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Abstract—Fusing Radar and Lidar sensor data can fully utilize
their complementary advantages and provide more accurate
reconstruction of the surrounding for autonomous driving systems.
Surround Radar/Lidar can provide 360◦ view sampling with the
minimal cost, which are promising sensing hardware solutions
for autonomous driving systems. However, due to the intrinsic
physical constraints, the rotating speed of surround Radar, and
thus the frequency to generate Radar data frames, is much
lower than surround Lidar. Existing Radar/Lidar fusion methods
have to work at the low frequency of surround Radar, which
cannot meet the high responsiveness requirement of autonomous
driving systems. This paper develops techniques to fuse surround
Radar/Lidar with working frequency only limited by the faster
surround Lidar instead of the slower surround Radar, based on the
state-of-the-art object detection model MVDNet. The basic idea
of our approach is simple: we let MVDNet work with temporally
unaligned data from Radar/Lidar, so that fusion can take place
at any time when a new Lidar data frame arrives, instead
of waiting for the slow Radar data frame. However, directly
applying MVDNet to temporally unaligned Radar/Lidar data
greatly degrades its object detection accuracy. The key information
revealed in this paper is that we can achieve high output frequency
with little accuracy loss by enhancing the training procedure
to explore the temporal redundancy in MVDNet so that it can
tolerate the temporal unalignment of input data. We explore
several different ways of training enhancement and compare them
quantitatively with experiments.

Index Terms—Radar/Lidar fusion, object detection, au-
tonomous driving

I. INTRODUCTION

Accurate perception of the surroundings is an essential func-
tion of autonomous driving systems (ADS). Lidar and Radar are
two sought-after sensors for perception in ADS [1]–[3]. While
Lidar sensors can generate fine-grained point clouds with rich
information in good weather conditions, they fail in adverse
weather (e.g., fog, snow) [4]. By contrast, Radar sensors are
less impacted by adverse weather condition but less precise
than Lidar [5]. Fusing Lidar and Radar data can overcome their
individual weakness and yields more accurate object detection,
which are promising solutions to provide accurate and robust
perception capability for ADS [6], [7].

To provide a full view of the surrounding environment, the
Lidar and Radar sensors on the vehicle need to cover the entire
360◦ angle. One possible way to achieve this is to mount

multiple sensors with different orientations, each covering a
certain angle, and combine their data to construct a 360◦ full
view, but the overall cost of this approach is high. Alternatively,
we can use surround Radar/Lidar to capture the 360◦ full-
view, which is more economic. The temporal resolution of
surround Radar/Lidar, i.e., the frequency for them to produce
a full-view data frame, is limited by the rotating speed. As
millimeter-waves (used by Radar) travel much slower than
light (used by Lidar), the maximum allowed rotating speeds
of Radar are lower than Lidar under the same condition in
other aspects. For example, the rotating speed of a popular
surround Lidar, Velodyne HDL-32E, is 20Hz (20 cycles per
second) [8], [9], while the state-of-the-art surround Radar,
NavTech CTS350-X, rotates with 4Hz (4 cycles per second)
[10], [11]. Therefore, we must properly handle the inconsistent
input frequencies between the surround Radar and Lidar when
fusing their data. A straightforward solution is to down-sample
the Lidar data at the same frequency as the Radar. Some recent
work combined several consecutive data frames of Lidar to
produce one artificial Lidar data frame which matches the low
frequency of Radar [4], [12]–[14]. In either way, fusion is
performed with the rotating frequency of Radar. For example,
with a surround Lidar with a rotating frequency 20Hz and
a surround Radar with a rotating frequency 4Hz, fusion is
performed and thus generates full-view reconstruction 4 times
per second. Typically, ADS requires to capture events and take
proper reaction in a short time, e.g., 100ms. Therefore, the low
frequency of surround Radar/Lidar fusion makes it unsuitable
for ADS from the real-time performance perspective.

In this paper, we develop techniques to address the above
problem, i.e., to increase the frequency to perform Radar/Lidar
fusion, so that it is not limited by the low rotating frequency
of surround Radar. Our work is based on MVDNet, the state-
of-the-art Radar/Lidar data fusion DNN model for object de-
tection. The high-level idea of our approach is very simple:
we can perform the fusion when a new Lidar data frame
arrives, and let it fuse with the latest available Radar data
frame which arrived at a slightly earlier point. However, by
doing this, the temporal inconsistency of the Radar and Lidar
sensor data will significantly degrade the detection accuracy.
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The key information revealed in this paper is that, by properly
enhancing the training phase, we can actually make MVDNet
tolerate the temporal inconsistency with tiny accuracy loss. We
explored different ways to enhance the training procedure and
evaluated them quantitatively through experiments.

