
PECAN: A Product-Quantized Content Addressable
Memory Network

Jie Ran, Rui Lin, Jason Chun Lok Li, Jiajun Zhou, Ngai Wong
Department of Electrical and Electronic Engineering,

The University of Hong Kong, Hong Kong
Email Address: {jieran, linrui, u3524157, jjzhou, nwong}@eee.hku.hk

Abstract—A novel deep neural network (DNN) architecture is
proposed wherein the filtering and linear transform are realized
solely with product quantization (PQ). This results in a natural
implementation via content addressable memory (CAM), which
transcends regular DNN layer operations and requires only simple
table lookup. Two schemes are developed for the end-to-end
PQ prototype training, namely, through angle- and distance-
based similarities, which differ in their multiplicative and additive
natures with different complexity-accuracy tradeoffs. Even more,
the distance-based scheme constitutes a truly multiplier-free DNN
solution. Experiments confirm the feasibility of such Product-
QuantizEd Content Addressable Memory Network (PECAN),
which has strong implication on hardware-efficient deployments
especially for in-memory computing.

Index Terms—product quantization, DNN compression, in-
memory computing.

I. INTRODUCTION

Deep neural networks (DNNs) have achieved breakthroughs
in various applications including classification [18], object
detection [13] and semantic segmentation [24], etc. Nonethe-
less, the massive amount of parameters and computation make
it difficult for both training and inference on edge devices
with constrained hardware resources. Numerous efforts have
been made to reduce the network complexity while preserving
the output accuracy. Among various schemes, some are low-
bitwidth neural networks using binary weights [4, 15, 22],
replacing the expensive multiplications with cheaper sign flip
operations during inference. Some approaches substitute mul-
tiplications with additions and bit-wise shifts. AdderNet [2]
realizes convolution (in the sense of similarity matching) by
l1-distance between the activation and weights, and maintains
competitive output accuracy. ShiftCNN [7] is based on a power-
of-two weight representation for converting convolutional neu-
ral networks (CNNs) without retraining. Among works that aim
to improve the memory efficiency and performance of shift
neural networks, DeepShift [6] is a framework for training low-
bitwidth neural networks from scratch to replace multiplication
with bit-wise shift and sign flip. All these works, despite
specific implementations, still adhere to the traditional DNN
architecture. This work attempts to detach a neural network
from its regular filtering operation and replace it with an
associative memory, aka content addressable memory (CAM),
whereby the content is derived from prototypes of product
quantization [10]. Such framework, dubbed Product-QuantizEd
Content Addressable Memory Network (PECAN), combines
the storage and compute into one place, and is particularly

suitable for the fast-emerging in-memory computing. The
codebook/table lookup during inference also makes PECAN
hardware-friendly and positions it as a strong candidate for
edge artificial intelligence (AI). This is also warranted by
the readiness in commodity platforms like FPGAs with CAM
support, as well as next-generation memristive microelectronics
like resistive random-access memory (RRAM) wherein a CAM
is inherent to an RRAM crossbar [11, 16].

Our proposed PECAN is inspired by the lately proposed
MADDNESS [1] that utilizes product quantization and table
lookup to truly omit multipliers in matrix-matrix products.
However, the main contribution of MADDNESS, namely, the
hash function for prototype matching, is heuristic and non-
differentiable, thus making it incompatible with a learning
framework. In fact, the authors also remark it will take several
more papers to consolidate the framework for DNNs.

PECAN exactly fills this void by its end-to-end learnable
PQ-based DNN architecture. The closest work to ours is
differentiable product quantization (DPQ) [3], but for the first
time we demonstrate its multi-layer feasibility and enrich
DPQ prototype matching (viz. a similarity search) with an
l1-distance metric. The latter comes from the lately proposed
AdderNet [2] wherein the l1 metric is utilized in a different
context of CNN filtering, whereas our work is the first to show
its feasibility for training prototypes in the DPQ setting. To
our best knowledge, PECAN is a brand new architecture that
transcends regular DNN filtering and uses similarity search and
table lookup for inference. This allows it to be compatible
with simple hardware without the need of dedicated neural
engines, especially edge devices where compute and storage
resources are limited. Our major contributions are: 1) A first-
of-its-kind, end-to-end learnable CAM-based DNN. PECAN is
hardware-generic and friendly to almost all hardware platforms
especially those with built-in CAM support, and represents a
strong candidate for edge AI deployment; 2) Two similarity
measures in PECAN, based on angle and distance, to investigate
the trade-offs between computation complexity and accuracy;
3) Joint fine-tuning and co-optimization of weight matrices and
PQ prototypes, which permits PECAN to train from scratch; 4)
A totally multiplier-free DNN via the distance-based PECAN.

