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Abstract—The transition of data and clock signals between
high and low states in electronic devices creates electromagnetic
radiation according to Maxwell’s equations. These unintentional
emissions, called emanation, may have a significant correlation
with the original information-carrying signal and form an infor-
mation leakage source, bypassing secure cryptographic methods
at both hardware and software levels. Information extraction
exploiting compromising emanations poses a major threat to
information security. Shielding the devices and cables along with
setting a control perimeter for a sensitive facility are the most
commonly used preventive measures. These countermeasures raise
the research need for the longest detection range of exploitable
emanation and the efficacy of commercial shielding. In this
work, using data collected from 3 types of commercial HDMI
cables (unshielded, single-shielded, and double-shielded) in an
office environment, we have shown that the CNN-based detection
method outperforms the traditional threshold-based detection
method and improves the detection range from 4 m to 22.5 m
for an iso-accuracy of ∼ 95%. Also, for an iso-distance of 16 m,
the CNN-based method provides ∼ 100% accuracy, compared
to ∼ 88.5% using the threshold-based method. The significant
performance boost is achieved by treating the FFT plots as images
and training a residual neural network (ResNet) with the data so
that it learns to identify the impulse-like emanation peaks even in
the presence of other interfering signals. A comparison has been
made among the emanation power from the 3 types of HDMI
cables to judge the efficacy of multi-layer shielding. Finally, a
distinction has been made between monitor contents, i.e., still
image vs video, with an accuracy of 91.7% at a distance of 16 m.
This distinction bridges the gap between emanation-based image
and video reconstruction algorithms.

Index Terms—emanation, electromagnetic compatibility, CNN,
transfer learning, ResNet50, HDMI, EMSEC, Signal processing

I. INTRODUCTION

A. Background

Emanation is unintended emission from electronic devices

and connecting wires. This type of emission not only creates

interference with communication signals (EMI) and electro-

magnetic compatibility (EMC) problems but also contains a

significant correlation with the data being processed in the

device, leading to information leakage. It can bypass physical

and cryptographic access-to-data control methods at hardware,

software, and network levels, forming a ‘side-channel’ for the

attackers leading to several vulnerabilities such as side-channel
attack (SCA) [1]. Although compromising emanations can be of

different types, e.g. electromagnetic, optic, acoustic, ultrasonic,
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Fig. 1. (a) Emanation is unintentional emission from electronic devices and
cables. It is a byproduct of signal switching. (b) The challenges in emanation
detection stem from the fact that these are weak signals as they weren’t
designed to be transmitted. They are often overcast by strong interference from
communication signal and performs poorly in the traditional threshold-based
detection method. (c) With SNR improvement, tiny emanation peaks become
better intelligible. A CNN, trained with the processed power spectrum, can
distinguish the emanation peaks from other signals with high accuracy.

mechanic, etc., electromagnetic emanations are most commonly

exploited and widely studied [2].

The exploitation of emanations for eavesdropping has been

practiced by military organizations for almost a century. During

world war I, the German army used the earth loop current of

the allied-force phone line to successfully eavesdrop on their

voice communication [3]. The US army investigated the issue

in detail during world war II through experimentation at the

Bell labs [4]. The codename TEMPEST is used to refer to the

classified US government program that studies the ‘emission

security’ (EMSEC) issues, possible exploitation, countermea-

sures, and standardizations (e.g. NATO SDIP-27 Level A, Level

B, etc.) [4]. Most information regarding this program is still

classified. The first unclassified research paper on emanation
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was published by Wim van Eck in 1985 [5]. On a BBC program

titled “Tomorrow’s world”, he demonstrated that the screen

content of a display unit can be successfully reconstructed

at a long range using very cheap equipment. Electromagnetic

emanations are sometimes called ‘van Eck radiation’ after him

[4]. In 2002, a detailed investigation on monitor emanations

(both from analog and digital display devices) and screen text

reconstruction were performed by Markus G. Kuhn in his

doctoral dissertation [2]. Some recent works have exploited

monitor and HDMI emanations to reconstruct screen images

with text and differently shaped objects [6].