II. RELATED WORK

To enhance 3D perception in autonomous driving, many
works have proposed to fuse different sensor data modalities
to leverage their complementary advantages, including cameras,
Lidars, and Radars. MVDNet [4] proposes a fusion model to
fuse Radar and Lidar with an attention mechanism for vehicle
detection in foggy weather and achieves state-of-the-art results
on the Oxford Radar RobotCar [15] (ORR) dataset. Li et al.
[12] propose the ST-MVDNet to address the issue of missing
sensor data in multi-modal vehicle detection for Radar/Lidar.
Farag et al. [16] propose a Radar/Lidar data fusion method for
real-time road-object detection and tracking for ADS. LiRaNet
[14] is proposed for end-to-end trajectory prediction, which
utilizes Radar sensor information along with Lidar and high-
definition maps. Li et al. [17] develop EZFfusion framework for
mutli-model 3D object detection and tracking based on camera,
Lidar, and Radar. DEF [18] proposes a baseline fusion detector
with all of the common sensors in ADS. FUTR3D [19] is a
unified sensor fusion framework that can be used in almost any
sensor configuration. However, existing Radar and Lidar fusion
models are developed under the assumption that the Radar and
Lidar data are perfectly synchronized. If not, downsampling the
faster Lidar data at the same frequency as Radar is commonly
used [4], [12]–[14], [16]–[19]. From another perspective, some
researchers in the real-time area develop the infrastructure-
vehicle cooperative autonomous approaches to allow sensors to
capture the environment in real-time and then perform timely
fusion and perception [20]–[23]. In this paper, we develop
techniques to fuse temporally unaligned Radar/Lidar data and
achieve high output frequency with little accuracy loss.

III. PRELIMINARY

We build our work based on MVDNet [4], the state-of-the-
art Radar/Lidar fusion network. MVDNet fuses Radar intensity
maps with Lidar point clouds, which harnesses their comple-
mentary capabilities. The architecture of MVDNet is shown
in Fig. 1. MVDNet consists of two stages. The region pro-
posal network (MVD-RPN) extracts feature maps from Lidar
and Radar inputs and generates proposals. The region fusion
network (MVD-RFN) pools and fuses region-wise features of
the two sensors’ data frames and outputs oriented bounding
boxes of detected vehicles. MVDNet assumes that the input
Radar and Lidar frames have same timestamps. However, in
the training data of MVDNet, the frequency of raw Radar
frames, denoted by Fr, is different from the frequency of raw
Lidar frames, denoted by Fl. MVDNet solves this problem
by combining several consecutive raw Lidar frames into an
artificial concatenated Lidar frame, which is generated with
the same frequency as Radar data frames, as shown in Fig. 2.
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Fig. 1. The architecture of MVDNet [4].
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Fig. 2. The Radar/Lidar frames alignment policy in MVDNet.

In this way, the fusion frequency of MVDNet equals Fr. We
define

ratio =

⌊
Fl

Fr

⌋
and ratio+1+1 raw Lidar frames are aggregated to produce
one concatenated Lidar data frame. More precisely, a subset
of cloud points that covers 120◦ view in each Lidar frame is
selected, and these subsets are combined into a concatenated
Lidar frame as shown in Fig. 2. Each concatenated Lidar
frame and corresponding Radar frame are paired and sent
to MVDNet. To improve accuracy, when fusing the latest
paired Radar/Lidar frames, MVDNet uses historical frames.
The number of historical frames is denoted by num history. In
MVDNet, num history=4 by default. Decreasing num history
can reduce the computation workload of MVDNet inference,
but at the cost of accuracy loss, as discussed in IV-D and IV-A.

IV. THE PROPOSED METHOD

A. Increasing the Radar/Lidar Fusion Frequency

Our method allows fusion to occur at any time when a raw
Lidar frame arrives, instead of waiting for the slow Radar
frames, so fusion can be triggered with a higher frequency,
as long as the period of fusion is an integral multiple of the
period of Lidar frames. The fusion frequency of our method is
denoted by Ff . We define

α =
Fl

Ff
(1)
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Fig. 3. Our proposed fusion method.

which should satisfy:

α ∈ {1, 2, 3, ..., ratio} (2)

If α > ratio, the fusion between the paired Radar/Lidar frames
will be meaningless because they have no overlap in time. Thus,
Ff should satisfy:

Fr ≤ Ff ≤ Fl (3)

The fusion frequency is only limited by the faster Lidar instead
of the slower Radar.