II. RELATED WORK

For efficient edge deployment, binary neural networks
(BNNs) [9, 15] exclusively make use of the logical XNOR
operation that obviates regular multipliers, but in principle they

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA 

	



are still doing 1-bit multiplication. Moreover, though BNNs
have gone through major improvements in recent years, their
top-1 accuracies measured on large-scale datasets are still
noticeably lower than their full-precision counterparts. Indeed,
most BNN implementations are only partial in the sense that
the first and final layers are still using full-precision weights
and activations [21, 22].

Other works replace multiplication with addition [2] or bit-
shift operations [6, 7], or both [23]. Specifically, AdderNet
makes novel use of l1-norm difference and adders to do
template matching required in a CNN. Yet it still employs
multipliers for the necessary batch normalization to bring back
signed pre-activations. Progressive kernel based knowledge
distillation (PKKD) AdderNet [20] improves the performance
of the vanilla AdderNet. AdderNet with Adaptive Weight
Normalization (AWN) [5] further alleviates the curse of in-
stability of running mean and variance in batch normalization
layers. Applying bitwise shift on an element is mathematically
equivalent to multiplying it by a power of two, and sign flipping
is introduced to represent negative numbers. Although these
works focus on largely multiplier-free DNNs, they still build
on the traditional architectures.

The proposed PECAN is motivated by MADDNESS which
realizes multiplier-free matrix-matrix product using hashing
and table lookup rather than multiply-add operations. Although
it achieves orders of speedups compared to existing approx-
imate matrix multiplication (AMM) methods, the proposed
hashing functions are not differentiable and not amenable to
DNN training. DPQ [3] is proposed for end-to-end embedding,
but it is only single-layer and targets word embedding, and
still requires full-precision multiplication to obtain distances
between the input and matching keys.

III. PECAN

The convolution operation in a CNN is conceptually il-
lustrated as a window sliding across the cin-channel input
feature (cf. Fig. 1(a)). Actual implementations often unfold
the convolution into a matrix-matrix product (cf. Fig. 1(b)).
Specifically, the im2col command stretches the input entries
covered in each filter stride into a column and concatenates
the columns into a matrix X , whereas the kernel tensors are
reshaped into a filter matrix F , such that PQ can be used to
approximate FX . For an intermediate CNN layer, consider the
flattened feature matrix X ∈ Rcink

2×HoutWout , where cin and k
are the number of input channels and the kernel size, Hout and
Wout are height and width of the output feature, codebooks
C ∈ Rcink

2×p are assigned with parameters to construct an
embedding table for the features, where p is the number of
choices for each codebook C(j), j = 1, 2, . . . , D. C(j)

m ∈ Rd

are called prototypes, m = 1, 2, . . . , p (cf. Fig. 1(c)). It is
natural to set each prototype in PQ to be a k2 × 1 subvector
(viz. same size as a vectorized kernel), with p prototypes
in each of the cin input channels according to the patterns
of flattened matrices. With this setting, there are two main
components in a trained PECAN that require memory storage
in each layer, namely, i) pcin prototypes for “quantizing” the

input subvectors; ii) coutcinp inner product values between the
(sub)rows in F and each prototype.

In short, PECAN is mapping (quantizing) the original input
features onto prototype patterns in compact codebooks, then
multiplication between weights (F ) and features (X) can be ap-
proximated by lookup table operation during inference. Below
we elaborate two content addressing techniques (i.e. similarity
matching) approaches based respectively on angle (dot product)
and distance (l1-norm) which are both end-to-end learnable.
Accordingly, these two schemes are dubbed PECAN-A and
PECAN-D, which cover both ends of complexity-accuracy
spectrum: The angle-based scheme uses multiplicative oper-
ations and generally leads to higher output accuracy, whereas
the distance-based one uses additive operations and is much
more lightweight at the expense of slight accuracy loss.

