
Proteus : HLS-based NoC Generator and Simulator
Abhimanyu Rajeshkumar Bambhaniya, Yangyu Chen, Anshuman, Rohan Banerjee, and Tushar Krishna

Georgia Institute of Technology
{abambhaniya3, yangyuchen, vatsanshuman, rbanerjee45}@gatech.edu, tushar@ece.gatech.edu

Abstract—Networks-on-chip (NoCs) form the backbone fabric
for connecting multi-core SoCs containing several processor cores
and memories. Design-space exploration (DSE) of NoCs is a
crucial part of the SoC design process to ensure that it does not
become a bottleneck. DSE today is often hindered by the inherent
trade-off between software simulation vs hardware emulation/e-
valuation. Software simulators are easily extendable and allow
for the evaluation of new ideas but are not able to capture the
hardware complexity. Meanwhile, RTL development is known to
be time-consuming. This has forced DSE to use simulators followed
by RTL development, evaluation and feedback, which slows down
the overall design process. In an effort to tackle this problem, we
present Proteus, a configurable and modular NoC simulator and
RTL generator. Proteus is the first of its kind framework to use
HLS compiler to develop NoCs from a C++ description of the
NoC circuit. These generated NoCs can be simulated in software
and tested on FPGAs. This allows users to do rapid DSE by
providing the opportunity to tweak and test NoC architectures in
real-time. We also compare Proteus-generated RTL with Chisel-
generated and hand-written RTL in terms of area, timing and
productivity. The ability to synthesize the NoC design on FPGAs
can benefit large designs as the custom hardware results in
faster run-time than cycle-accurate software simulators. Proteus
is modeled similar to existing state-of-the-art simulators and
offers users modifiable parameters to generate custom topologies,
routing algorithms, and router microarchitectures.

Index Terms—NoC Generator, Vitis HLS, Chisel, FPGA, NoC
Simulator

I. INTRODUCTION

Since the advent of multi-core chips, Network-on-Chips
(NoCs) have been an essential part of multi-core designs, and
have thus, sparked a plethora of research in academia and
industry. Developing a high-performance application-specific
NoC is crucial to meeting the power, performance, and area
requirement of the target SoC [1].

The fundamental purpose of NoCs is to transact data between
cores while maintaining coherency and throughput require-
ments. NoC implementations become more complex as the
number of nodes grows and throughput requirement increases.
NoC designers have proposed several techniques for problems
like deadlock avoidance, optimal routing for a given topology,
flow control, and efficient handling of virtual channels (VCs)
and buffers [1]. Commonly used NoC simulators like Garnet [6]
and BookSim [7] provide a quick and easy way of determining
the effectiveness of the proposed solution. Unfortunately, they
do not take the hardware characteristics of the implementations
into account; for example, consider a hypothetical algorithm for
adaptive routing that collects and broadcasts information about
the buffer state for all nodes of an 8x8 Mesh across the network

This work was supported in part by the ACE Center (SRC JUMP2.0).

Fig. 1: Proteus Overview.

in a single cycle. This implementation might yield promising
results in the software simulator, but the actual hardware
implementation would not be able to achieve the estimated
performance gain due to the lower clock frequency caused
by longer critical paths for the complex logic. This would
necessitate re-architecting the design and re-evaluating it to
devise a solution with multi-cycle traversals taken into account.
This motivates the need for accurate hardware modeling during
architectural design-space exploration.

Hardware Description Languages (HDLs) are used for ef-
ficient implementation of the intended hardware but demand
prolonged design cycles and more effort as compared to C++
based implementations [9]. There are various NoC implemen-
tations available as open source packages [3]–[5]. However,
they require HDL coding expertise in languages such as Chisel,
Bluespec, or Verilog, which may not be very common.

To mitigate the problem of enormous design efforts, myriads
of solutions have been proposed across industry and academia
that try to make higher-level abstractions for HDLs in user-
friendly languages like C++/C/SystemC. High-level synthesis
(HLS) tools such as Xilinx Vitis [11] convert C/C++ based
codes into RTL that can be synthesized for FPGAs or ASICs.
These tools allow users to perform rapid prototyping and
deployment of intended hardware.

