
 

High-Speed and Energy-Efficient Single-Port Content 
Addressable Memory to Achieve Dual-Port Operation 

Honglan Zhan, Chenxi Wang, Hongwei Cui, Xianhua Liu, Feng Liu and Xu Cheng 
School of Computer Science, Peking University, Beijing, China 

{laan.z@stu.pku.edu.cn, lxh@mprc.pku.edu.cn, chengxu@mprc.pku.edu.cn} 

Abstract—High-speed and energy-efficient multi-port content 
addressable memory (CAM) is very important to modern 
superscalar processors. In order to overcome the disadvantages of 
multi-port CAM and improve the performance of searching stage, 
a high-speed and energy-efficient single-port (SP) CAM is 
introduced to achieve dual-port (DP) operation. For different bit 
cell topologies – the traditional 9T CAM cell and 6T SRAM cell, 
two novel peripheral schemes – CShare and VClamp are proposed. 
The proposed schemes are verified using all possible corners, a 
wide range of temperature and detailed Monte-Carlo variation 
analysis. With 65-nm process and 1.2 V supply, the search delay of 
CShare and VClamp is 0.55 ns and 0.6 ns, respectively, a reduction 
of approximately 87% compared to the state-of-the-art works. In 
addition, compared with the recently proposed 10T BCAM, 
CShare and VClamp can provide 84.9% and 85.1% energy 
reduction in the TT corner, respectively. Experimental results in 
an 8 Kb CAM at 1.2 V supply and across different corners show 
that the energy efficiency is improved by 45.56% (CShare) and 
45.64% (VClamp) on average in comparison with DP CAM. 

Keywords—Superscalar processors, content-addressable 
memory (CAM), dual-port 

I. INTRODUCTION 

In order to exploit instruction-level parallelism, many 
microarchitecture components greatly rely on the complex 
content addressable memory (CAM) with multiple read ports 
[1–5], such as register renaming circuits [3], [4], instruction 
scheduler [1], [2], load/store queue [2], [5], and Translation 
Look-aside Buffer (TLB) [6]. 

With the development of modern processors, the CAM-ports 
expand with the increase of processor width, which can be 
observed from the configurable number of the CAM-ports in a 
recent popular open-source processor [5]. However, it is a great 
challenge to realize high-speed and energy-efficient parallel 
CAM operations. As shown in Fig. 1, the conventional dual-port 
(DP) CAM is implemented by using two instances of a typical 
CAM-port. The increase of read ports further increases the area 
and power consumption [7], [8], which is especially costly for 
modern high-performance processors [9]. 

Conventional DP CAM requires a precharge (P) cycle to 
precharge all match lines (MLs) in port A and port B, which 
occupies the low voltage stage of CLK. After the precharge, 
ports A and B perform search (S) operations in the high voltage 
stage of CLK. Several previous studies support DP CAM or 
precharge-free CAM by adding more transistors to 6T SRAM 
cell or 9T CAM cell. However, it causes extra area and power 
consumption. Li [10] modified the 4+2T single-port (SP) 
BCAM cell and presented a DP 8T CAM-based network 
intrusion detection engine for internet of things (IoT). The work 
presented in [11] is a self-controlled precharge-free 10T BCAM 
based on static storage, while it has short circuit current paths  
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Fig. 1. Comparison between conventional dual-port CAM and the 
proposed single-port CAM. 

 
due to the diode structure formed during ML evaluation [12], 
[13]. The work in [12] is also a precharge-free 10T BCAM, but 
its operating frequency is 50 MHz in 45-nm CMOS technology. 
Mahendra [13] presented a precharge-free 14T TCAM cell, 
however, the frequency is much slower owing to the multiple 
cells connected in series. 

In this work, instead of adding more transistors or read ports 
to 9T CAM cell or 6T SRAM cell, two different peripheral 
schemes are proposed − the charge-share (CShare) scheme and 
the voltage-clamp (VClamp) scheme for the two different bit-
cell topologies. Both CShare and VClamp can act as high-speed 
and energy-efficient SP CAM. CShare / VClamp with a timing 
generator is further introduced to fully utilize the high and low 
voltage stages of CLK. In this way, two search operations can 
be performed in one CLK to achieve DP operation. 

The remainder of this paper is organized as follows. Section 
II describes the CShare scheme with 9T CAM cell. The VClamp 
scheme with 6T CAM cell is elaborated in Section III. The 
performance and experimental results with 65-nm CMOS 
technology and 16-nm FinFET technology are presented in 
Section IV. Finally, conclusions are reached in Section V. 