A. PECAN-A: Angle-Based Similarity Measure

A scaled dot-product attention [19], widely used in Trans-
formers, computes the dot products of queries and keys, fol-
lowed by a row-wise softmax to obtain the weighted values:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V, (1)

where dk is the dimension of keys, which serves as a scaling
factor. Generally, Q, K and V are obtained from three dis-
tinct learned projection matrices. However, different from self-
attention, we learn the keys K (viz. prototypes in PQ) directly
without the intermediate linear transforms, and make V equal to
K. For PECAN-A, we compute the approximated matrix X̃ by
splitting its rows into D = cin groups, each with subvectors
of dimension d = k2, and get the attention scores K

(j)
i to

formulate the combination of prototypes C
(j)
m :

K
(j)
i = softmax((C(j))TX

(j)
i ), X̃

(j)
i = C(j)K

(j)
i , (2)

where i = 1, 2, . . . ,HoutWout. Since the dot product distance
function with softmax is differentiable, mapping features to
prototypes can be learned end-to-end. It is worth noting that
all intermediate features are replaced with the combination of
learned prototypes after training.

B. PECAN-D: Distance-Based Similarity Measure

Now we attempt to get rid of all multipliers. To achieve
this, we make use of only l1-norm difference for the so-called
template matching, namely, finding the closest match through
absolute difference which involves only subtraction. Specifi-
cally, in this distance-based framework, l1-norm is applied in
order to discard multiplication:

k
(j)
i = argmax

m
−∥X(j)

i − C(j)
m ∥1, X̃(j)

i = C(j)one hot(k
(j)
i ),

(3)

where K
(j)
i = one hot (k

(j)
i ) denotes a p-dimensional vector

with the k
(j)
i -th entry as 1 and others 0. To enable optimization

for prototypes with the non-differentiable function argmax, we
approximate it with a differentiable softmax function:

K̃
(j)
i =

exp(−∥X(j)
i − C

(j)
m ∥1/τ)∑

m′ exp(−∥X(j)
i − C

(j)
m′ ∥1/τ)

, (4)

!

!



cout

HoutWout p

k2

k2

Ch 1

“Quantizing” an input column 
into its closest-match prototypes

Flattened filter matrix F

Flattened input X

Ch 2

Ch cin

cink2

× 

 


Win

(a)

(b)

cout

k

k

cin
cin

Hin Hout

Wout
cout

InputFilters
Output

C
h 

1

C
h 

2

C
h 

c in

C
h 

1

C
h 

2

C
h 

c in

im2col view

p learned
prototypes 

in each 
codebook

Table of quantized products 

 

  
 


 


 

 

p
cin p

cout

Pre-computing inner 
products of subvectors 

in F and prototypes

 
 

 


 


 

codebook C (1)

codebook C (2)


 

(c)

color dots correspond to 
same-color arrows above

cink2

Fig. 1. CNN convolution in its (a) conceptual form; (b) equivalent matrix-matrix-multiply by flattening the filters and input features via im2col, with mapping
of input data sub-columns onto the closest prototypes in different codebooks; (c) Precomputed inner products of F -subvectors and prototypes in a lookup table.

where τ is the temperature to relax the softmax function. Note
that Eq. (4) can be considered as the proportion of Laplacian
kernels when τ ̸= 0 . It relies on the observation that the posi-
tive definite function k(X

(j)
i , C

(j)
m ) = exp(−∥X(j)

i −C
(j)
m ∥1/τ)

here defines an inner product and a lifting function ϕ such that
the inner product ⟨ϕ(X(j)

i ), ϕ(C
(j)
m )⟩ can be computed quickly

using the kernel trick [14].
Now the approximated index K̃

(j)
i is fully differentiable

when τ ̸= 0. However, this yields the combination of prototypes
for X̃

(j)
i again, while we need τ → 0 to get discrete indices

during the forward inference. To this end, we follow [3] and
define a new index to solve both non-differentiable and discrete
problems in one go. Specifically, in the forward and backward
passes during training, we adopt

K̃
(j)
i (τ ̸= 0)− sg

(
K̃

(j)
i (τ ̸= 0)− K̃

(j)
i (τ = 0)

)
, (5)

where sg is stop gradient, which takes the identity function
in the forward pass and drops the gradient inside it in the
backward pass. Based on this, we can now use the argmax
function in the forward pass and softmax function during
backpropagation. However, the partial derivative of the distance
d
(j)
im = −∥X(j)

i − C
(j)
m ∥1 with respect to codebook subvector

C
(j)
m is a sign function:

∂d
(j)
im

∂C
(j)
m

= sgn(X
(j)
i − C(j)

m ), (6)

where sgn(·) is the sign function and takes the values of
{+1, 0,−1}. Such zero gradient almost everywhere makes it
impossible to train a neural network. In this regard, we adopt
Eq. (7) to replace the gradient, where e is the current epoch
and E the total number of training epochs.