In this work, we introduce Proteus1, an open-source HLS
framework that can be used for NoC simulation and RTL
generation. Figure 1 shows the overview of the framework.
Proteus provides a baseline implementation of parameterizable
NoCs that researchers can build upon to test their solutions

1https://github.com/synergy-noc-generators/Proteus

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA 

	



TABLE I: Open Source NoC Generators Comparision

CONNECT [3] OpenSoC Fabric [4] OpenSMART [5] Proteus(this work)
Language BSV generated Verilog Chisel BSV and Chisel C++(Vitis HLS)
Topology Arbitrary Typologies Mesh, Flattened Butterfly Mesh Ring, Mesh, Torus

Software Simulation No Yesa Yesa Yes
Implementation time High Medium Medium Low
aChisel/BSV generates C++ code that can be simulated.

in C++ simulation and/or on FPGAs. It can be easily config-
ured/extended to model any desired interconnect. It generates
an executable for software simulation and synthesizable RTL
of NoC according to input parameters. Proteus thus allows
users to perform architectural DSE and at the same time also
assess the hardware impact of their solution in terms of area and
timing without additional development effort. Since researchers
who use NoC simulators already know languages like C++, we
believe they can use the Proteus code for developing their
design and then generating functional hardware using HLS
synthesis flows. We use Xilinx Vitis HLS [11], one of the most
popular HLS tools for RTL generation. This is the first work, to
the best of our knowledge, that leverages HLS to enable users
to perform NoC software simulation and generate synthesizable
NoCs at the same time.

As a second contribution, we perform case studies comparing
the HLS-generated RTL against Chisel-generated and hand-
written RTLs in terms of code complexity and efficiency of the
generated designs. A primary concern of HLS-generated RTL is
inefficient in terms of area and timing compared to hand-written
RTL. While this might be true for complex designs, we observe
that HLS does a good job of making functional hardware for
NoCs at comparable area cost compared to Chisel and hand-
written SystemVerilog. We find that the area of HLS-generated
NoC is only ∼15% higher than those of hand-written/chisel-
generated RTL, and the router area breakdown in all three
cases is similar. We thus believe that HLS fulfills the purpose
of getting rapid estimates of area/timing overheads to support
additional features in the target NoC.

The rest of the paper is organized as follows: Section 2
summarizes previous works on NoC generators/simulators and
HDLs. Section 3 introduces our proposed framework, Proteus.
In Section 4, we discuss the differences in the implementation
of NoCs using HLS, Chisel, and SystemVerilog. In Section
5, we present evaluations comprising a DSE case-study using
Proteus , FPGA evaluation, and comparison of area/timing of
different HDLs. We conclude our work in Section 6.

II. BACKGROUND AND RELATED WORKS

A. High Level HDLs

In the software paradigm, HDLs can be abstracted between
assembly language and high-level language. The amount of
design effort required for complex hardware designs could be
very high, especially for someone who is not an expert at
implementing RTL. To mitigate this problem, there is a signif-
icant amount of research on high-level HDLs to enable rapid
design space exploration(DSE) via software simulation (C++)
instead of tedious and time-consuming RTL simulations. Chisel
[2] is an open-source HDL based on Scala; it uses constructs

and Object-Oriented Programming(OOP) concepts to enable
concise and modular code. It generates C++ and synthesizable
Verilog based on the Chisel code. Bluespec Verilog (BSV)
was developed as an extension of Haskell to handle digital
design. Like chisel, BSV generates C++ code for behavioral
simulation and Verilog code for synthesis. MYHDL, PyRTL,
and PyMTL are all python-based high-level HDLs. Even with a
higher level of abstraction, these HDLs require a certain amount
of expertise for writing functional code. Generally, for custom
applications, describing the circuit at the RTL level is preferred
as it generates the most optimal, power-efficient hardware.

