
eF2lowSim: System-Level Simulator of eFlash-Based
Compute-in-Memory Accelerators for Convolutional

Neural Networks
Jooho Wang∗†, Sunwoo Kim∗†, Junsu Heo∗ and Chester Sungchung Park∗

∗Department of Electrical and Electronics Engineering, Konkuk University, †Memory Business, Samsung Electronics, Inc.
jooho.wang@samsung.com, sunwoo.k.kim@samsung.com, junsuheo@konkuk.ac.kr, chester@konkuk.ac.kr

Abstract—A new system-level simulator, eF2lowSim, is proposed
to estimate the bit-accurate and cycle-accurate performance of
eFlash compute-in-memory (CIM) accelerators for convolutional
neural networks. The eF2lowSim can predict the inference ac-
curacy by considering the impact of circuit nonideality such as
program disturbance. Moreover, the eF2lowSim can also evaluate
the system-level performance of dataflow strategies that have a
significant impact on hardware area and performance of eFlash
CIM accelerators. The simulator helps to find the optimal dataflow
strategy of an eFlash CIM accelerator for each convolutional layer.
It is shown that the improvement of area efficiency amounts to
26.8%, 21.2% and 17.9% in the case of LeNet-5, VGG-9 and
ResNet-18, respectively.

Index Terms—Compute-in-memory (CIM), convolutional neural
network (CNN), dataflow, embedded flash (eFlash), hardware
accelerators, system-level simulators

I. INTRODUCTION

Convolutional neural networks (CNNs) comprise multiple
computation layers, and each layer performs a considerable
number of multiply-accumulate (MAC) operations between the
input data and trained weights. The performance and energy
efficiency of data-intensive deep neural network chips can be
limited by the available memory bandwidth and MAC engine
throughput. Recently, the compute-in-memory (CIM) approach
is gaining popularity where computation occurs where the data
are stored using massively parallelized analog MAC engines
[1]–[5]. For analog MAC engines employed in CIM accelera-
tors, the input data are typically loaded onto multiple memory
word lines, generating parallel cell currents that are summed up
in a single cycle and converted into digital code [1]–[5]. A CIM
accelerator is also suitable if the memory cell can support mul-
tilevel storage, which can improve the inference accuracy. In
resistive random-access memory (ReRAM), weights are stored
in each cell and MAC operations are performed in the analog
domain [1]. However, ReRAM-based CIM accelerators are
limited to small neural networks that infer with low precision,
owing to difficulties in implementation compared to excellent
computational efficiency. Interest in static RAM (SRAM)-based
CIMs [2] is increasing because they can be fabricated reliably
using a standard logic process. However, SRAM cells are larger

∗Jooho Wang and Sunwoo Kim have equal contribution.

than the denser cells of one-transistor (1T) or one-transistor-
one-resistor (1T1R) memory technologies; hence, they cannot
store the large number of trained weights required by CNNs.
Recently, 3D NAND flash technology has been proposed, which
can obtain a good inference accuracy and overcome density
limitations of these CIM accelerators. It allows for the practical
implementation of CIMs that can effectively compute CNNs
comprising hundreds of millions of parameters [3]–[6].

Generally, the local memories of CIM accelerators are con-
trolled using direct memory access controllers (DMACs) [7]–
[10]. The CIM accelerator is a standalone IP connected to the
shared memory through an on-chip bus (e.g., advanced exten-
sible interface (AXI) crossbar [11]) [12]–[13]. Dataflow within
the CIM accelerator refers to data movement between the local
memory and the internal MAC operation of the accelerator
[14]–[17]. In contrast, dataflow outside the accelerator refers
to data movement between the external shared and internal
memories of the accelerator [12]–[13]. Although existing CNN
accelerator research [9]–[10], [12]–[13], [18] have adequately
considered dataflows, CIM accelerator research has not suf-
ficiently considered system-level. Therefore, determining an
optimal design is challenging owing to the lack of system-level
performance exploration for several dataflows [3]–[6].

In this study, a system-level simulator, eF2lowSim, was
developed to optimize the eFlash CIM accelerator by consid-
ering both its computation and external communication perfor-
mances. The eF2lowSim model based on SystemC transaction-
level modeling (TLM) [19] is developed and plugged into and
the simulation models for on-chip bus and memory provided by
a commercial simulator, the Platform Architect from Synopsys
[20]. The eF2lowSim predicts both the inference accuracy and
system-level performance. Additionally, the eF2lowSim is used
to evaluate various dataflow strategies for the CIM accelerator
core and improve the area efficiency achieve.