∂d
(j)
im

∂C
(j)
m

= tanh
(
a(X

(j)
i − C(j)

m )
)

where a = exp(
4e

E
), (7)

TABLE I
INFERENCE COMPLEXITIES OF PECAN-A AND PECAN-D.

Method Layer #Add. #Mul.

Baseline
CONV cinHoutWoutk

2cout cinHoutWoutk
2cout

FC cincout cincout

PECAN-A
CONV pDHoutWout(d + cout) pDHoutWout(d + cout)

FC pD(d + cout) pD(d + cout)

PECAN-D
CONV DHoutWout(2pd + cout) 0

FC D(2pd + cout) 0

This epoch-aware approximation to the sign function w.r.t.
values of e

E as epoch increases during training. In the early
stage, the function is smoother for stable training. As the
training progresses, the approximation gradually turns into the
sign-like function.

C. Inference Details and Complexity

For the original im2col convolution, the computation
complexity is O(cinHoutWoutk

2cout). During inference, our
method includes two stages, the first is to get the indices
by computing the distance between the flattened features and
prototypes, while the second is to retrieve the product between
weights and prototypes computed in advance, i.e., a simple
table lookup. The inference algorithm for both PECAN variants
is given in Algorithm 1.

Table I illustrates the number of multiplication and addition
operations in convolution and fully-connected layers for the tra-
ditional CNNs, angle-based and distance-based PECAN during
the inference phase. Note that the fully-connected layer can be
regarded as a convolution layer when k = Hout = Wout = 1.
Instead of using the specialized setting of D = cin and d = k2,
we further consider the more general case in Table I where the
group number D and dimension of prototypes d satisfy Dd =
cink

2. Choosing smaller p and D will reduce the computation
complexity for both PECAN-A and PECAN-D. Specifically,
in order to limit multiplication complexity in PECAN-A to be

!

!



Fig. 2. The proposed PECAN architecture. (a) The training phase is mainly composed of template matching for each subvector in the flattened feature map
matrices after im2col operation. When approximating subvectors with the closest prototypes, PECAN-A and PECAN-D adopt different assignment schemes.
(b) For PECAN-A, an attention module compares the subvectors with each of the prototypes in the same group. Subsequently, the resulting scores are subjected
to the weighted sum to produce the approximate feature matrix. (c) For PECAN-D, the similarity is measured with a sign flip l1-norm and the approximation
is selected with argmax function. (d) Since the argmax is not differentiable and the gradient of l1-norm is discrete (1,−1, 0), we propose Eq. (4, 5) and (7)
to do the backpropagation. (e) After getting the converged neural network, we calculate the slice-wise product between convolution filters and prototypes, and
store the results in the memory. (f) In the inference phase, we only need to calculate the distance of feature maps with a small number of prototypes and look
up in the stored memory to get the quantized output.

smaller than the baseline, we need p ≤ min(λcout, (1 − λ)d)
with λ ∈ (0, 1). This constraint is also taken into consideration
in the experiment section. Note that by design, PECAN-D needs
no multiplication during inference, thus making it genuinely
totally multiplier-less.

IV. EXPERIMENTS

To demonstrate the effectiveness of PECAN and further
benchmark the differences between its two variants (PECAN-A
and PECAN-D), we apply PECAN to the classification tasks,
taking CIFAR-10 and CIFAR-100 [12] as datasets. The models
employed include modified VGG-Small [22], ResNet20 and
ResNet32 [8]. We also provide visual results to confirm the
approximation capability of the prototypes.

Implementation Details. To implement the PECAN frame-
work for the CIFAR-10 and CIFAR-100 tasks, we use the co-
optimization strategy that update the prototypes and weights to-
gether. We set the training epochs for PECAN-A and PECAN-D
as 150 and 300, respectively. The learning rate for PECAN-
A is set to 0.01 initially, decaying every 50 epoch, while
that of PECAN-D is initialized as 0.001, decaying at epoch
200. For both datasets, we employ softmax function and set
the temperature τ at 1 and 0.5 for PECAN-A and PECAN-
D, respectively. We set the batch size to 64, and use cross-
entropy as the loss function, which is optimized by Adam. All
experiments are run on a machine equipped with four NVIDIA
Tesla V100 GPU with 24GB frame buffer, and all codes are
implemented by PyTorch.