II. CHARGE-SHARE SCHEME WITH 9T CAM CELL 

A. Charge-Share scheme 

As shown in Fig. 2, the proposed CShare scheme consists of 
9T CAM cells and a peripheral circuit with simple timing control. 
Considering the case of a match when SL = 1, SLB = 0, Q = 1 
and QB = 0, node B is logic “0”; while when SL = 1, SLB = 0, 
Q = 0 and QB = 1, node B is logic “1”, indicating a mismatch. 
Suppose that the first cell stores the least significant bit (LSB), 
PMOS is used to replace NMOS at M1 in LSB and the benefits 
of this change will be explained later. Different from the serial 
connection mode of other 9T CAMs, all cells except LSB are 
connected in parallel with the ML in the CShare scheme.  

A timing generator, inspired by the double pumping clock 
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generator in [14], is designed to generate a suitable control signal 
“EN”. Fig. 2 gives the schematic of the timing generator and its 
timing chart. Next, take the high voltage stage of CLK as an 
example to explain the working principle of CShare. When “EN” 
is “0”, the capacitance (C) is charged to VC if a match occurs in 
LSB. Then “EN” turns to “1”, the “charge” path is cut off and 
the “share” path is on. If SL1 to SLn match the corresponding 
cell, C is shared with the ML and the voltage of ML becomes 
(C×VC)/(CML+C). Otherwise, C discharges to ground through 
mismatched cells. An asymmetric buffer with skewed transistor 
N1, which has higher driving strength, is connected to the ML 
as the sensing output. The output is logic “1” if the ML remains 
the shared voltage, otherwise, it is logic “0”. Thereby, the output 
of the skewed buffer mimics the search result. Since the timing 
generator can double pumping “EN”, the operations of the low 
and high voltage stages of CLK are the same. Therefore, two 
search operations can be performed in one CLK, which achieves 
DP operation.  

B. Search example 

For clarity, a search example on a simplified 3 × 4 CAM array 
is presented in Fig. 3. If the target data are “0011”, SL0 / SL1 / 
SL2 / SL3 = 0 / 0 / 1 / 1, and conversely, SLB0 / SLB1 / SLB2 / 
SLB3 = 1 / 1 / 0 / 0. Due to the mismatch of LSB in the first row, 
both VC and the voltage of ML0 are 0, thereby the buffer outputs 
“0”. The second row also mismatches, but not caused by LSB. 
Therefore, C in the second row is charged to VC  and then 
discharges to ground through the third cell. At last, the buffer 
outputs “0”. The third row is in a match state, C is charged to VC 
and then shared with ML2. The buffer in the third row outputs 
“1”, indicating a match. 

III. VOLTAGE-CLAMP SCHEME WITH 6T CAM 

Recently, a configurable CAM using 6T bit-cells with split 
word lines (WLs) was proposed in [15]. The combination of split 
WL (WLA and WLB) and cell data (Q and QB) provides an 
XOR function for pattern search, thus considerable reduction of 
CAM area could be achieved by removing the built-in XNOR 
circuit in 9T CAM cell. The proposed VClamp scheme with 6T 
SRAM cell is elaborated in this section. 

Unlike 9T cell, 6T cell has a coupled read/write path, the 
voltage of bit-line (BL) must maintain a high level to avoid data 
destruction. In order to avoid precharging BL during the low 
voltage stage of CLK in each cycle, we propose VClamp to 
clamp the BL voltage. The proposed VClamp scheme with a 
skewed sense amplifier (SA) is on the left side of Fig. 4. P1 and 
P2 form a voltage clamper to clamp the BL voltage, and P3 and 
P4 mirror the current from VDD-P1-P2 to load capacitance (Cp). 
The current mirror (consisting of P1, P2, P3 and P4) ratio is set 
to approximately 1/4 (left/right). Since the WL is split into WLA 
and WLB, and only one of them will be turned on [15], BL and 
BLB are connected together in CAM mode. Hence, only one 
VClamp circuit is required for each column. 