A common method to protect against information leakage

via electromagnetic emanations is shielding, which encom-

passes shielding around a device and/or cables. Also, a control

perimeter around a facility is set up. But these approaches

raise several research questions such as (i) how effective is

commercial shielding around the device or cables? (ii) how

long should the control perimeter be? In other words, how far

the emanation signals can be successfully detected. To answer

these questions, we need to find the maximum detection range

using commercially available devices/cables with multiple lay-

ers of shielding. There are several challenges in finding the

longest detection range. Firstly, emanations are weak signals

as they are a byproduct of signal and clock switching, unlike

communication signal which is amplified in the power amplifier

for transmission. Also, modern devices are comparatively low

power, weakening the emanation signals even further. Secondly,

they are often detected close to the target device or cable

using a sensitive EM probe. But a practical attack scenario

would require an antenna with SDR which has lower sensitivity.

Thirdly, they don’t have an allocated frequency band and are

often overshadowed by other signals, making them difficult to

detect. Finally, the traditional threshold-based detection method

is not very effective in detecting them as they are often weaker

than other communication signals in the surroundings. All these

challenges may wrongfully create a sense of a shorter detection

range than the actual distance up to which they are detectable

and exploitable.

In this work, we have focused on emanations from HDMI

cables (HDMI 2.0) with different layers of shielding (although

classical works focused on emanation from analog display

devices, we found that the connecting cable is much louder than

modern monitors). Among different types of display cables,

we chose HDMI as it is “the most popular cable for monitors

today” [7], [8]. We have collected data from HDMI cables

of 3 different shielding types (unshielded, single-shielded, and

double-shielded) using Ettus B210 SDR as a receiver (RX) in

an office environment. We have performed time and frequency

domain processing to improve SNR. A CNN (ResNet50)

trained with the processed data provides ∼ 100% accuracy up

to 16m and ∼ 95% accuracy at a distance of 22.5m from

the target cable, even in the presence of strong interference

from other signals. We have explored the effect of multi-

layer shielding in HDMI cables. Also, some earlier works have

reconstructed static images from monitor emanation while some

recent works have performed partial video reconstruction at a

short distance. However, these methods assume that the screen

is showing solely an image or a video. A method to distinguish

between the two types of content will assist the reconstructor to

decide which algorithm to run. To that end, exploiting HDMI

emanations, we have shown that we can differentiate between

static image versus video content with an accuracy of ∼ 91.7%
at a distance of 16m.

B. Our Contribution

• Using 3 types of HDMI cables (unshielded, single

shielded, and double shielded) as target and Ettus B210

SDR as RX, we have collected HDMI emanation data
along with background profiling over 3 days from
0.5 m up to 22.5 m in an office environment.

• Harnessing the power of DSP techniques to improve

the SNR and exploiting the advanced image recognition

capability of modern CNN, we have improved the em-
anation detection range from 4 m to 22.5 m for an
iso-accuracy of ∼ 95%. Also, ∼ 100% accuracy is
achieved up to a distance of 16 m from the target.

• Comparing the maximum emanation power from HDMI

cables with 3 types of shielding, we have evaluated
the efficacy of multi-layer shielding for commercially
available cables.

• We have distinguished between image vs video emana-
tion signals with an accuracy of ∼ 91.7% at 16 m.

C. Organization of the Paper

The rest of the paper is structured as follows: section II

focuses on relevant works. Section III describes our experi-

mental setup and data collection method. Section IV shows

the performance and challenges of traditional threshold-based

detection. Section V provides a detailed analysis of perfor-

mance improvement using the transfer learning approach with

ResNet50. It also explores the effect of multi-layer shielding.

Section VI shows the performance of still vs video distinction.

Finally, section VII concludes the paper with a summary.

II. RELATED WORKS

As we have already mentioned, the first publicly avail-

able research on compromising emanation was published by

Wim van Eck [5] in 1985 based on a CRT monitor. In a

technical report based on his Ph.D. dissertation, Markus G.

