
RoaD-RuNNer: Collaborative DNN partitioning and
offloading on heterogeneous edge systems

Andreas Kosmas Kakolyris⋆, Manolis Katsaragakis⋆, Dimosthenis Masouros⋆, Dimitrios Soudris⋆
⋆Microprocessors and Digital Systems Laboratory, ECE , National Technical University of Athens, Greece

⋆{akakolyris, mkatsaragakis, dmasouros, dsoudris}@microlab.ntua.gr

Abstract—Deep Neural Networks (DNNs) are becoming ex-
tremely popular for many modern applications deployed at the
edge of the computing continuum. Despite their effectiveness,
DNNs are typically resource intensive, making it prohibitive to be
deployed on resource- and/or energy-constrained devices found
in such environments. To overcome this limitation, partitioning
and offloading part of the DNN execution from edge devices
to more powerful servers has been introduced as a prominent
solution. While previous works have proposed resource manage-
ment schemes to tackle this problem, they usually neglect the
high dynamicity found in such environments, both regarding the
diversity of the deployed DNN models, as well as the heterogeneity
of the underlying hardware infrastructure. In this paper, we
present RoaD-RuNNer, a framework for DNN partitioning and
offloading for edge computing systems. RoaD-RuNNer relies on
its prior knowledge and leverages collaborative filtering techniques
to quickly estimate performance and energy requirements of
individual layers over heterogeneous devices. By aggregating this
information, it specifies a set of Pareto optimal DNN partitioning
schemes that trade-off between performance and energy con-
sumption. We evaluate our approach using a set of well-known
DNN architectures and show that our framework i) outperforms
existing state-of-the-art approaches by achieving 9.58× speedup on
average and up to 88.73% less energy consumption, ii) achieves
high prediction accuracy by limiting the prediction error down
to 3.19% and 0.18% for latency and energy, respectively and iii)
provides lightweight and dynamic performance characteristics.

Index Terms—Cloud, Edge Computing, Resource Management,
Neural Networks, Offloading, Collaborative Filtering, Partitioning

I. INTRODUCTION

Over the last years, the growth of applications that utilize
sophisticated Machine Learning (ML) techniques to make value
out of complex data is rapidly increasing and is expected
to grow further in the future. In this direction, Deep Neural
Networks (DNNs) are being widely adopted by many ap-
plication domains, including, but not limited to, autonomous
driving [1], biomedical and healthcare applications [2] and
Intelligent Personal Assistants (IPAs) [3], mainly due to their
capability in offering high prediction accuracy.

Such types of applications are typically deployed at the edge
of the computing continuum, closer to where data are generated,
in order to enhance security and minimizing the data transfer
latency to the cloud [4]. Even though DNNs provide extremely
accurate results, their computational and memory requirements
can skyrocket, thus introducing several barriers on how to be

This work has been partially funded by EU Horizon program under grant
agreement No 101096110 (https://www.privateer-project.eu/).

Fig. 1: DNN optimal partitioning schemes w.r.t. a) different
optimization goals and b) device heterogeneity.

efficiently deployed on resource-contrained edge computing de-
vices [5]. Considering also that DNNs are gradually becoming
deeper to support more discriminative results and more levels
of hierarchy are integrated in the learned representation [6], the
aforementioned problem becomes even more intense.

Traditionally, to overcome this limitation, the DNN inference
of edge devices was offloaded to high-end servers hosted on
cloud premises (e.g., Amazon Elastic Inference, Azure Machine
Learning). However, this approach leads to huge amount of
data travelling back and forth in the continuum resulting
in high latency and energy consumption. Moreover, all the
computational effort is being concentrated in the cloud, render-
ing it incapable to cope with the ever-increasing demand for
resources [7]. Aiming to deliver more efficient and energy pro-
portional computing systems, hardware vendors (e.g., Nvidia,
Xilinx) are introducing more powerful edge devices, which
often integrate conventional CPUs, hardware accelerators and
specialized units for DNN computations (e.g., Nvidia’s Tensor
cores) as a system-on-chip (SoC). While such hardware devices
deliver increased compute density, they are also extremely
power hungry, thus, becoming restrictive for applications that
operate under certain energy or battery constraints.