HLS is a layer of abstraction above RTL, which allows
users to generate synthesizable Verilog code from code writ-
ten in C/C++. Vitis HLS (Xilinx) [11], Intel HLS Com-
piler(Intel), Catapult(Mentor), Stratus HLS(Cadence), Sym-
phony C(Synopsys) are some of the popular HLS compilers.

In this work, we compare RTLs generated by Chisel and Vitis
HLS with hand-written RTL. More details about the difference
in using these three languages are outlined in section IV.

B. NoC Generators

NoC RTL generation suites provide users with a library
of modularized components to build routers. These modules
are usually parameterized, allowing the user freedom to make
their design with a varying number of input/output ports, data
widths, and buffer depths. Connect [3] is an FPGA-optimized
NoC generator that produces BSV-generated Verilog for user-
defined parameters. It exposes a web application to users for
taking input and dumping out the RTL. Open SoC Fabric [4]
provides an NoC generator designed with Chisel. It supports
2-D meshes and flattened butterfly networks of arbitrary design
parameters. Their open-source codebase allows users to modify
and extend the Chisel code. OpenSMART [5] is an open-source
NoC generator based on BSV implementations for mesh and
SMART routers. The aforementioned NoC generators are based
on BSV/Chisel. Thus, only users proficient in HDLs can modify
and extend the code base. In contrast, Proteus is C++ based
code, which is not as esoteric as the other two allowing most
users to implement new features and test the updated code. We
qualitatively contrast these NoC generation suites with respect
to Proteus in Table I.

C. NoC Simulators

NoC simulators provide a fast and efficient way to model
network traffic. For faster performance modeling, most network
simulators are implemented in high-level languages(e.g. C++)
instead of RTL. The simulator must take into account all the
latency and contention information when simulating the traffic
model. C++ based Garnet [6] is a popular network simulator. It

!

!



is incorporated into gem5 [10] and used widely across academia
and industry as it supports a variety of topologies and configu-
rations of individual components. BookSim [7] is another sim-
ulator that supports a wide variety of parameterized topologies,
routing functions, traffic loads, and router components. Since
most such simulators are hardware unaware, they are ideal for
faster simulation but fail to consider hardware implementation
details. This can lead to misleading conclusions.

Compared to these simulators, Proteus can simulate at
C++ level at similar speeds as Garnet/BookSim and provide
an estimated hardware impact of implemented algorithm. An
additional feature that Proteus provides is to test the NoC on
FPGAs since it can generate synthesizable RTL. This is indeed
beneficial since we see up to 10.73x speed-up in simulation
time compared to C++ based simulators.

III. THE PROTEUS NOC GENERATOR

A. Overview

Proteus generates NoC topologies that can be used to study
NoC characteristics with synthetic traffic patterns. NoCs gener-
ated by Proteus can be used as a modular plugin for multi-core
design by connecting cores with NoC routers with AXI inter-
face. We implement base topologies of ring, mesh, and torus
as they account for nearly 60% of user-generated topology in
open source NoC-generators as prior work shows [3]. Figure 1
shows an overview of Proteus and Table II shows the input
parameters currently supported.

TABLE II: Input configuration parameters for Proteus

Input parameter Implemented configurations
Number of Nodes 2-1024

Topology Ring, Mesh, Torus
Router Microarchitecture 1-2 Cycle

Link Width 8-1024
VCs per Port 1-16

Routing XY, YX, North-Last, West-First

B. Design Architecture

We designed Proteus to be hierarchical, parameterizable,
and modular. The top module of an NoC is implemented as a
C++ function that calls other functions and instantiates various
class objects in the NoC. Routers are instantiated as class
objects, and sub-modules are functions of the router class.
Distinguishable implementation of sub-modules provides the
ability to change a module functionality easily; for example, if
users want to implement a new routing algorithm, they need to
add a C++ logic for the routing function in the router class.

C. Router Micro-architecture

This section will outline the detail of router implementation.
The Router, as shown in Figure 2, is a single-cycle router
with data registering at input buffer and passing through route
compute unit, switch arbiter, and traversing through the switch
to output links. We describe the functioning of sub-modules of
the router:

Input Port: An input port contains virtual channel buffers
and VC multiplexers. Input buffers are the primary data storage

Fig. 2: The router micro-architecture implemented in Proteus

unit of the routers where incoming data from neighbouring
nodes is latched. The core injects data into the buffer inside
the local input port. This module is also responsible for sending
credits back to the port of the previous router.