Kuhn explored emanations from both analog (CRT) and digital

displays (LCD) [2]. Additionally, he recovered plain text based

on radio-character recognition and proposed a civilian radio-

frequency emission-security standard [9]. The data for plain-

text recovery were collected at a distance of 3m from the

target monitor. Vulnerability due to emanation from a flat panel

display using the digital video interface (DVI) was explored

in [10]. Emanation pattern from 4 LCD TV sets was studied

and characterized in [11]. Eavesdropping attack on computer

displays with success to some extent has been shown in [12].

In [13], emanations from a video graphics array (VGA) cable

are collected using an EM probe and oscilloscope. Exploiting

this emanation, the authors recovered the outline of the screen

text [13] and some noisy shapes [14]. A different type of
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Fig. 2. (a) Physical setup in the office corridor using Ettus B210 SDR (connected to a wideband telescopic antenna) as a receiver. (b) The target HDMI is
connected between a PC and a monitor. (c) Full system architecture. GNURadio interface samples the received data at 4 MSps which are processed both in
the time and frequency domain. A CNN (ResNet50) is trained with this data. (d) Emanation peak and harmonics from an unshielded HDMI cable. (e) The
background signal contains strong interference from nearby office equipment and LTE band. Also, SDR adds a DC offset at the center frequency.

analysis was published in [15], where the authors compared

emanations in terms of the most common display interfaces:

DVI and DisplayPort. Collecting data in an anechoic chamber

at a distance of 1m, the authors reconstructed texts displayed

on the screen for both of them and concluded that DisplayPort

was safer in terms of leakage. In [16], the authors have

used several techniques such as vertical and horizontal frame

synchronization, multi-frame averaging, skew correction, etc.

to improve the quality of the reconstructed image. Both DVI

and HDMI use the ‘transition-minimized differential signaling

(TMDS)’ protocol [17]. Recent work has shown a quantitative

analysis of compromising emanation from the TMDS interface

and possible exploitation [18].

III. DATA COLLECTION

A. Experimental Setup

Fig. 2(a) shows our experimental setup in an office corridor.

Fig. 2(b) shows a zoomed-in view of the target HDMI, connect-

ing a LED monitor (Dell P2319H) and a PC. As RX, we have

used Ettus B210 SDR connected with a wideband telescopic

antenna as shown in Fig. 2(a). A GNURadio interface collects

the received data, samples at 4MS/sec and stores them. These

are processed using both time and frequency domain SNR

improvement techniques and finally fed to a ResNet50. This

whole system architecture is shown in Fig. 2(c).

B. Emanation Data Capture

To choose the center frequency (CF) for data collection, we

initially used a spectrum analyzer to scan from DC to 4GHz.

Our scan shows Sinc-train over a wide band but the strongest

peak was near 742MHz. Since SDRs often have DC offset

at CF, we chose 742.5MHz as our CF so that the 742MHz
peak doesn’t merge with the DC offset. Three different types of

cables have been used: unshielded, single-shielded, and double-

shielded. For each cable, we have collected data from 0.5m to

22.5m, at 0.5m intervals. Fig. 2(d) shows the emanation signal

in the frequency domain for an unshielded HDMI cable at 1m.

C. Background Profiling

Background profiling is a very crucial part of data col-

lection as it keeps changing. To keep the profile as fair as
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Fig. 3. (a) Frequency response of rectangular and Kaiser windows shows much less spectral leakage for the latter. (b) Using Welch’s method of power spectrum
estimation (along with Kaiser window), we get ∼ 15 dB SNR improvement. (c) Comparison of 3 types of HDMI (unshielded, single-shielded, and double-
shielded) in terms of maximum emanation power. The unshielded cable is much louder in most cases while the difference between the other two is trivial.

possible, we have collected background data on 3 separate

days at 3 separate times: in the morning, at noon, and night.

Fig. 2(e) shows a sample background spectrum. Our target

frequency (742.5MHz) falls in the LTE band (lower SMH

block, 729MHz to 746MHz). Fig. 2(e) clearly shows the LTE

signal energy. Also, there are multiple experimental labs along

with student and staff office rooms on both sides of the corridor,

contributing to some additional interference. Also, we can see

DC offset at the center.