Aiming to identify the ”golden ratio” between performance
and energy efficiency for edge computing devices, while also
limiting the network latency bottleneck, DNN partitioning and
offloading has been identified as a promising solution [8], [9].
The aim of DNN partitioning is to provide a fine-grained
layer-level split of the DNN, where a portion of the com-
putation is performed locally on the edge device and the
rest on the cloud. Still, identifying an optimal partitioning
scheme is not trivial and depends on a triptych of user-defined

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

requirements and hardware-oriented criteria, i.e., i) the architec-
ture of the deployed DNN model (e.g., computational/energy
requirements and data offloading overhead per layer), ii) the
inherent nature of the application itself (e.g., latency critical
applications would sacrifice energy for performance) and iii)
the underlying hardware characteristics. As a motivational
example, Fig. 1a shows the performance and energy of all
the possible partitioning schemes for a ResNet101 architecture.
We see that model partitioning can provide significantly faster
execution and less energy consumption compared to on-board
and offloaded execution, while also each optimization objective
is attained through different partitioning schemes. Moreover,
Fig. 1b further reveals, that the optimal partitioning scheme also
relies on the underlying hardware, with different edge devices
providing different splits.

To tackle these challenges, several prior research approaches
have examined the problem of DNN partitioning and offload-
ing [9], [10], [8]. These solutions assume that the architecture
of the deployed model, as well as the underlying hardware
are known a priori and apply the offloading scheme based
on extensive profiling of the DNN. However, edge computing
environments are extremely dynamic, both with respect to the
devices arriving in the network and the alternative applications
deployed. Moreover, novel DNN architectures are emerging [4],
leading to more and more complex techniques, such as skip-
layer connections, early exits and others.

In order to adapt to the challenges that new DNN architec-
tures impose and to the dynamic nature of recent edge com-
puting systems, we design an efficient resource management
framework to dynamically allocate, partition and offload DNN
layers among edge and cloud resources, aiming to provide per-
formance and/or energy consumption optimizations and trade-
offs. The novel contributions of this work are:
● We present RoaD-RuNNer, a novel resource manage-

ment framework consisting of a set of Offline and Online
Decision Making Mechanisms.

● We implement a collaborative filtering based prediction
mechanism in order to provide per layer predictions
regarding execution time and energy consumption.

● We design and integrate a dynamic partition mecha-
nism, for efficiently splitting and offloading DNN layers.

● We conduct an extensive experimental evaluation of
our proposed framework. We compare our framework
with a set of baseline algorithms and state-of-the-art DNN
offloading approaches over real hardware and networking,
showing that it outperforms existing state-of-the-art ap-
proaches by achieving 9.58× speedup on average and up
to 88.73% less energy consumption average.

The remainder of this paper is organized as follows: Sec-
tion II presents related work. In Section III we analyze our
proposed prediction and offloading mechanism. Section IV
provides our experimental and comparative evaluation of the
proposed resource management scheme, while Section V con-
cludes this work.

II. RELATED WORK

Several works have been conducted in order to address
the resource management challenges of DNNs deployed on

edge computing systems. Deep learning model partitioning
and offloading is becoming a rising trend in recent edge
computing systems. Research conducted by [11] considers
various present and future challenges for efficiently deploying
deep learning models on the edge. In a similar perspective,
authors of [12] provide an overview of the overarching archi-
tectures, frameworks, and emerging key technologies towards
training/inference for deep learning models at the network edge.

Aiming to provide DNN resource management schemes,
authors of [10] propose a partitioning-based DNN offloading
technique for edge computing, by dividing the DNN model into
partitions and uploading them to the edge server. In a similar
perspective, authors of [13] present a distributed progressive
inference engine that addresses the challenge of partitioning
CNN inference across device-server setups. In [14] a framework
that dynamically partitions a DNN model that adapts to the
changes of computational resources and network condition is
proposed. Authors of [8] design a workload partitioning algo-
rithm to decide efficient DNN partitioning policy in real-time,
while in [15] authors utilize several IoT devices by creating
a local collaborative network for a subset of deep learning
models, mainly focusing on the impact of convolutional layers.
Last but not least, authors of [9] present the efficiency of DNN
processing on the cloud based on pre-loaded layers.

Although research has illuminated the resource manage-
ment and offloading of neural network based applications on
edge computing systems, no study to date, according to our
knowledge, has incorporated collaborative filtering in order to
produce an efficient, decentralized resource management solu-
tion for Neural Network offloading at single layer granularity,
while targeting heterogeneous CPU/GPU architectures. Neuro-
surgeon [9], is the most similar approach to ours, however there
exist several fundamental differences. We target a fully dynamic
DNN offloading framework, in contrast to Neurosurgeon, where
DNN weights are loaded a priori to the cloud server. Moreover,
Neurosurgeon is limited to operate over models without skip-
layer connections, in contrast to RoaD-RuNNer, which is
designed to operate over all types of DNN/CNN.