Routing Unit: Once the new data is latched in the input unit,
the next destination is calculated for each valid flit residing
in the input buffers. Proteus supports two Dimension Order
Routing (DOR) algorithms - XY and YX for mesh and torus. It
also supports turn-restricted routing like North-Last/West-First
that helps ensure deadlock-free traversal in mesh and torus. We
also implement random oblivious routing support for mesh and
torus to help users test new deadlock avoidance algorithm.

Switch Arbiter: Switch arbiter is implemented using matrix
arbiter [1]. In an N:1 matrix arbiter, N one-bit registers are
used to encode priorities among the requesters and are updated
after each grant. The switch arbiter will choose a flit with the
highest priority in different VCs of multiple ports. The switch
arbiter passes arbitration information to the crossbar switch,
which helps to enable link traversal from input buffers to the
output link. The switch arbiter keeps track of free VC ids using
credits from the receiving router. These free VC ids are stored
in a queue, and the winner of the switch arbitration picks a VC
id from the head of the queue.

Crossbar Switch: The crossbar switch fetches the flits which
won the arbitration in the switch arbiter and assigns them to
appropriate output links. The output of the crossbar is sent to
the output port, where it can be either sent out in the same
cycle or registered at the output to make a two-cycle router.

D. Network Interface and Statistics

Proteus generated NoCs can be plugged into external SoC
or can be used as a standalone simulator. We describe the
functionalities of key modules for enabling both.

Packet Handler: The packet handler (Figure 1) acts as the
network interface and breaks incoming packets from external
nodes into smaller flits if needed, depending on the channel
width. It also aids in statistic collection.

Latency Calculation: Since Proteus serves as a NoC sim-
ulator, traffic monitoring an essential feature. Each router pro-
vides the following metrics to users in AXI readable registers:
an average NoC traversal latency, an average queuing latency,
packet traversal statistics.

!

!



Traffic Generation: To run standalone NoC simulations, we
provide synthetic traffic generators to create packets at user-
specified injection rates for destinations determined via patterns
such as pseudo-random, bit-complement, bit-reverse, shuffle,
transpose, and bit-rotation. We also offer the ability for the
NoC to interface with external nodes using AXI through the
packet handlers.

Implementation of Random Numbers Using LFSRs: One
of the main differences between Proteus and other C++
simulators, like Garnet or Booksim, is the method of generating
random numbers. Random numbers are used to generate syn-
thetic traffic to vary the injection rate into the NoC. In an effort
to model real hardware, Proteus uses pseudo-random numbers
that fulfill the requirement of traffic generation. Proteus uses
linear feedback shift registers (LFSRs) to generate pseudo-
random numbers. LFSR is a shift register whose input bit is
driven by the XOR of some bits of the overall shift register
value. Due to the definite nature of the input bit, the output of
the next step can be determined by the current state. Thus, it is
possible to have a recurring loop of values in LFSR. Depending
on the initial seed and function at the input, it is possible to
create long loops simulating random behavior.

Deadlock Detection: Each router checks for stalled buffers
every cycle and keeps track of the number of cycles for which
the buffer is stalled. After a certain user-defined number of
cycles, the router is considered to be deadlocked, and the
message is passed to the top-level NoC interface.

IV. HLS VS. CHISEL VS. SYSTEMVERILOG
IMPLEMENTATIONS

SystemVerilog, Chisel, and Vitis HLS are three different
levels of abstraction in terms of developing the same hardware
functionality. For comparison, we created a 4-router ring NoC
with 1-stage router (4-buffer) in all languages2. In this section,
the implementation of routing unit, coded using these different
languages is compared. Quantitative evaluations for the full
router are presented in Sec. V-E.