II. RELATED WORK

In recent years, the CIM approach has been widely stud-
ied; it has been proposed to reduce the power consumption
and latency in accessing external memory, such as dynamic
RAM. Several studies on CIM structures have focused on
using nonvolatile memories, such as ReRAM and SRAM
[1]–[5]. ReRAM-based CIM structures can perform complex

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

eFlash CIM accelerator

eFlash CIM core

Shared
memory

System bus
(AXI protocol)

IFM
DMAC

OFM
DMAC

BL drivers

Processor
core Controller

eFlash
cell array

W
L

dr
iv

er
s

AD converter

Shift & add

Output
bufferPost

processing
unit

Buffer

Input
buffer

Fig. 1. Overview of the system including the eFlash-based CIM accelerator.

operations, such as matrix–vector multiplication (MVM), with
reduced power consumption by using an array programmed
with values of various levels [1]. However, ReRAM has a
disadvantage in that it is difficult to fabricate using the standard
logic process; therefore, its application to large neural networks
is challenging. Although SRAM-based CIM structures can be
implemented via the standard logic process [2], their memory
cell area per unit capacity is relatively large. In contrast,
flash memory is advantageous in that it has a smaller area
per unit capacity than most other nonvolatile memories, and
employing the multilevel cell technique in flash memories
maximizes their area efficiency [3], [4]. Moreover, embedded
flash (eFlash) memory can be fabricated using the standard
logic process, which makes it even more beneficial in terms of
implementation simplicity and hardware area [21]. Owing to
these advantages, several recent studies have focused on eFlash-
based CIM structures [3]–[6].

However, existing CIM structure studies primarily focus only
on performance analysis and the internal structure of CIM
accelerators. Moreover, studies that consider blocks other than
CIM accelerators, such as on-chip bus and shared memory,
do not include performance analysis or dataflows outside the
accelerators [7]–[10]. Additionally, any of the existing studies
on eFlash-based CIMs [3]–[6] does not deal with the system-
level structure, making it difficult to determine whether the
performance of CIM accelerators is limited by the on-chip bus
and shared memory.

In this study, the eF2lowSim can help to evaluate the system-
level performance considering the data communication. In
addition, the eF2lowSim predicts the impact of noise sources
in eFlash CIM core to estimate the inference accuracy of the
accelerator.

The remainder of this paper is organized as follows. Section
III introduces the system considered in this study and details
the configuration of the eF2lowSim. Section IV describes some
of the dataflow strategies adopted in this study and the design
space, which comprises a combination of these dataflow strate-
gies. Section V presents the performance and area simulation
results of the CIM accelerator for various combinations of
dataflow strategies. Finally, Section VI concludes the paper.

III. SYSTEM-LEVEL SIMULATOR

A. System Under Consideration

The system structure, including the eFlash CIM accelerator,
used in this study is shown in Fig.1. The system assumed in

W
L

D
riv

er

BL Driver
IFM

buffer

OFM
buffer A/D Converter

Shift and Adder

Program
disturbance

(Cell)
Thermal

noise
(Bitline)

0.40.20-0.2-0.4
Disturbance ratio (%)

Program disturbance distribution

(a) (b)

Simulation
model

distribution

Fig. 2. Noise source modeling: (a) location of noise source in eFlash
array and (b) distribution of measured program disturbance from eFlash core
implementation.

this study adopts a structure generally implemented in existing
studies for a CIM accelerator [7],[8] and a logic-based hardware
accelerator [9], [12]–[13]. As illustrated in the figure, the
shared memory and eFlash CIM accelerator are connected to
the on-chip bus to load the input feature map (IFM) from
the shared memory or store the output feature map (OFM)
in the shared memory. The eFlash CIM accelerator, which
communicates data to the system bus, includes a DMAC that
complies with the bus protocol and drives data delivery, which
is controlled by the processor core [12]–[13]. The processor
core controls the DMAC to direct the movement of feature
maps and give commands to the accelerator controller, which
provides information to control the internal eFlash CIM core
of the accelerator such that it fits well into the target neural
network [12]–[13].