IV. THRESHOLD-BASED DETECTION

A. Detection Method

Threshold-based peak detection is widely used in literature,

including some recent ones [19]. The collected I-Q data are

transformed into the frequency domain via FFT and compared

against a threshold level. If there is a power peak above the

threshold, we detect the presence of an emanation signal.

TABLE I
PERFORMANCE ANALYSIS OF THRESHOLD-BASED DETECTION

Threshold (dBm) FP (%) FN (%) Accuracy (%)
-45 0 74.07 62.96
-55 26.67 15.56 78.89
-65 100 0 50

However, the accuracy is dependent on the threshold. If the

threshold is too high, there will be a lot of false-negative (FN),

whereas too low threshold will result in a lot of false-positive

(FP) data. We have tested the detection performance of our

dataset for 3 threshold levels. Table I shows that the −55 dBm
threshold provides the best accuracy, which is still pretty low.

B. Challenges

Table I shows that threshold-based detection does not per-

form well (best-case accuracy < 80%). There are several rea-

sons for that. The key issue is the strong interference from other

signals (LTE signals, emanations from other cables, etc.). These

peaks in the background are falsely detected as emanation

for low thresholds, leading to high FP values. On the other

hand, raising the threshold does not help much as emanation

signals are weak themselves and cannot cross the high threshold

bar. This leads to high FN values. Also, the background noise

level keeps changing based on the environment. This poses a

challenge for adaptive threshold selection. Another issue is the

peak at the center frequency due to DC offset. To address these

issues, we resort to CNN-based detection.

V. PERFORMANCE IMPROVEMENT USING CNN

A. SNR Improvement using DSP Techniques

Before training a CNN, we want to improve the perceived

SNR of the collected signal. To that end, we apply some known

techniques in the DSP domain.

1) Windowing in Time Domain: Our data is finite in the

time domain, which is equivalent to applying a rectangular

window to an infinite time sequence of data. However, the

rectangular window has a significant spectral leakage from the

main lobe to the side lobe [20]. There are better windows

(Hanning, Hamming, Kaiser, etc.) with lower spectral leakage.

The downside is the larger main lobe width. However, the main

lobe width is inversely proportional to the data length and we

have significantly long data to overcome this limitation.

Fig. 3(a) shows the frequency response of a rectangular

window and a Kaiser window (β = 5.66). The spectral leakage

for the Kaiser window is only 0.01% compared to 9.28% for the

rectangular window. Also, relative side-lobe attenuation reduces

from −13.3 dB to −41.4 dB. We have windowed our data with

the designed Kaiser window (β = 5.66).

2) Power Spectrum Estimation using Welch’s Method:
We have used Welch’s method of power spectrum estimation

(modified periodogram with averaging) as a better spectrum

estimate. A sequence of 4 × 105 samples (0.1 s data) is taken

and divided into 8 segments with 50% overlap. A modified

periodogram (FFT of autocorrelation, instead of direct FFT) is

applied to each segment and the output is averaged. Fig. 3(b)

compares the spectrum of I-Q data corresponding to emanations

from unshielded HDMI cable at 1m distance, found using

direct FFT and Welch’s method. It is shown that the maximum

peak is similar for both, but the noise level is reduced. We gain

∼ 15 dB SNR improvement.
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3) Averaging in Frequency Domain: Frequency domain av-

eraging reduces noise power, keeping the signal peaks almost

intact. We apply Welch’s method for 9 consecutive sequences

with 50% overlap in the time domain. The spectrums of the

sequences are averaged to reduce the noise power.

B. Effect of Multi-Layer Shielding on Emanation

After improving the SNR, we want to check the efficacy

of multi-layer shielding before moving on to training CNN.

Fig. 3(c) shows the emanation power for 3 types of HDMI

cables from 0.5m to 10.5m at 1m intervals. Except for a

few outliers, the maximum emanation power for the unshielded

cable (blue line) is significantly higher than the other two,

which is expected. However, the difference between the single

and double-shielded cables is trivial.

C. Transfer Learning using ResNet50

Our final step is to evaluate the performance of the CNN-

based detection method. For that, we have used transfer learning

approach where a widely used, pretrained CNN (e.g. VGG16

[21], AlexNet [22], GoogLeNet [23], ResNet50 [24], etc.) is

retrained [25], [26] with a new dataset. These networks are

carefully designed and reviewed by experts in the field and are

known to classify images in standard datasets (e.g. ImageNet)

with high accuracy. Our initial testing shows that ResNet50

works best for our case.