III. ROAD-RUNNER : A COLLABORATIVE DNN
PARTITIONING & OFFLOADING FRAMEWORK

RoaD-RuNNer tackles the problem of DNN partitioning
and offloading over heterogeneous CPU/GPU edge computing
systems, where a portion of the computational burden can be
offloaded from the edge to the cloud for remote execution. Each
individual edge node accommodates a set of DNN inference
tasks which need to be executed. RoaD-RuNNer’s goal is to
identify optimal DNN splittings, down to the granularity of a
single layer and offload computationally heavy slices, aiming to
optimize the total inference execution latency and/or the energy
consumption. Figure 2 depicts an overview of RoaD-RuNNer.
The major components of our proposed framework are split
in two major phases: (i) Offline Phase and (ii) Online Phase.
The former is composed of DNN-Profiler and Network Profiler,
while the latter consists of the Predictor and Offloader mecha-
nisms. The core functionality of these components is described
in the rest of this section.

!

!

Fig. 2: Overview of Online and Offline RoaD RuNNer Architecture.

A. Offline Phase
Offline Phase consists of two distinct components: (i) DNN

Profiler (1) and (ii) Network Profiler (2), which are responsi-
ble for generating the required data and knowledge to be fed as
input to the run-time mechanisms later. As input to the frame-
work, we provide alternative neural network configurations to
each single node of the composed edge computing network.

DNN Profiler: Aiming to take advantage of the inherent
distributed nature of the edge computing paradigm and the
heterogeneity in terms of edge devices and deep learning
models, we implement a collaborative filtering mechanism [16],
[17], in order to train our system to efficiently predict per layer
execution time and energy consumption for each device, respec-
tively. As a first step of the offline decision making, we integrate
a Layer Filtering and Sampling (1a) component, aiming to
filter and sample the layers of the alternative neural networks
that are fed as input to our framework. More specifically, a
small percentage p of the input layers in each DNN is randomly
selected to be accurately profiled on the edge device itself. This
ensures that profiling time does not skyrocket when the total
number of layers in the DNN increases. The percentage p is
defined through experimentation.

Next, the layers that have been selected through the filtering
and sampling process are propagated as input to the Layer
Execution & Profiling (1b) step. Each of the sampled layers
is executed locally on each node, respectively. The execution
is profiled, aiming to gather data regarding the execution
latency and the energy consumption per layer. Thus, for every
single node k, we extract the Node’s Latency Matrix (LMk)
and Node’s Energy Matrix (EMk), respectively. The LMk

and EMk are propagated as input for further processing to
the Predictor mechanism, as described in Section III-B. This
process is triggered once for each node.

Network Profiler: The efficiency of an edge computing
system is directly related to its ability to effectively operate
over the existing network infrastructure. Moreover, offloading

decision making mechanisms should consider the overhead
imposed by the underlying network. Thus, for each individual
node k we integrate an extended Network Profiling mechanism
(2a). As input we provide a set of alternative workloads to
be sent/received from each edge device to the cloud server.
We profile the transmission latency and power of data sent and
received from and to the edge device. The profiled messages
range from KB to GB orders of magnitude.

After the profiling is finalized, each node k is characterized
by two vectors: (i) The Network Latency Vector (NLVk)
and the Network Energy Vector (NEVk), which represent the
latency and energy requirements for alternative message sizes,
respectively. The produced vectors are utilized as dataset to
produce polymonial trendlines, in order to predict the latency
and energy requirements of a given input message size. Thus,
for each individual device, fourth-order polynomial curves are
generated in order to be utilized for run-time prediction during
the Online Phase.

B. Online Phase

An efficient dynamic resource management scheme should
be able to make decisions in a run-time manner. Thus, we
integrate into our framework two key components: (i) Predictor
(3) and (ii) Offloader (4). The former is responsible for
dynamically predicting latency and energy per layer, while the
latter is responsible for network and collaborative filtering data
aggregation, dynamic DNN partitioning andRoa offloading.