HLS: In C++, the routing unit in a ring needs to determine
the shortest path to the destination. It also needs to figure out
the direction in which the newly injected packets would move.
As shown in Listing 1, we use simple if-else statements to
check for the number of hops to determine the direction as an
output of the routing function. The simplicity of coding with a
high-level language such as C++ enables users to focus on the
algorithm’s functionality rather than on implementation details
like clocks, resets, and enable signals. Due to the small number
of lines of code, HLS affords rapid design ramp-up and reduced
debug times for the network.

Listing 1: HLS Implementation
1 if (dst_id == this->router_id) return EVICT;
2 if (input_port == LOCAL)
3 return go_east_hop > go_west_hop ? WEST : EAST;
4 else if (input_port == EAST) return WEST;
5 else if (input_port == WEST) return EAST;
6 else return ERROR;

2We do not directly use OpenSoC [4] generated router to keep the router
micro-architecture same across the three implementations.

Verilog: In SystemVerilog, the routing unit is a combina-
tional logic written as series of if and else conditions inside an
always block, Listing 2. While the code looks similar to HLS
code, there are various details SystemVerilog developers need
to consider even in such a simple block of code. Some of these
are non-blocking or blocking assignments of the variable. If the
developer incorrectly uses these assignments, it can lead to a
functionality issue. Also, a major part of SystemVerilog design
revolves around sequential logic, for which trigger conditions
and edge sensitivity are some of the critical things that need to
be considered.

Listing 2: RTL Implementation
1 always @(posedge clk or negedge rst_n) begin
2 if (˜rst_n) out_dir <= LOCAL;
3 else if (en) begin
4 if (dest_id == ROUTER_ID) out_dir <= LOCAL;
5 else if (IN_PORT == EAST) out_dir <= WEST;
6 else if (IN_PORT == WEST) out_dir <= EAST;
7 else if (IN_PORT == LOCAL) begin
8 out_dir <= (east_hop >= west_hop) ? WEST : EAST;
9 end else

10 out_dir <= out_dir;
11 end
12 end

Listing 3: Chisel Implementation
1 when(flitValid === 1.U) {
2 when((router_id === dest_id))
3 op_port_reg := LOCAL
4 .elsewhen(dest_id > router_id) {
5 when((dest_id - router_id) >= (N/2).U)
6 op_port_reg := EAST
7 .otherwise
8 op_port_reg := WEST
9 } .otherwise {

10 when((router_id - dest_id) >= (N/2).U)
11 op_port_reg := WEST
12 .otherwise
13 op_port_reg := EAST
14 }
15 }

Chisel: Listing 3 shows the routing unit in Chisel. We
implement it using when/elsewhen statements using router-id
and dest-id to calculate the shortest path in the N-node ring.
Chisel supports parameterized designs, the use of classes, and
inheritance, thereby making the code modular and scalable.
Chisel also outputs C++ code used to emulate the design, which
can be further used for verification. Although, Chisel supports
C++ based emulation, it still requires significant design time
for implementation when compared to traditional C++ based
code.

V. EVALUATIONS

A. Methodology

We tested the basic functionality of NoCs generated by
Proteus using C++ based standalone test benches. Vitis HLS
is utilized to compile these test benches which include NoCs as
the test unit. These test benches generate traffic at each router at
user-specified rates going towards user-specified destinations.

We also validated our generated designs with hardware
synthesis tools for ASIC and FPGA design flows. For the
ASIC flow, we use Synopsys Design Compiler and Cadence
Innovus with the NanGate 15nm open cell library for synthesis

!

!



Fig. 3: The layout results of 4x4 mesh in Ultra96v2 FPGA
(left) and ASIC using cadence innovus (right).

and place-route respectively. Next for the FPGA validation,
we generate bitstreams using Xilinx Vivado Design Suite
for Ultra96v2 evaluation board. The hardware synthesis tools
provide area, power, and timing closure information. Figure 3
shows the FPGA and ASIC layouts of a 4x4 mesh with 1-
cycle router (4 VCs and 48-bit wide channels). The FPGA
implementation uses 9252 LUTs (17%) and 10859 FFs (10%).
The ASIC implementation uses 68921 um2 in 15nm.