Fig. 4(a) shows the ResNet50 architecture. Residual Neural

Network or ResNet revolutionized the use of the ultra-deep

network by using ‘skip connection’ to address the issue of

‘vanishing gradient’ and ‘degradation problem’. It performed

much better compared to VGG or GoogLeNet on the ‘ImageNet

dataset’ [27]. We will exploit the enhanced image classification

capability of ResNet50 for our dataset. For training purposes,

we have used the frequency domain plots as images. The

rationale behind using the plots instead of the 1D sequence is

to exploit the advanced image classification capability of CNN

(ResNet50). Our images are augmented to match the input size.

The fully connected layer and the output layer are adjusted for

binary classification (emanation vs others). The train, test, and

validation data ratio was 70:20:10. We have used an initial

learning rate = 0.001, mini-batch size = 8, and max epoch =

30. Data are shuffled at each epoch.

D. Performance Evaluation

Fig. 4(b) shows the performance of ResNet50 via transfer

learning for a distance of 4m to 22.5m. For data with better

SNR (thanks to Welch’s method), we get ∼ 100% accuracy

up to 16m which gradually reduces to ∼ 95% at 22.5m. This

figure also compares the performance benefit with improved

SNR. Compared to direct FFT, we get a longer distance for

iso-accuracy (e.g. for 100% accuracy, we get 16m compared

to 12m) and higher accuracy for the same distance (e.g. at

22.5m, we get ∼ 95% accuracy compared to ∼ 88.9%). In

both cases, the CNN-based method outperforms the threshold-

based method by a high margin.

E. Performance Comparison

Earlier works focused on the screen content recovery instead

of the detectable range. Hence, a comparison with this work is

not exactly apple to apple. Nonetheless, a list of data collection

ranges is provided in Table II for interested readers.

TABLE II
PERFORMANCE COMPARISON WITH PREVIOUS WORKS

Display emanation study Detection range (m)
Text recovery from flat-panel display [10] 10

Information recovery from LCD monitor [16] 3
Proposed method (this work) 22.5

VI. MONITOR CONTENT TYPE DETECTION - STILL VS

VIDEO

A. Motivation

In the literature review section, we have discussed that

some works have reconstructed screen images with plain text

and some geometric shapes. Some recent works have tried to

 



reconstruct video signals. However, these works assume that

the monitor is running solely a video or just an image. An

automated method is necessary to detect the content type of the

monitor (still image vs video) and switch to the corresponding

detection algorithm. In this subsection, we try to fill that void.

B. Performance Evaluation

Our data collection method is the same as before, except

that a video was playing on the monitor. The emanation signal

captures the changes due to the video playback. We have used

the same data processing steps before training ResNet50 with

the data to check whether it can distinguish between the two.

Our evaluation shows that we get 91.7% accuracy at a distance

of 16m which gradually drops at a further distance.

VII. CONCLUSION

In this work, we have collected emanation data from 3 types

of HDMI cables in an office environment for distances covering

up to 22.5m. Training ResNet50 with the spectrum achieved

using direct FFT, we have been able to attain ∼ 100% accuracy

up to 12m, which gradually drops to ∼ 88.9% at 22.5m.

The CNN-based detection method outperforms the traditional

threshold-based detection method. Using windowing, a better

power spectrum estimation, and averaging, the SNR of the

signal is improved which boosts the performance of the CNN

to the next level to provide ∼ 100% accuracy up to 16m and

∼ 95% accuracy at 22.5m. To the best of our knowledge, this is

the highest detection range for HDMI emanation ever reported

in the literature. The emanation power of the 3 types of cable is

compared and matched with the theoretically expected value.

Finally, collecting data for emanation when a video is being

played, it is shown that a distinction can be made between

still image and video with 91.7% accuracy at 16m. These

results show the performance benefit of CNN-based emanation

detection and signal type classification which paves the way

for AI-assisted image and/or video reconstruction in the future.
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