Predictor: The output matrices produced by the DNN Pro-
filer (1) of each single node k during the offline phase are
accumulated to the cloud server (3a). Two new sparse matrices
are produced, i.e. Sparse Latency Matrix and Sparse Energy
Matrix, respectively. Each row of the matrix represents an edge
node, while each column denotes a single layer type. The
Collaborative Filtering mechanism (3b) is triggered, based
on matrix decomposition, i.e. based on the factorization of
each matrix into a product of matrices. The unknown values

!

!

Algorithm 1: DNN Partitioning Algorithm
Partition(network):

1 for layer in (0,...,N-1) do
2 /* predict local for layers 0 to layer */
3 l1=predictLocal(0, layer)
4 for j in (layer+1,...,N-1) do
5 /* predict network,cloud for layers i + 1 to j */
6 n=predictNetwork(layer+1, j)
7 c=predictCloud(layer+1, j)
8 /* predict network,cloud for layers j + 1 to N − 1 */
9 l2=predictLocal(j+1, N-1)

10 totalPredictions=accumulatePredictions(l1,n,c,l2)

11 /* find Pareto Optimal */
12 paretoPoints = DesignSpaceExploration(totalPredictions)
13 return paretoPoints

are filled, and the Final Latency Matrix(LM) and the Final
Energy Matrix(EM) are produced. After the predictions are
finalized, each device retrieves its corresponding results from
the cloud server, which are utilized for the final Latency/Energy
Prediction (3c). Opposed to prior works, which mostly rely on
extended profiling for each new deep learning model [13], [10],
our framework is adaptable to dynamic scenarios. New nodes
that dynamically join the network are integrated in the existing
latency and energy matrices and the collaborative filtering
matrices are updated. New incoming DNNs can benefit from
the existing layers in the collaborative filtering matrices.

Offloader: The last component of the Online Phase is
responsible for the aggregation of network and collaborative
filtering data and the dynamic DNN partitioning and offloading.
For each single node k, the network profiling vectors (NLVk,
NEVk), and the collaborative filtering matrices (LM , EM)
for latency and energy are aggregated (4a), in order to provide
the final prediction per layer, including computation and trans-
mission overhead. Next, we proceed to the DNN Partitioning
Exploration (4b), in order to provide a set of Pareto opti-
mal solutions, aiming to optimize performance and/or energy
consumption. The DNN partitioning exploration algorithm is
illustrated in Algorithm 1. A set of Pareto optimal solutions
in generated. Each Pareto point corresponds to an alternative
partition, on which a subset of DNN layers is executed locally
(4c) and the rest are offloaded for remote execution on the
cloud server (4d). Each partition is identified by two indexes
i, j where layers 0 to i are executed locally, layers i + 1 to j
are executed on the cloud and the layers from j + 1 and up
to the end of the network are executed locally. Fully local and
fully remote executions remain valid alternatives, in case they
belong to the Pareto optimal solutions. Moreover, in contrast
to existing approaches [9] our framework is designed to handle
shortcut dependencies, i.e. skip-layer connections. Such kind
of dependencies are resolved by encapsulating the layers that
create the dependency in an larger atomic block that has a single
input and output and are offloaded as an individual component.

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup
Hardware Infrastructure: We deploy an in-house system

setup consisting of heterogeneous CPU/GPU devices, the speci-
fications of which are shown in Table I. As edge devices, we uti-
lize a set of NVIDIA GPU-SoCs, to exploit power/performance

trade-offs. As offloading machine, we employ a powerfull x86
server equipped with an NVIDIA V100 GPU, which forms a
typical setup both in edge and cloud premises [18].

Technical Implementation: RoaD-RuNNer is implemented
in Python programming language. All devices are intercon-
nected through 80MB/s wireless network. We utilize the Ze-
roMQ messaging protocol for control and the FTP protocol for
transmission of the actual data and layers. In order to over-
come the architectural differences of heterogeneous CPUs all
applications are integrated inside docker containers, while the
corresponding GPU implementations are developed in CUDA.
The collaborative filtering component used for estimating the
performance and energy impact of different layers is accelerated
through the use of C++ for increased performance.

Examined DNN models: We examine famous DNN ar-
chitectures and known variations, i.e. AlexNet (alex), Mo-
bileNetV2 (mv2), Resnet18 (res18), Resnet34 (res34), Resnet50
(res50), Resnet101 (res101), Resnet152 (res152), VGG11,
VGG13 and VGG16, which are widely used for performing
object detection and image classification tasks at the edge [19],
[20], over alternative input image sizes (224 × 224, 512 × 512
and 768×768). The input models are derived from PyTorch [21]
and are integrated to RoaD-RuNNer.