B. Proteus Validation

For validation of Proteus, we use the synthetic traffic
generator mentioned in Sec. III-D to compare network latency
for different synthetic traffic. Figure 4 shows comparison of
average latency of 4x4 mesh when simulated with Proteus
and Garnet. The latency trends of Proteus-generated mesh and
Garnet-simulated mesh are similar3.

Fig. 4: Average network latency versus injection rate of
Proteus generated 4x4 mesh and GARNET for bit comple-
ment(left) and bit rotation(right) traffic.

We further exhibit the flexibility of Proteus by creating
a functional 1D systolic array using an NoC generated by
Proteus. We connect 16 systolic cores and 2 memory units
to the routers of an 18-node ring to perform 1D systolic
convolution, as shown in Figure 5. Each systolic core is capable
of doing 1 multiple and accumulate operations per cycle.
Elements of vector B are kept stationary in a core and vector A’s
elements are streamed from the first memory core. Finally, the
output is written back to the second memory unit. We compare
the final output with software-generated convolution output is
verify the functionality of the NoC.

3Proteus shows slightly higher throughput which is due to differences in the
arbiter design (Garnet uses round-robin while Proteus uses matrix arbiters).

Fig. 5: Proteus generated ring performing vector convolution.

C. Design-space Exploration using proteus

Next, we use Proteus to perform a DSE case study by
varying the number of VCs per port. For a 4x4 mesh we sweep
the number of VCs from 3 to 16, and observe the relationship
of network throughput, area, and timing. We measure the
throughput as maximum number of packets received in a given
time period. For area and timing, we rely on the reports
generated by ASIC synthesis of design. We observe in Figure 6
that the throughput increases as we increase the number of VCs,
but it saturates after 16VCs. We can observe an almost linear
increase in area as the router area is dominated by area of VC
buffers. We also observe a drop in the maximum frequency
because of the increase in the size of VC mux caused due to
an increase in the VC count.

This case study shows that Proteus can enable researchers to
use one framework to perform both performance evaluation and
get real timing, area number. This is unlike pure software sim-
ulators which can often end up modeling unrealistic hardware,
and pure RTL models which limit design-space exploration.

Fig. 6: DSE of number of VCs using Proteus .

D. FPGA evaluations

A key feature distinguishing Proteus from existing NoC
simulators is its ability to run the NoC on real hardware.
After verifying the functionality of the NoC, users can gen-
erate synthesizable RTL. Vivado uses this RTL to generate a
hardware configuration for the FPGA. We load the hardware
configuration file generated by Vivado to the FPGA board by
using a python script. The time taken from generation of the
RTL to programming the board is comparable to Garnet build
time. Table III compares the simulation speed for running the
same topology on a ultra96v2 FPGA board and on Garnet with
the same configuration and different synthetic traffics. We see

!

!



speedup in the run-time of FPGA up to 10.73 times faster
compared to Garnet runtime.

TABLE III: Simulation Speed: Proteus on FPGA vs Garnet

Configuration FPGA(s) Garnet(s) Speedup
Ring: 32 Nodes 1.348-1.526 2.038-3.155 1.51-2.06
Torus: 64 Nodes 0.882-2.256 7.943-9.182 4.07-9
Mesh: 64 Nodes 0.773-2.124 7.866-10.542 4.76-10.73

E. RTL Design evaluations

Finally, we compare the HLS-generated RTL against Chisel-
generated and hand-written RTL(SystemVerilog) in terms of
code complexity and efficiency of the generated designs. We
implemented a 4-node ring with 48-bit links, 2-cycle routers,
and four VCs per port - each 1 flit deep. We consider the design
area, timing, and productivity as the metrics of comparison.

Area: Figure 7 plots the area breakdown of the various
components of the router in the 15nm ASIC flow with three
different RTLs. We observe the ratio of the combinational logic
to the sequential logic is nearly similar in all three RTLs. Most
of the flops are used in the input buffers and the combinational
logic for the implementation of the switch crossbar. Area of the
router generated by HLS is comparable to area of verilog RTL
and chisel-generated RTL. HLS also adds a central controller
to enable communication between the Processing System and
Programmable Logic side of FPGA. For fairness, we do not
include that area in ring area. We observe that the architecture
of a NoC router is simple and modular enough that HLS is
able to generate competitive designs to hand written RTL.