B. Modeling of eFlash CIM Core

The eFlash CIM core for CNNs performs a MAC operation
with the IFM when it reads the programmed weight. In this
case, the bit serial operation can support unlimited data bit
widths by repeating the shift and add functions [3]. A cell
current proportional to the weight stored in the flash cell is
added to the bitline, which uses an analog-to-digital converter
(ADC) to convert it into digital values.

An eFlash cell array has several sources of noise. Program
disturbances cause errors in the charge amount injected into
flash cells during flash programming. Additionally, thermal
noise may cause errors in the analog signals containing cell and
bitline currents, which can result in unwanted computational re-
sults [3]–[6]. The proposed simulator can model these two noise
sources by using additive white Gaussian noise that appears in
a normal distribution. In particular, the eFlash-specific program
disturbance was obtained from the measurement results of the
cell currents in the eFlash cell arrays of existing study [21].

Fig. 2 shows the location to which the noise sources of
the proposed simulator are applied. Program disturbance may
change the weight values stored in flash cells that persist before
being newly programmed, and the proposed simulator models
these weight value variations as shown in Fig. 2(b). The more
flash cell currents that are aggregated on the bitline, the greater
the impact of the modeled program disturbance. In the case
of thermal noise, the noise source acts is directly in front of
the ADC, since the additive Gaussian noise, is applied on
the same basis for the entire analog circuit. Consequently,
by considering the noise sources, the computational results

!

!

Input bit selection

Wordline <3>

Wordline <2>

Wordline <1>

Wordline <0>

B
itl

in
e

Shift & add

Weight bit selection Input

Weight

Input shift:
8 cycles

Weight shift: 4x8 cycles

2-bit
weight

1-bit input

2-bit weight

1-bit input

Clock cycle

Fig. 3. Bit serial operation: Input and weight bit selection on an eFlash string
(left) and the timing diagram of the bit selection sequence (right).

or inference accuracy, as well as the performance of the
eFlash CIM core can be predicted. Fig. 3 illustrates the bit-
serial operation for 8-bit input and 8-bit weight modeled in
the proposed simulator. Since only one bit of input can be
processed per cycle by enabling or disabling the cell string, the
input bit selection must be shifted eight times for 8-bit input
pixels. However, assuming that each flash cell is programmed
with multiple bits of weight, it is not necessary to shift the
weight bit selection eight times for an 8-bit weight. As shown
in the right side of Fig. 3, it takes eight cycles to multiply an
8-bit input pixel by a 2-bit weight. In addition, this sequence is
repeated four times, and multiplication of an 8-bit weight takes
a total of 32 cycles.

C. Virtual Platform Simulator

System-level performance, which should be predicted to op-
timize the accelerator, is affected not only by the accelerator but
also by the on-chip bus and shared memory. A SystemC/TLM-
based virtual platform simulator, which supports accurate pre-
diction and exploration of system-level performance, can be
used to model the external communication bandwidth required
by the accelerator [12]–[13]. Several bus and memory models
are required to maximize the advantages of virtual platform
simulations. Therefore, we developed an eF2lowSim that in-
cludes bus and memory libraries using the Platform Architect
(Synopsys) [20].

Fig. 4 shows the eFlash CIM accelerator structure modeled
as a SystemC/TLM module in the eF2lowSim. The IFM DMAC
shown in the figure receives the IFM from the bus and enters it
into the accelerator, which is then stored in an input buffer
(IBUF) sequentially. After loading the IFM, the accelerator
controller sends a control signal such that the eFlash CIM
core reads the IFM from IBUF, and the internal eFlash CIM
core performs the MAC operation. The eFlash CIM core
model comprises hierarchical structures, which perform MVM
to compute the convolutional layers. After the eFlash CIM
core completes the operation for the loaded IFM and stores
the computed OFM in output buffer 1 (OBUF1), the post
processing unit (PPU) receives a control signal. Subsequently,
the PPU performs nonlinear functions (e.g., rectified linear unit
and pooling layer) and stores the processed OFMs in OBUF2.
Finally, the OFM DMAC forwards the resulting data to the
shared memory through the on-chip bus. The source code is
available on the GitHub repository: https://github.com/SDL-
KU/eF2lowSim.

PPU
Callback

InitiateeFlash CIM core

OBUF1

IBUF

Bit-serial sequence model

eFlash cell array

...

Matrix-vector multiplication

MVM

Vector mult. ...