The timing diagram is illustrated in the upper right corner of 
Fig. 4, and the signal “EN” is generated by the timing generator 
in Fig. 2. Take the high voltage stage of CLK as an example, 
when “EN” is “0”, P1 and P2 are activated to clamp the BL 
voltage, and Cp is charged to Vboost. Next, “EN” becomes “1” 
and the search operation starts (WLA and WLB are underdrive 
to VDD/2). If a mismatch occurs in the column, Cp collects the 
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Fig. 2. CShare and timing generator with 9T CAM cell. 
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Fig. 3. Search examples of CShare with 9T CAM cell. 
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Fig. 4. VClamp with 6T SRAM cell and search examples. 

 
mirrored current, and the voltage of Cp rises. On the contrary, 
the BL has no discharge current in a matching case, and Cp 
remains Vboost. 

In order to sense the search results, we adopt an asymmetric 
SA (Fig. 4) by skewing one of the transistors M2. In this paper, 
M2 is stronger than M1 due to the use of LVT device and the 
larger size of M2. A replica column-based circuit is designed to 
generate suitable reference voltage (Vref) even under process, 
supply voltage and temperature (PVT) variations. As revealed in 
the gray box in Fig. 4, the redundant column with all matching 
bits generates the required Vref and also tracks the PVT 
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variations in the memory array, thereby increasing the sensing 
margin with negligible area overhead. It is shown from Fig. 4 
that the voltage of Cp is equal to Vref in the matching state, and 
the output of SA (SAout) remains “1”. While in the mismatching 
state, the voltage of Cp is larger than Vref, and SAout turns to 
“0”. Once SAout becomes “0”, P4 is turned off immediately. 
Similar to CShare, VClamp can also perform two search 
operations in one CLK to achieve DP operation. 

In [16], a cascade current mirror (CCM) was used to clamp 
the BL voltage with the purpose of improving linearity and 
consistency in analog multiplication. In this work, a VClamp 
circuit is proposed to clamp BL voltage in SP CAM to achieve 
DP operation. The redundant column generates the Vref and also 
provides good tracking characteristics of PVT variations. In [17], 
a voltage clamping scheme was proposed to clamp the ML 
voltage, where the ML discharge delay was reduced by 
increasing the WL voltage, and additional circuits (footer) were 
required to clamp the current. However, the read noise margin 
in [17] deteriorates due to the increased voltage at the drain node 
of the “footer”. In this paper, the VClamp circuit is designed to 
reduce search delay without boosting the WL voltage, and the 
benefits will be elaborated in the following section. 

IV. RESULTS AND ANALYSIS 

The overall architecture of the proposed 8 Kb CShare scheme 
and VClamp scheme is illustrated in Fig. 5 (a) and (b), 
respectively. A comprehensive simulation with 65-nm CMOS 
technology is carried out on the Cadence IC618 design suit and 
Spectre circuit simulator. To further investigate the influence of 
advanced technology, 16-nm FinFET technology is utilized to 
verify our design. 

A. Mismatch rate of LSB in CShare 

This section clarifies the benefits of using PMOS to replace 
NMOS at M1 in the CShare scheme and points out the potential 
performance improvements. It is noted that each tag in the TLB 
is considered separately. If a tag has x mismatches in total, where 
LSB mismatches y times, the percentage of mismatches caused 
by LSB is y / x. The average value of y / x of all tags is defined 
as LSB mismatch rate. This paper calculates the average LSB 
mismatch rate in the data TLB of Medium BOOM [5] for 
SPEC2006 benchmarks, and the corresponding experiments 
were conducted on Digilent Genesys-2 FPGA board. As 
indicated in Fig. 6(a), the LSB mismatch rate is about 53.9%. 
The energy consumption under different LSB mismatch rates 
was measured in an 8 Kb CAM with 65-nm CMOS technology 
using the Spectre circuit simulator. As shown in Fig. 6(b), the 
energy consumption decreases significantly with the increase of 
LSB mismatch rate. When the mismatch rate is 1/2, the decrease 
in energy consumption is 36.4%. Even when the mismatch rate 
is 1/4, the energy consumption can be reduced by 18.4%. 