Algorithm 1 Inference Algorithm of PECAN

Input: Codebook C ∈ Rcink
2×p, 4-D learned kernel ten-

sor K ∈ Rcout×cin×k×k, unfolded features X ∈
Rcink

2×HoutWout .
Output: The approximated convolution output

Ỹ ∈ Rcout×HoutWout

1: Permute and reshape weights to W1 ∈ RD×cout×d, code-
books to C1 ∈ RD×d×p

2: for j in {1, 2, · · · , D} do
3: Y (j) = W1

(j)C1
(j) ∈ Rcout×p

4: end for
5: for i in {1, 2, · · · , HoutWout} do
6: if PECAN-A then
7: Ỹi =

∑D
j=1 Y

(j)softmax(C(j)TX
(j)
i )

8: end if
9: if PECAN-D then

10: k
(j)
i = argmax

m
−||X(j)

i − C
(j)
m ||1

11: Ỹi =
∑D

j=1 Y
(j)

k
(j)
i

12: end if
13: end for
14: return Concatenate (Ỹ1, Ỹ2, · · · , ỸHoutWout

)

A. VGG and ResNet on CIFAR-10/100

We evaluate our proposed PECAN using VGG-Small and
ResNet20/32 on CIFAR-10 and CIFAR-100. VGG-Small is a

!

!



simplified VGGNet [17] with only one fully-connected layer.
The size of the output feature maps and the corresponding
codebook information for each layer are provided in Table II.
We remark that the bottom row of each block in the table repre-
sents the FC layer, while the rows above represent the CONV
layers. For the codebook settings, it is seen that the number
of prototypes p used in PECAN-A is much fewer than that of
PECAN-D for all five layers. We adopt this setting considering
the gaps between the representation capabilities of PECAN-A
and PECAN-D. By adjusting the weights assigned to proto-
types, PECAN-A is expected to better approximate the features
with limited choices, i.e., a smaller p. The number of required
addition and multiplication operations and the accuracy of the
models are summarized in Table III, where the VGG-Small
baseline has 0.61G multiplication and addition operations with
91.21% accuracy on CIFAR10. Since batch normalization can
be folded into convolution layers in the inference stage, we
do not count FLOPs for both baseline and PECAN. Focusing
on the third and fourth columns, it is noticeable that PECAN-
A has fewer multiplications and additions compared with the
baseline, and PECAN-D needs no multiplication at all. We
find that PECAN-A only performs 0.54G multiplications while
reaching 91.82% accuracy on CIFAR-10, which is even higher
than the baseline, similar performance can be obtained on
CIFAR-100. A possible reason is that PECAN experiences less
information loss for shallower CNNs, and bigger input channels
allow more groups of prototypes to improve the representation
capability. This assumption is also validated by the experiments
on ResNet20/32 that are deeper than VGG-Small but with
smaller input channels.

TABLE II
THE SETTINGS OF PROTOTYPE NUMBERS AND DIMENSIONS FOR EACH

LAYER IN DIFFERENT MODELS FOR PECAN ON CIFAR10 AND CIFAR100
.

Model #Layers Output map size p/d (PECAN-A) p/d (PECAN-D)

VGG-Small

2 32 × 32 16/9 32/3
2 16 × 16 16/32 32/3
2 8 × 8 16/32 32/3
1 1 × 1 16/16 32/16

ResNet20

1 32 × 32 8/9 128/3
6 32 × 32 8/9 64/3
6 16 × 16 8/16 64/3
6 8 × 8 8/16 64/3
1 1 × 1 8/16 64/4

ResNet32

1 32 × 32 8/9 128/3
10 32 × 32 8/9 64/3
10 16 × 16 8/16 64/3
10 8 × 8 8/16 64/3
1 1 × 1 8/16 64/4

B. Comparison with AdderNet

We compare PECAN-D with AdderNet on VGG-Small in
Table IV. It should be emphasized that batch normalization
is not taken into consideration in this table, it can not be
folded into AdderNet layer so multiplication is indispensable.
For VGG-Small, the memory cost is so high that even four
NVIDIA Tesla V100 GPUs are not able to train successfully.
As shown in the table, the proposed PECAN-D with only
0.37G additions achieves a 90.19% accuracy on VGG-Small.