ADC Shift & add

VMVM

OBUF2

Controller

IFM
DMAC

OFM
DMAC

Fig. 4. Internal structure of CIM accelerator model in the eF2lowSim.

IV. DATAFLOW OUTSIDE ACCELERATOR

A. CNN Computation in eFlash CIM core

Fig. 5 (a) shows a visualization of convolutional layer
and nonlinear layer operation. After the convolutional layer,
activation functions, such as the pooling operations, are applied
to introduce nonlinearity. Fig. 5 (b) shows the mapping scheme
and computation of the convolutional layer in the eFlash cell
array. As shown in figure, an IFM set (i.e., R×S×C) is
input to an eFlash cell array to which all filter weights (i.e.,
R×S×C×M) are mapped. Thereafter, the MVM operations are
performed inside the eFlash cell array to output M number of
OFMs. In general, the size of OFM is E × F × M; therefore,
MVM operations are repeated EF times to output all OFMs
[3]–[6].

B. Dataflow Strategies

This subsection introduces five dataflow strategies between
a CIM accelerator connected to the on-chip bus and external
shared memory. As shown in Fig. 6 (a), dataflow strategy 1
loads all IFMs (i.e., H × W × C) from external shared memory
into the IBUF of the eFlash CIM accelerator [3]–[5], [22]. After
CIM accelerator loads all IFMs from external memory, IFM
Set (i.e., R × S × C) is input to CIM core and the OFM
of performing MVM operation EF times is stored in OBUF1.
Thereafter, a nonlinear operation is performed on all OFMs at
the PPU; they are then stored in OBUF2 and transmitted to
the external shared memory of the accelerator through DMAC.
In this dataflow strategy, the overheads of the DMAC and on-
chip bus have a negligible effect on performance. However, as
shown in Figure 6, this dataflow strategy has the disadvantage
in that a sufficiently large buffer size is required to store large
numbers of IFMs and OFMs.

As illustrated in Fig. 6 (b), unlike dataflow strategy 1,
dataflow strategy 2 involves repeatedly loading IFM sets (i.e.,
R × S × C) from external shared memory of eFlash CIM
accelerators and performing MVM computation [14], [23]. This
dataflow strategy requires less IBUF capacity than the dataflow
strategy 1. However, it may degrade the performance of the
eFlash CIM accelerator system owing to the higher number
of memory accesses to the on-chip bus through IFM DMAC.
Unlike the aforementioned dataflow strategies, the dataflow
strategy 3 illustrated in Fig. 6 (c) aims to perform the nonlinear

!

!

ADC ADC ADC
SA SA SA

Adder tree

OBUF

R

S

C

H

W

E

F

C M

M

PR

PS

Pooling layer

Convolutional layer

PE
PF

Fi
lte

r s
iz

e
(R

xS
) eFlash cell array

No. output channels (M)

…

…

…

No. input
channels (C)

(a) (b)

Fig. 5. Workload mapping for CNN: (a) Convolutional and pooling layer
structure and (b) the corresponding mapping scheme.

process as fast as possible. In detail, dataflow strategy 3 is dif-
ferent from dataflow strategy 1 and 2, and when OFM capable
of performing one nonlinear operation is stored in OBUF1, the
results after the nonlinear operation are immediately transmitted
to the external shared memory through DMAC. Thus, this
dataflow strategy can be more effective in terms of memory size
than the previous ones. However, this dataflow strategy tends to
reduce overall performance because DMAC is frequently used
compared to previous dataflow strategies.

As shown in Fig. 6 (d), the dataflow strategy 4 involves
loading an IFM set extended to pooling size to the IBUF
to perform convolutional and nonlinear operations effectively.
Although this dataflow strategy requires an IBUF with a slightly
larger memory capacity compared to the dataflow strategy 3, the
memory capacities of OBUF1 and 2 required for storing OFMs
are the same. However, this dataflow strategy can improve
performance because the number of accesses to the external
memory through DMAC of the eFlash CIM accelerator required
to load the IFM is lower than that in the dataflow strategy 3.

As shown in Fig. 6 (e), dataflows strategy 5 introduces a
method of reducing the number of memory accesses through
IFM and OFM extended in column-wise compared to dataflow
strategy 3. This dataflow strategy requires a larger local memory
capacity for the IBUF and OBUFs than the dataflow strategy
3 and 4. However, the dataflow strategy 5 has fewer memory
accesses than the data flow strategies 3 and 4. Thus, it can
improve the performance of overall system by reducing on-
chip bus overhead.