Fig. 7: Router area breakdowns for 3 languages
Timing: Figure 8 plots the maximum achievable frequency

of the ring on the 15nm ASIC flow and the ultra96v2 FPGA
for the three RTLs. The maximum frequency achieved by RTL
generated by Chisel and hand-written RTL is similar to the
HLS-generated RTL running at slightly lower rate. The critical
path in all three cases is the path through the crossbar switch.
It is important to note that the goal of the synthesis tools (both
ASIC and FPGA) is to meet the timing, which comes at the
cost of larger cells and more buffers.

Productivity: We quantify productivity in terms of the lines
of code needed to implement the design, and quality by the time
taken in hours to implement and verify functional code. Quality

Fig. 8: Max frequency of NoCs in ASIC and FPGA flow

is calculated as the maximum frequency per unit area of the
synthesized RTL. We show these parameters in Table IV for the
implementation of a 4-node ring for the three languages. HLS
outperforms RTL and Chisel in both development time and
lines of source code. Although the area and timing of Chisel and
RTL are better than HLS, lower design time is vitally impactful
in rapid design space exploration. [9]

TABLE IV: Productivity for implementing the ring NoC

Language LoC Hours Freq/Area Quality/Hours
Hand-Written RTL 932 24 195.39 8.14

Chisel 860 18 171.15 9.51
HLS 578 6 101.04 16.84

VI. CONCLUSION

This work presents Proteus; an HLS-based NoC generator
and simulator in C++. It can generate synthesizable NoCs based
on user-defined configuration. Proteus generated NoCs can be
simulated at the C++ level and tested on FPGAs. We show
that Proteus-generated RTL is comparable to hand-written and
Chisel-generated RTL. A shorter design cycle with Proteus
trumps the marginal area/power savings from HDL/Chisel
implementations. Thus, it can be a valuable tool for researchers
to do rapid design space exploration of NoCs.

REFERENCES

[1] Jerger, Natalie Enright, Tushar Krishna, and Li-Shiuan Peh. ”On-chip
networks.” Synthesis Lectures on Computer Architecture 12.3 ,2017.

[2] J. Bachrach et al., ”Chisel: Constructing hardware in a Scala embedded
language,” in DAC 2012

[3] M. K. Papamichael and J. C. Hoe, ”CONNECT: re-examining conven-
tional wisdom for designing nocs in the context of FPGAs”,FPGA 2012

[4] F. Fatollahi-Fard, D. Donofrio, G. Michelogiannakis and J. Shalf,
”OpenSoC Fabric: On-chip network generator,” in ISPASS 2016

[5] H. Kwon and T. Krishna, ”OpenSMART: Single-cycle multi-hop NoC
generator in BSV and Chisel,”in ISPASS 2017

[6] N. Agarwal, T. Krishna, L. -S. Peh and N. K. Jha, ”GARNET: A detailed
on-chip network model inside a full-system simulator,” in ISPASS, 2009

[7] Nan Jiang et al., ”A detailed and flexible cycle-accurate Network-on-Chip
simulator,” in ISPASS, 2013

[8] F. Muñoz-Martı́nez, J. L. Abellán, M. E. Acacio and T. Krishna,
”STONNE: Enabling Cycle-Level Microarchitectural Simulation for
DNN Inference Accelerators,” in IEEE CAL, 2021.

[9] S. Lahti, P. Sjövall, J. Vanne and T. D. Hämäläinen, ”Are We There Yet?
A Study on the State of High-Level Synthesis,” in IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, May 2019.

[10] Binkert, Nathan, et al. ”The gem5 simulator.” ACM SIGARCH computer
architecture news 39.2 (2011)

[11] Vitis user guide. 2022. [online] Available at: https://docs.xilinx.com/r/en-
US/ug1399-vitis-hls

!

!


	Select a link below
	Return to Previous View
	Return to Main Menu