B. Search delay reduction in VClamp 

In the SRAM-array style CAM structures as in [15], [17], cell 
data can be corrupted when the multiple WLs are enabled at the 
same time because the lowered BL voltage can falsely write “0” 
to another cell that has stored “1”. The common solution is to 
underdrive the WL, which however, will cause the increase of 
the ML discharge delay. In this paper, instead of brutally raising 
the WL voltage [17], Cp is charged to Vboost in VClamp before 
the search operation begins (Fig. 4). When “EN” is “1” and the 
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Fig. 5. The overall architecture of the proposed (a) CShare scheme and (b) 
VClamp scheme. 
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Fig. 7. The voltage of Vboost for reducing search delay and energy in the 
proposed VClamp scheme. 

 
search operation starts, the voltage of Cp increases from Vboost 
instead of “0”. As a result, the search delay is reduced. The 
search delay and energy were measured across different Vboost 
of an 8 Kb CAM array with 65-nm technology. It can be seen 
from Fig. 7 that when Vboost is set to 1/4 VDD, the search delay 
is reduced by 25%, and the decrease of energy is 13.14%. 

C. Process Corner Variation 

The proposed CShare and VClamp schemes have been 
verified using various process corners, and the performance 
metrics are provided in Table I. At the TT corner, the delay in 
[11] is 1.25 ns, while that of CShare and VClamp is 0.55 ns and 
0.6 ns, respectively, which corresponds to an improvement of 
56% and 52%. Compared to the delay of 4.39 ns in [13], the 
improvement is 87.5% and 86.3%, respectively. At the FF 
corner, there is little difference between the delay of the two 
schemes herein and that in [11]. However, the delay in [13] is 
still 2.9 times and 3.2 times that of CShare and VClamp, 
respectively. At the SF corner, the delay of CShare and VClamp 
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is 0.69 ns and 0.7 ns, respectively, which is 87.1% and 86.9% 
lower than that of 5.36 ns in [11]. In addition, the delay is 
improved by 84.2% and 84%, respectively, in comparison with 
that of 4.37 ns in [13]. The symbol “/” in Table I refers to data 
that have not been mentioned in relevant works.  

From above, both the designs in [11] and [13] are vulnerable 
to process corners. The standard deviation of the delay in [11] is 
2.75 and that in [13] is 1.46. In contrast, the standard deviation 
is 0.36 for CShare and 0.24 for VClamp. Therefore, the proposed 
CShare and VClamp schemes own relatively stable delay across 
different process corners. 

The normalized energy (EfSN) defined in [18] was used for 
legitimate comparison, and the energy metric was normalized to 
65-nm/1.2 V according to (1). Table II summarizes the energy 
of the proposed two schemes and the recently reported works. 

    
2

NEfS EfS 65-nm Technology 1.2 VDD     (1) 

At the TT corner, the energy of CShare is 0.66 fJ/bit/search 
and that of VClamp is 0.65 fJ/bit/search, while the EfSN in [11] 
and [12] is 4.37 fJ/bit/search and 1.37 fJ/bit/search, respectively. 
Therefore, the improvement of CShare and VClamp is 84.9% 
and 85.1% compared to [11], and 51.8% and 52.6% compared 
to [12], respectively. Furthermore, in contrast to [12], CShare 
provides an increment of 83.9% in FF and 71.3% in FS, and the 
corresponding improvement of VClamp is 84.4% and 74.9%, 
respectively. At the TT and SF corners, the energy consumption 
of the proposed designs is larger than that of TCAM in [13], 
because [13] is implemented using NAND-ML at the expense of 
large cell area (14T) and long delay (about 4.4 ns in Table I). In 
addition, it can be concluded from Fig. 10 that when the delay 
reaches 4.4 ns (the same as [13]), the energy consumption of 
CShare and VClamp is lower than that in [13]. 

D. Temperature Variation 

To clarify the performance improvement of the proposed 
schemes compared to the existing ones, temperature variation 
analysis was performed on the designs and is displayed in Fig. 8 
and Fig. 9. It is observed in Fig. 8(a) and Fig. 9(a) that in both 
CShare and VClamp, the search delay only slightly increases in 
the temperature range of –20 to 100 ℃. The negligible delay 
variations of 0.09 ns in CShare and 0.14 ns in VClamp, 
compared to 0.3 ns in [11], are of interest to note. As shown in 
Fig. 8(b) and Fig. 9(b), within the temperature range of 20 to 
100 ℃, the energy variation (E) of CShare and VClamp is 
0.007 fJ/bit/search and 0.028 fJ/bit/search, respectively, while 
that in [12] is about 0.3 fJ/bit/search. At lower temperature (from 
–20 to 40 ℃), E in CShare is 0.01 fJ/bit/search and 0.025 
fJ/bit/search in VClamp. 