Table I shows the required buffer capacity when performing
convolutional layer 1 and pooling layer 1 of LeNet-5 [15]
for each dataflow strategy and the number of DMAC bursts
when the burst length is set to 8. Within an external shared
memory, the data layout assigns the pixels of a feature map to
the memory locations in a row-major order. Recalling that it is
more efficient to occupy with as consecutive reads or writes as
possible from the viewpoint of DMA accesses, it is reasonable
to determine data layout in row-major order [13]. As shown in
the table, different buffer capacity and burst count are required
for each dataflow strategy, and it is difficult to predict the
system performance considering these. In the following section,
we propose an optimal dataflow strategy combination in terms
of area efficiency by applying five dataflow strategies to several
neural networks through the eF2lowSim.

DMAC (IFM)

IBUF

CIM core

OBUF1

PPU

OBUF2

DMAC (OFM)

DMA
Load

Comp.

DMA
Store

RxWxC

RxWxC

RxWxC

RxWxC

RxWxC

RxWxC

...

RxWxC

RxWxC

RxWxC

RxWxC
...

...

...

 MxPRxF

MxPF

MxPF

W

R

1xFxM

1xPFxM
1xFxM

RxSxC
F

DMAC (IFM)

IBUF

CIM core

OBUF1

PPU

OBUF2

MxExF

MxExF

MxPExPF

HxWxC

HxWxC

DMAC (OFM) MxPExPF

 ...

DMA
Load

Comp.

DMA
Store

RxSxC

Time

W

H

F

E

PF

PE

ExF

DMAC (IFM)

IBUF

CIM core

OBUF1

PPU

OBUF2

DMAC (OFM)

DMA
Load

Comp.

DMA
Store

M

RxSxC

RxSxC

M

RxSxC

RxSxC

RxSxC

RxSxC

...

M

M

M

MxExF

RxSxC

RxSxC

RxSxC

RxSxC
...

MxPExPF

MxPExPF

S

R

MxPExPF

1x1xM

RxSxC

DMAC (IFM)

IBUF

CIM core

OBUF1

PPU

OBUF2

DMAC (OFM)

DMA
Load

Comp.

DMA
Store

M

RxSxC

RxSxC

M

RxSxC

RxSxC

RxSxC

RxSxC

...

M

M

M

 MxPRxPS

M

M

M M

RxSxC

RxSxC

RxSxC

RxSxC
...

...

S

R

1x1xM

1x1xM

RxSxC

DMAC (IFM)

IBUF

CIM core

OBUF1

PPU

OBUF2

DMAC (OFM)

DMA
Load

Comp.

DMA
Store

M M ...M M M

 MxPRxPS

M

M

M M

...

...

...

C x (R + PR - 1) x (S + PS - 1)

1x1xM

R
+P

R
-1

S+PS-1

1x1xM

RxSxC
PRxPS

(a)

(b)

(c)

(d)

(e)

Fig. 6. Timing diagram of (a) dataflow strategy 1, (b) dataflow strategy 2, (c)
dataflow strategy 3, (d) dataflow strategy 4 and (e) dataflow strategy 5.

V. SIMULATION RESULTS

In this section, the proposed bit-accurate and cycle-accurate
simulator, eF2lowSim, is used to evaluate the inference accu-
racy and system-level performance of the eFlash CIM accel-
erator. Additionally, this section describes the area efficiencies
of the proposed dataflow strategies when they are applied to
each convolutional layer of several neural networks. LeNet-5
[15], VGG-9 [16], and ResNet-18 [17] were used in the simula-
tions. For example, Table II shows the measured memory area
according to the dataflow strategies in the first convolutional
layer of LeNet-5 with CMOS standard 65-nm cell library. The
eFlash CIM core fabricated with CMOS standard 65-nm cell
library [3]–[5] operates at the clock frequency of equal or less

!

!

TABLE I
BUFFER CAPACITY AND THE NUMBER OF DMAC BURSTS FOR EACH

DATAFLOW STRATEGY.