Reference Baselines: We evaluate the impact of our ap-
proach based on three key metrics: (i) performance (ii) energy
consumption and (iii) prediction accuracy of our collaborative
filtering approach. We compare against various partition and
offloading mechanisms. First, as a baseline we utilize two naive
approaches: (i) Offload None, which executes all tasks locally,
without offloading anything on the cloud and (ii) Offload All, in
which all tasks are offloaded to the cloud for remote execution.
Moreover, we implement from scratch and compare against a
state-of-the-art resource management algorithm for DNN of-
floading, namely Neurosurgeon(NS) [9]. Since Neurosurgeon is
designed with the assumption to operate with a priori offloaded
layers on the cloud infrastructure, we also implement a version
of Neurosurgeon with online layer offloading, namely NS-
nonOffloaded and a version of RoaD-RuNNer-preOffloaded,
where the layers are offloaded a priori to the cloud.

B. Evaluation
Performance and Energy Evaluation: In the first compar-

ative experiment, we evaluate RoaD-RuNNer in terms of
performance and energy consumption against the approaches
presented in Section IV-A, as illustrated in Fig. 3. Given
the fact that Neurosurgeon is designed to operate only over
non-Residual Neural Networks, we utilize as benchmarks the
VGG11,13,16 and AlexNet models. X axis indicates the corre-
sponding energy gain, while Y axis denotes the relative speedup
of our framework compared to other approaches for CPU
(Fig.3a) and GPU (Fig.3b) execution, respectively. The output
is divided in four distinct quadrants, on which RoaD-RuNNer
does not achieve any speedup or energy gain (red), achieves
either speedup only or energy gain only (orange) and achieves
both speedup and energy optimization (green). We observe
that Road-RuNNer clearly outperforms the Offload All and
Offload None approaches, by leading up to 45.41× speedup,
95.84% energy reduction compared to the former and up to

!

!

TABLE I: Technical characteristics of heterogeneous Edge nodes and Cloud Server

Device CPU L2 L3 DRAM GPU
Jetson Nano 4×Cortex-A57@1.4GHz ARMv8 64-bit 2MB - 4GB 128×Maxwell@0.9GHz
Tegra X1 4×Cortex-A57@1.4GHz ARMv8 64-bit 2.5MB - 4GB 256×Maxwell@1.0GHz
Xavier NX 6×Carmel@1.4GHz ARMv8.2 64-bit 6MB 4MB 8GB 384×Volta@1.1GHz
Xavier AGX 8×Carmel@2.2GHz ARMv8.2 64-bit 8MB 4MB 32GB 512×Volta@1.4GHz
Cloud Server 2×20 core Intel Xeon Gold 5218R@2.1GHz 1MB 28MB 128GB 5120xVolta-V100@1.2GHz

Fig. 3: Performance and Energy Comparison of RoaD-RuNNer
framework against other approaches for CPU and GPU nodes
for alternative DNN workloads.

6.61× performance optimization and 95.87% energy reduction
compared to the latter, for CPU execution. Similar observations
are derived for GPU execution. The initial version of Neurosur-
geon, on which all layer weights are offloaded a priori, performs
better in terms of performance and energy consumption, as the
network overhead is a dominant factor. However, compared
to the NS-nonOffloaded, where layer weights are offloaded
dynamically, we observe that RoaD-RuNNer provides on
average 4.97× optimized performance and 81.85% less energy
consumption for CPU, and up to 35.74× optimized performance
and 88.73% less energy consumption for GPU, respectively.
RoaD-RuNNer is designed to provide up to two partition
points, in contrast to Neurosurgeon, on which there exists
only a single breakpoint. Therefore, the latter pays the penalty
of either executing locally all the resource intensive layers
or offloading their weights, thus paying the network penalty.
Similarly, RoaD-RuNNer-preoffloaded, where all model layers
are offloaded offline, our approach outperforms Neurosurgeon
by up to 54.09× in terms of performance and up to 58.06× in
terms of energy consumption.

