373 {94.1, 93.6} 35 {54.3, 51.4}
SHA1 283 {97.5, 96.8} 793 {100, 100} 298 {92.7, 94.3} 25 {48, 48}
b14 251 {97.6, 97.2} 632 {100, 99.4} 256 {93.8, 93.4} 32 {50, 46.9}
b15 247 {97.6, 97.2} 641 {99.4, 99.3} 257 {93.8, 93.7} 32 {59.4, 53.1}

Fibo. 213 {96.2, 97.2} 473 {100, 99.1} 223 {94.2, 93.3} 16 {56.3, 50}
b05 131 {96.9, 97.7} 254 {98.8, 99.2} 136 {92.6, 93.4} 16 {50, 56.2}

AVG 246 {97.2, 97.1} 630 {99.6, 99.5} 257 {93.5, 93.6} 26 {52.9, 50.9}
∗:RTLock without scan locking.
∗: {x1, x2}, where x1 is SWEEP accuracy and x2 is SCOPE accuracy.

To show the robustness against ML-based attacks, we per-
formed SWEEP and SCOPE frameworks on locked circuits
[18], [37]. Table IV shows the accuracy (ratio of correctly
predicted keys). It is very high for the gate-level techniques,
while it is much lower in RTLock (∼ 50%), and this low
accuracy is due to the uniform distribution of operators while
creating and inserting the locking cases1.

TABLE V: Testability Coverage: Regular ATPG vs. Locking-aware ATPG.

Circuits

One Key Constraint Set Multiple Key Constraint Sets

Test Fault # of Test Fault # of # of key
Coverage Coverage patterns Coverage Coverage Patterns Constraints

AES 99.97% 96.21% 705 99.99% 99.25% 274 2
SHA1 99.24% 96.63% 356 99.91% 99.88% 193 3
Fibo. 99.80% 96.83% 251 99.97% 97.87% 183 2
b05 99.34% 92.72% 68 99.74% 93.4% 59 2
b14 99.83% 98.51% 1081 99.65% 98.14% 1203 4
b15 99.25% 98.61% 628 99.21% 98.59% 638 3

Table V reflects the testability results of the RTLocked
circuits. Two sets of testability results are reported in Table
V by applying (i) one key constraint and (ii) multiple key
constraints to the key inputs. While generating the test patterns
for one key constraint, we utilized the post-test activation
method [41] by applying one dummy key value to the key
inputs. Table V shows the test coverage, fault coverage, and
the number of test patterns. Even though RTLock performed
partial scan insertion and scan locking at the RTL, test coverage
is > 99% for all cases. Multiple key constraints [42] make it
easier for the ATPG tool to detect the undetectable (or difficult
to detect) faults, thus decreasing the number of test patterns and
increasing test coverage in most cases. This shows that RTLock
keeps manufacturing yield intact.

Table VI shows the post-layout PPA overhead in two dif-
ferent modes: (i) only functional locking, (ii) functional+scan

1ML-based Maximum resiliency is when the results produce 50% accuracy.
When it is close to 0% the weight metrics can be tuned to gain a high accuracy
near 100%.
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TABLE VI: PPA (Post-layout) Overhead of the RTLock Locked Circuits.

Circuit
Original Functional∗1 Functional+Scan∗2

Area Delay Power Area Delay Power Area Delay Power
(um2) (ns) (mW ) (%) (%) (%) (%) (%) (%)

AES 62938.76 0.87 3.06 8.66 7.03 0 9.81 3.83 0
SHA1 21314.55 0.30 0.77 13.80 11.61 3.90 13.45 7.18 2.60
Fibo. 7297.24 0.08 1.03 14.28 11.71 0.80 35.02 4.80 5.30
b05 1671.25 0.02 5.52 23.75 18.26 4.70 9.06 14.23 -0.30
b14 23685.20 0.28 0.13 25.24 31.54 -0.10 30.14 19.80 0.80
b15 18034.06 0.23 2.04 23.86 25.17 5.50 21.80 14.20 4.80
∗1: Overhead of Purely RTL Functional Locking using RTLock.
∗2: Overhead of RTL Functional + RTL Scan Locking using RTLock.

locking. We chose post-layout to consider the impact of RTL
manual scan insertion. Please note that the PPA overhead
corresponding to functional locking is normalized based on the
original design, whereas the PPA overhead of functional+scan
locking is based on the functional part. This helps to clarify
the impact of RTL scan locking. As shown, RTLock incurs
reasonable overhead while the circuit size is moderate to large,
e.g., AES, where overhead is less than 10%.

VI. CONCLUSION

RTLock is a robust RTL-based locking technique that con-
siders each entity of the IC design process untrusted. RTLock
selects the locking point based on an ILP-based analysis that
relies on comprehensive pre-computed single-at-once locking
candidates w.r.t. design logic and operations. Further, RTLock
enables the possibility of scan obfuscation at RTL to push all
locking-oriented actions toward the earliest stage of the design.
Based on the refined threat model, we showed why RTL-based
locking must be equipped with P1735 to be protected against
insider threats. Our experiments show that RTLock is effective
against a wide threat model with high resilience at low overhead
without compromising test coverage.
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