Buffer capacity [bits]
Dataflow strategy 1 2 3 4 5

IBUF 6,272 200 200 288 1120
OBUF1 27,648 27,648 192 192 2,304
OBUF2 6,912 6,912 48 48 576

No. of DMAC bursts
IFM DMAC 25 576 576 288 96
OFM DMAC 27 27 144 144 36

TABLE II
HARDWARE AREA ACCORDING TO DATAFLOW STRATEGY.

Hardware area (65-nm cell library) [um2]
Dataflow strategy 1 2 3 4 5

IBUF 95,822 3,056 3,056 4,397 17,110
OBUF1 422,403 422,403 2,932 2,932 35,201
OBUF2 105,603 105,603 733 733 8,800

eFlash CIM CORE [5] 2,350
Total 626,178 533,412 9,071 10,412 63,461

than 20 MHz. However, hardware blocks connected to hardware
accelerators are often assumed to operate at the clock frequency
of 200 MHz with the same scale of cell library [18], [24].
Therefore, it is reasonable to assume that the eFlash CIM core
operates ten times as slow as the other blocks in the system.
The simulation results in this section showed that each network
has different combinations of dataflow strategies that obtain the
optimal area efficiency.

A. Inference Accuracy of eFlash-based CIM

As mentioned in the Section III.B, the proposed simulator
reflects the circuit nonideality of the eFlash cell array by
modeling several noise sources. Through this modeling, the
accelerator model in the simulator can be used to experiment
when unintended errors occur owing to noise inside the cir-
cuit. Although existing CIM studies have considered noise
sources, they only assumed that their effects were fundamen-
tally blocked [3]–[5]. However, this study also considers the
cases where the simulator obtains incorrect results owing to
noise inside the cell array.

Noise sources that have a significant impact on inference
accuracy are program disturbances and quantization errors.
In this study, we modeled the program disturbance bias,
which varies with the program method [3]–[5]. Fig. 7 shows
the experimental results on LeNet-5 when the bit widths of
both IFM and weight are 4-bit and 8-bit. When 8-bit data
were applied, inference accuracies of 96.8% and 76.7% were
achieved when the disturbance bias was 1% and 5% of the
maximum cell current, respectively. Additionally, when 4-bit
data were applied, inference accuracies of 96.1% and 69.0%
were achieved when the disturbance bias was 1% and 5% of
the maximum cell current, respectively. It is shown that the
simulator can reflect the impact of the noise and the simulation
results imply that the eFlash CIM accelerator achieves sufficient
inference accuracy with the program disturbance measured
from the fabricated eFlash cell array [21].

In
fe

re
nc

e
ac

cu
ra

cy
 [%

]

Program disturbance [%]

Fig. 7. Inference accuracy according to program disturbance.

(a)

1 2 3 4 5 (1,1,1,1) (2,2,1,1) (3,3,1,1)(4,4,1,1)(5,5,1,1) (5,4,1,1)

Ar
ea

 e
ffi

ci
en

cy
 [M

O
PS

 /
um

2]

Ar
ea

 e
ffi

ci
en

cy
 [M

O
PS

 /
um

2]

0

2

4

6

8

10

12

0.0

0.5

1.0

1.5

2.0

2.5

3.5

4.5

3.0

4.0

x104 x103

Dataflow strategy Dataflow strategy combination

(b)

Fig. 8. (a) Hardware area efficiency of single convolutional layer according
to dataflow strategy for LeNet-5 and (b) extended to entire network according
to dataflow strategy combination.

B. System Performance Evaluation in LeNet-5

The optimal dataflow strategy must be determined by consid-
ering the impact of the buffer, on-chip bus, and external shared
memory of the eFlash CIM accelerator and eFlash CIM core.
Therefore, we developed an eF2lowSim to predict system-level
performance, which is affected by both the layer shape and the
employed dataflow strategy. Furthermore, the IBUF capacity of
the eFlash CIM accelerator varies with the dataflow strategy,
which is considered for predicting the area efficiency because
it changes the overall area of the eFlash CIM accelerator.