TABLE III
EXPERIMENT RESULTS ON CIFAR10 AND CIFAR100.

Model Method #Add. #Mul. Accuracy (CIFAR10/100)

VGG-Small
Baseline 0.61G 0.61G 91.21% / 67.84%

PECAN-A 0.54G 0.54G 91.82% / 69.21%
PECAN-D 0.37G 0 90.19% / 60.43%

ResNet20
Baseline 40.56M 40.56M 92.55% / 69.55%

PECAN-A 38.12M 38.12M 90.32% / 63.15%
PECAN-D 211.71M 0 87.88% / 58.01%

ResNet32
Baseline 68.86M 68.86M 92.85% / 70.57%

PECAN-A 64.20M 64.20M 90.53% / 64.13%
PECAN-D 353.27M 0 88.46% / 58.26%

Here we showcase the efficacy of PECAN on larger models
from a hardware perspective. In the Intel VIA Nano 2000
CPU (used in the AdderNet paper), the latency cycles of
float multiplication and addition are 4 and 2, respectively.
PECAN-D of VGG-Small model will incur ∼720M(cycles)
while that of a CNN is ∼3660M. The power consumption ratio
of 32bit multiplication and addition units is 4:1. Power-wise and
latency-wise, PECAN-D network is more efficient than both
AdderNet and regular CNN.

TABLE IV
COMPARISON WITH ADDERNET.

Model Method # Mul. # Add. Accuracy (%) Normalized Power Latency(cycles)

VGG-Small
CNN 0.61G 0.61G 93.80 8.24 3.66G

AdderNet 0 1.22G N.A. 3.30 2.44G
PECAN-D 0 0.37G 90.19 1 0.72G

C. Visualization of Prototypes

To inspect the effectiveness of PECAN-D in CNNs, we take
the intermediate convolution layers of VGG-Small and plot
the patterns of the feature maps before and after replacement.
In Fig. 3, we select the first channel of the flattened feature
maps and visualize the matrices. The dimension of all subvec-
tors is set as k2 = 9. As can be seen, though the number of
prototypes is limited for each convolution layer, the quantized
feature maps still preserve the basic patterns after training.

V. CONCLUSION

A brand new DNN architecture called PECAN is pro-
posed which transcends the regular DNN linear transform, and
replaces it by product quantization and table lookup. Both
angle- and distance-based measures are developed for similarity
matching of prototypes in product quantization for different
complexity-accuracy tradeoffs. The distance-based PECAN, to
our knowledge, is the first neural network that is multiplier-less
and uses only adders all over. PECAN is end-to-end trainable
and infers only through a content addressable memory (CAM)-
like, similarity search protocol. It facilitates a lightweight
and hardware-generic solution favorable for edge AI, and fits
perfectly into the in-memory-computing regime. Experiments
have shown that PECAN exhibits accuracies on par with multi-
bit networks even without using multipliers. We expect more
advancement on top of this interesting PECAN framework will
follow after this debut.

!

!



Fig. 3. The flattened features and codebooks for five different layers in VGG-Small, (a)-(e) for conv1-conv5. For each subfigure, the upper image is the input
feature after im2col operation, the second image shows the approximation matrix after substitution with PECAN-D which is composed of the corresponding
codebook shown in the third row. The y-axis is the dimension of each subvector k2. The x-axis represents the size of output feature maps HoutWout for the
first two rows, and denotes the number of prototypes for the third row.

ACKNOWLEDGEMENT

This work is supported in part by the Research Grants Coun-
cil of the Hong Kong Special Administrative Region, China,
under the General Research Fund (GRF) projects 17206020
and 17209721.

REFERENCES

[1] Davis Blalock and John Guttag. Multiplying matrices without
multiplying. arXiv preprint arXiv:2106.10860, 2021.

[2] Hanting Chen, Yunhe Wang, Chunjing Xu, Boxin Shi, Chao Xu,
Qi Tian, and Chang Xu. Addernet: Do we really need multi-
plications in deep learning? In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages
1468–1477, 2020.

[3] Ting Chen, Lala Li, and Yizhou Sun. Differentiable product
quantization for end-to-end embedding compression. In Inter-
national Conference on Machine Learning, pages 1617–1626.
PMLR, 2020.