In contrast to Neurosurgeon, RoaD-RuNNer is designed
to operate efficiently over workloads consisting of DNNs
with skip layer connections. Thus, we add to the existing

Fig. 4: Root Mean Square Error(RMSE) of execution time and
energy consumption over alternative Collaborative Filtering fill
percentages.

benchmarks the Resnet18, Resnet34, Resnet50, Resnet101,
Resnet152 and MobileNetV2 models and evaluate our ap-
proach. The evaluation is depicted in Fig. 3c and Fig. 3d for
CPU and GPU executions, respectively. For CPU execution,
our framework outperforms Offload None, by achieving up to
13.92× optimized performance and 46.07× less energy con-
sumption and Offload All by achieving up to 45.41× optimized
performance and 24.05× less energy consumption, respectively.
Similarly, for GPU executions, RoaD-RuNNer achieves up
to 1.85× speedup and up to 1.34× less energy consumption
compared to Offload None and 112.98× speedup and 16.59×
less energy consumption on average compared to Offload All.

Prediction Accuracy: The efficacy of our framework is
directly related to the accuracy of the collaborative filtering
mechanism. First, we evaluate the learning phase of the predic-
tion mechanism in terms of Root Mean Square Error (RMSE)
related to the size (percentage) of training set and compare
with the Neurosurgeon’s prediction approach. We observe that
providing the 30% of our training set, the execution time and
energy RMSE has converged. Thus, we set our training set size
to 0.3. Compared to Neurosurgeon, our proposed mechanism
achieves up to 6.45× and 8.48× less RMSE, for execution time
and energy, respectively. Neurosurgeon displays linear behavior,
as it utilizes 100% of the dataset during the training phase.

Next, as illustrated in Fig. 5, we compare the execution time

Fig. 5: Execution Latency and Energy Consumption Prediction
Accuracy for alternative DNN workloads and Edge nodes.

!

!

Fig. 6: DNN percentage offloading over heterogeneous Edge
nodes for latency and energy optimization objectives.

accuracy and energy prediction accuracy of RoaD-RuNNer
(Fig. 5a, 5b) and Neurosurgeon per deep learning model and
Edge node (Fig. 5c, 5d), respectively. Our framework achieves
68.01% less execution time prediction error and 63.8% less
energy prediction error per DNN on average, while we achieve
up to 69.6% less execution time prediction error and up to
34.9% less energy prediction error per edge device. In contrast
to our prediction mechanism, Neurosurgeon is based on linear
and logarithmic regression, making it impossible to provide
high accuracy (or low error) and capture non-linear behaviors
in the system, thus leading to high RMSE.

DNN Offload Analysis: Further discussion can be con-
ducted on the decision making of RoaD-RuNNer, in order
to achieve latency and energy optimization objectives. Thus,
in Fig. 6 the layer offloading percentage in terms of the
number of layers offloaded for each model and edge node
is depicted, in order to achieve each optimization objective,
respectively. First, as depicted in Fig. 6a, we see that the
more powerful devices (AGX, NX) offload less computation
for remote execution, compared to less powerful devices (Nano,
TX1). More specifically, for AGX and NX the 58.7% of the
target DNN is offloaded on average, opposed to Nano and
TX1, where the 87.1% is offloaded. Similar observations are
extracted for the energy optimization objective, as shown in
Fig. 6b. Furthermore, having execution latency as the optimiza-
tion objective, the 74.45% of layers is offloaded on average,
while for the energy optimization objective the corresponding
percentage rises to 90.1%. This is due to the fact that the
network imposes high latency overhead, thus making the data
and layer transmission prohibitive in order to meet latency
optimization objectives.

V. CONCLUSION

This work presents RoaD-RuNNer, a novel resource man-
agement framework for DNN partitioning and offloading over
heterogeneous CPU/GPU edge computing systems. Our frame-
work strongly leverages collaborative filtering techniques to
estimate performance and energy requirements of individual
DNN layers over heterogeneous devices. By aggregating this
information, it specifies a set of Pareto optimal DNN partition-
ing schemes that trade-off between performance and energy
consumption. Our approach outperforms existing state-of-the-
art approaches by achieving 9.58× speedup on average and
up to 88.73% less energy consumption and high prediction
accuracy by limiting the prediction error down to 3.19% and
0.18% for latency and energy, respectively.

REFERENCES

[1] S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu, “A survey of deep
learning techniques for autonomous driving,” Journal of Field Robotics,
vol. 37, no. 3, pp. 362–386, 2020.

[2] R. Miotto, F. Wang, S. Wang, X. Jiang, and J. T. Dudley, “Deep
learning for healthcare: review, opportunities and challenges,” Briefings
in bioinformatics, vol. 19, no. 6, pp. 1236–1246, 2018.