Fig. 8 (a) shows the area efficiency of each layer according
to the dataflow strategy for LeNet-5 that received the MNIST
dataset as input. It is found that dataflow strategy 4 shows the
best area efficiency for both the first and second convolutional
layers of LeNet-5. Fig. 8 (b) shows that the area efficiency
for LeNet-5 can be explored by employing different strategies
for each layer. Each element of x-axis in the figure denotes
the combination of dataflow strategies for the first and second
convolutional layers and the first and second fully-connected
layers. The simulation results show that applying the dataflow
strategy showing the best area efficiency for a single layer to
the entire layer does not guarantee the best area efficiency.
For example, among all combinations, the optimal strategy
combination is (5, 4, 1, 1), which yields a 26.8% improvement
in area efficiency compared to (4, 4, 1, 1). When both of
convolutional layers using the same dataflow strategy, the
second convolutional layer requires a larger buffer capacity than
the first convolutional layer. Therefore, in the first convolutional
layer in LeNet-5, it is possible to improve the area efficiency
of the entire network by using dataflow strategy 5 with a larger
area and better performance, rather than dataflow strategy 4
with the best area efficiency in a single convolutional layer.

!

!

5

Ar
ea

 e
ffi

ci
en

cy
 [M

O
PS

 /
um

2]

0.0

0.5

1.0

1.5

2.0

2.5

3.5

4.5

3.0

4.0

Ar
ea

 e
ffi

ci
en

cy
 [M

O
PS

 /
um

2]

0

0.5

1.0

1.5

2.0

2.5

3.0

x102x103

3.5

4.0

Dataflow strategy combination
A B C D E F A B C D E F

Dataflow strategy combination
(a) (b)

Fig. 9. Hardware area efficiency according to dataflow strategy combination
for (a) VGG-9 and (b) ResNet-18.

C. Extension to Other Neural Networks

Fig. 9 shows the results of design space exploration for area
efficiency according to the dataflow strategy combinations for
VGG-9 and ResNet-18. In Fig. 9, Design A, Design B, Design
C, Design D, and Design E refer to the collective application of
dataflow strategies 1, 2, 3, 4, and 5 to all convolutional layers,
respectively. Design F refers to a combination of dataflow
strategies with optimal area efficiency found through design
spaces exploration of the proposed simulator. Fig. 9 (a) and
(b) show that the area efficiency of design F is improved
by at least 21.2% and 17.9% compared to other designs for
VGG-9 and ResNet-18, respectively. These optimal designs
are chosen among the number of cases over 10 thousands
of designs and the system-level simulator is crucial for this
optimization process. Thus, the exploration using the simulator
is more effective than empirical design selection for optimizing
dataflow strategies for entire networks.

VI. CONCLUSION

In this study, a system-level simulator, eF2lowSim, is de-
veloped to accurately estimate the performance of eFlash CIM
accelerators considering the dataflow strategy and the circuit
nonideality of eFlash cell array. The eF2lowSim can model
the noise source to measure inference accuracy according to
the noise sources in the eFlash cell array. In addition, using
the eF2lowSim, it is possible to find the optimal design of
an eFlash CIM accelerator by evaluating the system-level
performance of different dataflow strategies for convolutional
layers. The experimental results show that the improvement
of area efficiency from the optimal design amounts to 26.8%,
21.2% and 17.9% in the case of LeNet-5, VGG-9 and ResNet-
18, respectively. The future works include the extension of the
eF2lowSim for the multi-core eFlash CIM accelerators.

ACKNOWLEDGMENT

This work was supported by the Institute of Information
& Communications Technology Planning & Evaluation (IITP)
grant funded by the Korean government (MSIT) (No. 2021-0-
01764). The authors would like to express their sincere thanks
to Dr. S. Song of SEMIBRAIN Inc. for helpful suggestion and
discussion. The authors would also like to express their sincere
thanks to Dr. M. Kim and Prof. C. H. Kim of University of
Minnesota for providing measurement data from the fabricated
chips.

REFERENCES

[1] W.–H. Chen et al., “A 65 nm 1 Mb nonvolatile computing–in–memory
ReRAM macro with sub–16 ns multiply–and–accumulate for binary DNN
AI edge processors,” in IEEE Int. Solid–State Circuits Conf. (ISSCC) Dig.
Tech. Papers, pp. 494–496, Feb. 2018.

[2] X. Si et al., “A dual–split 6T SRAM–based computing–in–memory
unitmacro with fully parallel product–sum operation for binarized DNN
edge processors,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 66, no.
11, pp. 4172–4185, Nov. 2019.

[3] M. Kim et al., “A 3D NAND flash ready 8–bit convolutional neural
network core demonstrated in a standard logic process,” in IEDM Tech.
Dig., pp. 38.3.1–38.3.4, Dec. 2019.