E. Supply Voltage Scaling 

Apart from assessing the performance of the proposed 
schemes at various process corners and temperature variations, 
estimation of the search delay and the energy against supply 
voltage scaling is another important concern. Fig. 10(a) indicates 
that CShare achieves 0.28 fJ/bit/search with 2.09 ns search delay 
at 0.8 V. The minimum operating voltage of the proposed 
schemes can be as low as 0.6 V. At this time, CShare achieves 
0.15 fJ/bit/search with 7.7 ns search delay. It can be seen from 
Fig. 10(b) that VClamp achieves 0.25 fJ/bit/search with 4.6 ns 
search delay at 0.8 V, and 0.14 fJ/bit/search with 29 ns search 
delay at 0.6 V supply. 

TABLE I 
DELAY COMPARISON ACROSS DIFFERENT PROCESS CORNERS 

 
 

TABLE II 
ENERGY COMPARISON ACROSS DIFFERENT PROCESS CORNERS  
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Fig. 8. Temperature variation from -20 ℃ to 100 ℃ in proposed CShare 
scheme, (a) Search delay and (b) Energy. 
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Fig. 9. Temperature variation from -20 ℃ to 100 ℃ in proposed VClamp 
scheme, (a) Search delay and (b) Energy. 
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Fig. 10. Search delay and energy consumption versus supply voltage 
scaling in the proposed (a) CShare scheme and (b) VClamp scheme. 
 

F. Monte-Carlo simulation 

Monte-Carlo (MC) method was used to analyze the output 
stability and accuracy of CShare and VClamp. The upper part of 
Fig. 11(a) and (b) dipicts the variation of the output of CShare 

The symbol "/" refers to data not mentioned in relevant works. 

Reference [11] [12] [13] CShare  VClamp  

TT 1.25 ns / 4.39 ns 0.55 ns 0.6 ns 

SS 6.95 ns / / 1.42 ns 1.1 ns 

FF 0.33 ns / 1.29 ns 0.44 ns 0.4 ns 

FS 0.44 ns / / 0.49 ns 0.55 ns 

SF 5.36 ns / 4.37 ns 0.69 ns 0.7 ns 

Reference 

[11] 

(45-nm / 1 V) 

[12]  

(45-nm / 1 V) 

[13]  

(45-nm / 1 V) 
CShare VClamp  

EfS EfSN EfS EfSN EfS EfSN EfS (65-nm / 1.2 V) 

TT 2.1 4.37 0.66 1.37 0.181 0.38 0.66 0.65 

SS / / / / / / 0.74 0.62 

FF / / 2.12 4.41 0.37 0.77 0.71 0.69 

FS / / 1.07 2.23 / / 0.64 0.56 

SF / / / / 0.24 0.5 0.7 0.61 

The symbol "/" refers to data not mentioned in relevant works 
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and VClamp, respectively. Whether all bits match or only one 
bit mismatches, the output accuracy of CShare and VClamp is 
100% over 1000 MC runs, as shown in Fig. 11(a) and (b). 

G. Bit-cell stability and area overhead 

The 9T cell in CShare is free from read destruction because 
the read and write ports are separated. In contrast, the 6T cell in 
VClamp has coupled read-write path, which may cause read 
destruction. Read destruction can be mitigated by reducing the 
WL voltage, using high-threshold transistors, employing a dual 
WL structure and adopting CCM to clamp the BL voltage [16]. 
The proposed VClamp circuit used CCM to clamp the BL 
voltage and therefore, read destruction would be eliminated [16]. 

In this paper, all transistors in the 9T (except that PMOS in 
LSB is slightly larger) and 6T cells adopt the minimum size. 
Since no transistors are added to the storage cell, the overall area 
will not deteriorate seriously. In addition, the overhead can be 
further reduced as the array size increases, because only one 
CShare or VClamp circuit is added to each row or column. In 
[16], the CCM has an area overhead of 14.17% in a 4 Kb SRAM 
macro with 28-nm process, while in a 256 Kb SRAM, the area 
overhead is only 1.77%. 