[4] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David.
Binaryconnect: Training deep neural networks with binary
weights during propagations. In Advances in neural information
processing systems, pages 3123–3131, 2015.

[5] Minjing Dong, Yunhe Wang, Xinghao Chen, and Chang Xu.
Towards stable and robust addernets. In Thirty-Fifth Conference
on Neural Information Processing Systems, 2021.

[6] Mostafa Elhoushi, Zihao Chen, Farhan Shafiq, Ye Henry Tian,
and Joey Yiwei Li. Deepshift: Towards multiplication-less neural
networks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 2359–2368,
2021.

[7] Denis A Gudovskiy and Luca Rigazio. Shiftcnn: Generalized
low-precision architecture for inference of convolutional neural
networks. arXiv preprint arXiv:1706.02393, 2017.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[9] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-
Yaniv, and Yoshua Bengio. Binarized neural networks. Advances
in neural information processing systems, 29, 2016.

[10] Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product
quantization for nearest neighbor search. IEEE transactions on
pattern analysis and machine intelligence, 33(1):117–128, 2010.

[11] Geethan Karunaratne, Manuel Schmuck, Manuel Le Gallo, Gio-
vanni Cherubini, Luca Benini, Abu Sebastian, and Abbas Rahimi.
Robust high-dimensional memory-augmented neural networks.
Nat. Commun., 12, 2021.

[12] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers
of features from tiny images. 2009.

[13] Yudong Liu, Yongtao Wang, Siwei Wang, TingTing Liang, Qijie
Zhao, Zhi Tang, and Haibin Ling. Cbnet: A novel composite

backbone network architecture for object detection. In Proceed-
ings of the AAAI conference on artificial intelligence, volume 34,
pages 11653–11660, 2020.

[14] Ali Rahimi, Benjamin Recht, et al. Random features for large-
scale kernel machines. In NIPS, volume 3, page 5. Citeseer,
2007.

[15] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and
Ali Farhadi. Xnor-net: Imagenet classification using binary
convolutional neural networks. In European conference on
computer vision, pages 525–542. Springer, 2016.

[16] Yuan Ren, Rui Lin, Jie Ran, Chang Liu, Chaofan Tao, Zhongrui
Wang, Can Li, and Ngai Wong. Batmann: A binarized-all-
through memory-augmented neural network for efficient in-
memory computing. In 2021 IEEE 14th International Con-
ference on ASIC (ASICON), pages 1–4, 2021. doi: 10.1109/
ASICON52560.2021.9620292.

[17] Karen Simonyan and Andrew Zisserman. Very deep convolu-
tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[18] Yanan Sun, Bing Xue, Mengjie Zhang, Gary G Yen, and
Jiancheng Lv. Automatically designing cnn architectures using
the genetic algorithm for image classification. IEEE transactions
on cybernetics, 50(9):3840–3854, 2020.

[19] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polo-
sukhin. Attention is all you need. In Advances in neural
information processing systems, pages 5998–6008, 2017.

[20] Yixing Xu, Chang Xu, Xinghao Chen, Wei Zhang, Chunjing Xu,
and Yunhe Wang. Kernel based progressive distillation for adder
neural networks. arXiv preprint arXiv:2009.13044, 2020.

[21] Yixing Xu, Kai Han, Chang Xu, Yehui Tang, Chunjing Xu, and
Yunhe Wang. Learning frequency domain approximation for
binary neural networks. arXiv preprint arXiv:2103.00841, 2021.

[22] Ping Xue, Yang Lu, Jingfei Chang, Xing Wei, and Zhen
Wei. Self-distribution binary neural networks. arXiv preprint
arXiv:2103.02394, 2021.

[23] Haoran You, Xiaohan Chen, Yongan Zhang, Chaojian Li,
Sicheng Li, Zihao Liu, Zhangyang Wang, and Yingyan Lin.
Shiftaddnet: A hardware-inspired deep network. arXiv preprint
arXiv:2010.12785, 2020.

[24] Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, Xiatian Zhu,
Zekun Luo, Yabiao Wang, Yanwei Fu, Jianfeng Feng, Tao
Xiang, Philip HS Torr, et al. Rethinking semantic segmentation
from a sequence-to-sequence perspective with transformers. In
Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 6881–6890, 2021.

!

!


	Select a link below
	Return to Previous View
	Return to Main Menu