[4] M. Kim et al., “A 68 parallel row access neuromorphic core with 22K
multi–level synapses based on logic–compatible embedded flash memory
technology,” in IEDM Tech. Dig., pp. 15.4.1–15.4.4, Dec. 2018.

[5] M. Kim et al., “An embedded nand flash–based compute–in–memory
array demonstrated in a standard logic process,” in IEEE Journal of Solid–
State Circuits, pp. 625–638, Feb. 2022.

[6] H. –T. Lue et al., “Introduction of 3D AND–type flash memory and
its applications to computing–in–memory (CIM),” 2021 International
Symposium on VLSI Technology, Systems and Applications (VLSI–
TSA), 2021, pp. 1–2.

[7] H. Jia et al., “A programmable heterogeneous microprocessor based
on bit–scalable in–memory computing,” in IEEE Journal of Solid–State
Circuits, vol. 55, no. 9, pp. 2609–2621, Sept. 2020.

[8] A. Siemieniuk et al., “OCC: An automated end–to–end machine learning
optimizing compiler for computing–in–memory,” in IEEE Transactions
on Computer–Aided Design of Integrated Circuits and Systems, vol. 41,
no. 6, pp. 1674–1686, June 2022.

[9] C. Zhang et al., “Optimizing FPGA–based accelerator design for
deep convolutional neural networks,” In Proc. Intl. Symp. on Field–
Programmable Gate Arrays (FPGA), pp. 161–170.

[10] T. Chen et al., “DianNao: A small–footprint high–throughput accelerator
for ubiquitous machine–learning,” in Proc. ACM Int. Conf. Archit.
Support Program. Lang. Oper. Syst. (ASPLOS), 2014, pp. 269–284.

[11] ARM, AMBA AXI and ACE protocol specification, AXI3, AXI4, and
AXI4–Lite, ACE and ACE–Lite, ARM Infocenter, 2011.

[12] S. Kim, S. Park, and C. S. Park, “System–level communication perfor-
mance estimation for DMA–controlled accelerators,” IEEE Access, vol.
9, 2021, pp. 141389–141402.

[13] J. Wang, S. Park, and C. S. Park, “Optimization of communication
schemes for DMA–controlled accelerators,” IEEE Access, 2021, vol. 9,
pp. 139228–139247.

[14] D. T. Nguyen et al., “ShortcutFusion: From tensorflow to FPGA–based
accelerator with a reuse–aware memory allocation for shortcut data,” in
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 69,
no. 6, pp. 2477–2489, June 2022.

[15] Y. LeCun et al., “Backpropagation applied to handwritten zip code
recognition,” in Neural Comput., vol. 1, no. 4, pp. 541–551, Dec. 1989.

[16] K. Simonyan and A. Zisserman, Very deep convolutional networks for
large–scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016, pp. 770–778.

[18] Y.–H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy effi-
cient reconfigurable accelerator for deep convolutional neural networks,”
IEEE J. Solid–State Circuits, vol. 52, no. 1, pp. 127–138, Jan. 2017.

[19] OSCI, Open SystemC Initiative (OSCI), TLM–2.0 User Manual.
[20] Synopsys, Platform Architect, [Online]. Available: http://www.synopsys.

com/Tools/SLD/VirtualPrototyping/ Pages/PlatformArch
[21] M. Kim, J. Song, and C. H. Kim, “Reliability characterization of logic–

compatible NAND flash memory based synapses with 3–bit per cell
weights and 1A current steps,” IEEE Intl. Reliability Physics Symposium
(IRPS), pp. 1–4, Apr. 2020.

[22] Z. Jiang et al., “Vesti: An in–memory computing processor for deep neural
networks acceleration,” Asilomar Conference on Signals, Systems, and
Computers, 2019, pp. 1516–1521.

[23] H. E. Yantr, A. M. Eltawil, and K. N. Salama, “IMCA: An efficient in–
memory convolution accelerator,” in IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 29, no. 3, pp. 447–460, Mar. 2021.

[24] J. Yue et al., “A 3.77TOPS/W convolutional neural network processor
with priority–driven kernel optimization,” in IEEE Transactions on Cir-
cuits and Systems II: Express Briefs, vol. 66, no. 2, pp. 277–281, Feb.
2019.

!

!

	Select a link below
	Return to Previous View
	Return to Main Menu