H. Performance of CShare / VClamp as DP CAM / TLB 

This section describes the benefits of CShare / VClamp acting 
as DP CAM / TLB. The 8T DP CAM (6T CAM with one 
additional port), CShare and VClamp were tested in two cases: 
half and all entries mismatch across different corners. Test 
conditions such as transistor size, temperature and voltage, are 
kept the same. Fig. 12 exhibits the energy consumption of 
CShare / VClamp and DP CAM with half and all entries 
mismatch, where the CLK frequency of CShare is 909 MHz and 
that of VClamp is 833 MHz. Note that the results have been 
normalized to CShare in TT. Compared to DP CAM, the energy 
reduction of CShare is 31.6% and that of VClamp is 29.7% when 
half entries mismatch. The discharge amount of the CAM array 
increases with the increase of mismatch entries number. When 
all entries mismatch, CShare and VClamp achieve 45.56% and 
45.64% energy reduction, respectively, as shown in Fig. 12(b). 

To further study the influence of advanced technology, the 16-
nm FinFET technology was used to verify the designs. As shown 
in Fig. 13(a–c), CShare and VClamp act as DP TLB with 
different number of entries (32, 64, 128), and the operating 
frequency is 3.125 GHz and 1.67 GHz, respectively. CShare 
obtains 0.127 fJ/search/bit and VClamp achieves 0.083 
fJ/search/bit over 100 searches with 32 entries. When the 
number of entries increases to 128, the energy consumption of 
CShare and VClamp over 100 searches is 0.128 fJ/search/bit and 
0.085 fJ/search/bit, respectively. Fig.13(d) shows that when 
CShare and VClamp are configured as SP TLBs, the delay of 
CShare is 0.16 ns and that of VClamp is 0.3 ns, indicating that 
the frequency is 6.25 GHz and 3.3 GHz, respectively. 

Fig. 14 gives the energy consumption and delay trade-offs of 
several fully-associative TLBs. Both CShare and VClamp have 
a better trade-off between the energy consumption and the delay.  

Table III summarizes the proposed designs as well as some 
recent CAM works. CShare and VClamp proposed herein are 
based on traditional CAM cell with negligible redesign efforts. 
Both CShare and VClamp have the highest working frequency 
with comparable energy efficiency. Even if the CLK frequency 
is halved as a DP CAM, CShare and VClamp are still faster than 
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Fig. 11. 1000 runs Monte-Carlo simulation for output’s variation and 
accuracy in the proposed (a) CShare scheme and (b) VClamp scheme. 
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Fig. 13. Multiple TLB searches analysis. Energy consumption of CShare / 
VClamp with (a) 32 entries, (b) 64 entries, and (c) 128 entries. (d) Delay 
comparison between dual-port operation (DP) and single-port operation (SP) of 
CShare / VClamp. 
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Fig. 14. Delay and energy trade-offs in fully-associative TLBs. 
TABLE III 

COMPARISON WITH PREVIOUS CAM WORKS 

 
those in other works. Moreover, among all the works in Table 
III, our design is unique in demonstrating DP CAM operation 
with a SP CAM structure. 

V. CONCLUSIONS 

This paper adds some peripheral circuits to SP CAM cell with 
negligible redesign efforts to achieve DP operation and provides 
two high-speed and energy-efficient CAM designs. To the best 
of our knowledge, this is the first attempt to demonstrate DP 
CAM operation with a SP CAM structure. The proposed CShare 
and VClamp schemes have been verified with 65-nm CMOS 
technology and the advanced 16-nm FinFET technology. 
Compared with relevant CAM works, CShare and VClamp have 
comparable operating frequency and energy efficiency. To 
perform post-layout simulation and disclose the impact of 
parasitic effects on the output result is our future work. 
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The symbol "/" refers to data not mentioned in relevant works.    

The symbol "*" refers to CAM/total pattern bytes per search.  

DP: Dual-port operation; SP: Single-port operation. 

Reference [10] [11] [12] [13] [17] CShare  VClamp  

Config. 

(Kb) 
/ 4 0.5 0.5 4 8 8 

Cell 8T 10T 10T 14T 6T 9T 6T 

Tech (nm) 65 45 45 45 28 65 16 65 16 

Supply (V) 1.2 1 1 1 1 1.2 0.8 1.2 0.8 

CLK freq. 

(MHz) 
144 500 50 228 10 

DP: 909 DP: 3125 DP: 833 DP: 1667 

SP: 1818 SP: 6250 SP:1667 SP: 3333 

EfS (fJ/bit/ 

search) 
0.61* 2.1 0.66 0.181 1.62 0.66 0.128 0.65 0.085 

EfSN  0.61* 4.37 1.37 0.38 5.42 0.66 / 0.65 / 

Ports 

number 
2 1 1 1 1 1 1 

Dual-port 

operation 
Yes No No No No Yes Yes 
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