[3] Y. Liang, D. O’Keeffe, and N. Sastry, “Paige: Towards a hybrid-edge de-
sign for privacy-preserving intelligent personal assistants,” in Proceedings
of the Third ACM International Workshop on Edge Systems, Analytics and
Networking, pp. 55–60, 2020.

[4] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
communications surveys & tutorials, vol. 19, no. 4, pp. 2322–2358, 2017.

[5] Z. Zhao, K. M. Barijough, and A. Gerstlauer, “Deepthings: Distributed
adaptive deep learning inference on resource-constrained iot edge clus-
ters,” IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, vol. 37, no. 11, pp. 2348–2359, 2018.

[6] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proceedings of the IEEE,
vol. 105, no. 12, pp. 2295–2329, 2017.

[7] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architecture
and computation offloading,” IEEE communications surveys & tutorials,
vol. 19, no. 3, pp. 1628–1656, 2017.

[8] L. Zeng, X. Chen, Z. Zhou, L. Yang, and J. Zhang, “Coedge: Cooperative
dnn inference with adaptive workload partitioning over heterogeneous
edge devices,” IEEE/ACM Transactions on Networking, vol. 29, no. 2,
pp. 595–608, 2020.

[9] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang, “Neurosurgeon: Collaborative intelligence between the cloud
and mobile edge,” ACM SIGARCH Computer Architecture News, vol. 45,
no. 1, pp. 615–629, 2017.

[10] H.-J. Jeong, H.-J. Lee, C. H. Shin, and S.-M. Moon, “Ionn: Incremental
offloading of neural network computations from mobile devices to edge
servers,” in Proceedings of the ACM Symposium on Cloud Computing,
pp. 401–411, 2018.

[11] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge
intelligence: Paving the last mile of artificial intelligence with edge
computing,” Proceedings of the IEEE, vol. 107, no. 8, pp. 1738–1762,
2019.

[12] Y. Chen, B. Zheng, Z. Zhang, Q. Wang, C. Shen, and Q. Zhang, “Deep
learning on mobile and embedded devices: State-of-the-art, challenges,
and future directions,” ACM Computing Surveys (CSUR), vol. 53, no. 4,
pp. 1–37, 2020.

[13] S. Laskaridis, S. I. Venieris, M. Almeida, I. Leontiadis, and N. D. Lane,
“Spinn: synergistic progressive inference of neural networks over device
and cloud,” in Proceedings of the 26th annual international conference
on mobile computing and networking, pp. 1–15, 2020.

[14] L. Zhou, H. Wen, R. Teodorescu, and D. H. Du, “Distributing deep
neural networks with containerized partitions at the edge,” in 2nd USENIX
Workshop on Hot Topics in Edge Computing (HotEdge 19), 2019.

[15] R. Hadidi, J. Cao, M. S. Ryoo, and H. Kim, “Toward collaborative
inferencing of deep neural networks on internet-of-things devices,” IEEE
Internet of Things Journal, vol. 7, no. 6, pp. 4950–4960, 2020.

[16] C. Delimitrou and C. Kozyrakis, “Paragon: Qos-aware scheduling for
heterogeneous datacenters,” ACM SIGPLAN Notices, vol. 48, no. 4,
pp. 77–88, 2013.

[17] E.-I. Christoforidis, S. Xydis, and D. Soudris, “Cf-tune: Collaborative
filtering auto-tuning for energy efficient many-core processors,” IEEE
Computer Architecture Letters, vol. 17, no. 1, pp. 25–28, 2017.

[18] “Edge computing: gaining the digital edge.” https://atos.net/en/solutions/
edge-computing-infrastructure. Accessed: 10-09-2022.

[19] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A survey of convolutional
neural networks: analysis, applications, and prospects,” IEEE transactions
on neural networks and learning systems, 2021.

[20] E. Arnold, O. Y. Al-Jarrah, M. Dianati, S. Fallah, D. Oxtoby, and
A. Mouzakitis, “A survey on 3d object detection methods for autonomous
driving applications,” IEEE Transactions on Intelligent Transportation
Systems, vol. 20, no. 10, pp. 3782–3795, 2019.

[21] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances in
neural information processing systems, vol. 32, 2019.

!

	Select a link below
	Return to Previous View
	Return to Main Menu