Fig. 3 shows two examples to demonstrate our fusion
method. For the newly arrived raw Lidar frame, if the raw
Radar frame in the same period has not arrived, the latest
available raw Radar frame will be used for fusion. In Fig. 3(a),
we assume that we expect to achieve a high fusion frequency
Ff = Fl. According to Equation (1), we need to set α=1,
which means to perform timely fusion when each new raw
Lidar frame arrives. In Fig. 3(a), the latest raw Radar frame has
not been generated at tl8 and tl9. We perform the fusion between
the latest concatenated Lidar frames (the orange box) and the
latest available raw Radar frame (the orange box) generated at
tr1 respectively. Fig. 3(b) shows another example with fusion
frequency Ff = Fl/3. The fusion should be performed every
3 raw Lidar frame arrivals. Our method not only increases the
fusion frequency, but also allows us to adjust the frequency
according to the actual situation. In practice, the fusion results
do not always have to be generated at the highest frequency.
Based on the current vehicle speed and overall workload of the
vehicle, the ADS is expected to provide a fusion frequency that
can be adjusted.

B. Training Enhancement to Maintain Accuracy

However, by directly applying the above method, the input
Radar/Lidar frames to MVDNet are temporally unaligned,
which greatly degrades the object detection accuracy. In
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Fig. 4. Offset between temporally unaligned frames.

fact, there is a time offset between each pair of unaligned
Radar/Lidar frames, as shown in Fig. 4. We use offset to
represent the number of complete raw Lidar frames that are
ahead of Radar for each paired Radar/Lidar frames. The offset
should satisfy:

offset ∈ {0, 1, 2, ..., ratio} (4)

For the same reason, if offset exceeds ratio, the fusion between
paired Radar/Lidar frames will be meaningless because they
are not overlapped in time.

Following MVDNet, we evaluate original MVDNet model
to unaligned Radar/Lidar frames based on ORR dataset (Fl =
20Hz, Fr = 4Hz, ratio=5) using average precision (AP) in
COCO evaluation [24] with Intersection-over-Union (IoU) of
0.5, 0.65, and 0.8 for a fair comparison. For various offset
settings, the accuracy result is shown in Table I. We observe that
applying the original MVDNet model to unaligned Radar/Lidar
frames greatly degrades object detection accuracy. The accu-
racy of the MVDNet model with unaligned frames (offset =
{1, 2, 3, 4, 5}) is much lower than that with aligned frames
(offset=0). Therefore, offset is a critical factor for accuracy.

To mitigate the above accuracy loss problem, we use the
property of MVDNet that uses both the current pair and
num history (num history=4) historical pairs, and a total of
1+num history paired Radar/Lidar frames as the input for each
fusion. There exists redundant information between continuous
Radar/Lidar frames. We exploit the redundant information to
make MVDNet still work well with temporally unaligned
Radar/Lidar frames. We discover a simple but effective training
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TABLE I
OVERALL PERFORMANCE OF DIRECTLY APPLYING MVDNET ON RADAR/LIDAR FRAMES:

AP OF ORIENTED BOUNDING BOXES IN BIRD’S EYE VIEW (BEV).

offset 0 1 2 3 4 5
Model

IoU 0.5 0.65 0.8 0.5 0.65 0.8 0.5 0.65 0.8 0.5 0.65 0.8 0.5 0.65 0.8 0.5 0.65 0.8
MVDNet 0.897 0.877 0.735 0.652 0.619 0.486 0.616 0.587 0.462 0.583 0.559 0.441 0.51 0.498 0.411 0.521 0.508 0.407

TABLE II
OVERALL PERFORMANCE OF OUR FUSION METHOD ON RADAR/LIDAR FRAMES: AP OF ORIENTED BOUNDING BOXES IN BEV.

Model
offset 1 2 3 4 5
IoU 0.5 0.65 0.8 0.5 0.65 0.8 0.5 0.65 0.8 0.5 0.65 0.8 0.5 0.65 0.8

MVDNet 1 0.898 0.869 0.722 0.867 0.841 0.668 0.847 0.827 0.652 0.828 0.809 0.643 0.826 0.801 0.644
MVDNet 2 0.87 0.85 0.67 0.899 0.877 0.724 0.889 0.863 0.684 0.876 0.848 0.705 0.868 0.847 0.702
MVDNet 3 0.867 0.846 0.699 0.868 0.847 0.701 0.89 0.867 0.722 0.879 0.858 0.709 0.878 0.849 0.7
MVDNet 4 0.877 0.855 0.686 0.881 0.853 0.683 0.874 0.853 0.688 0.888 0.86 0.709 0.875 0.854 0.688
MVDNet 5 0.855 0.833 0.679 0.862 0.834 0.687 0.865 0.843 0.689 0.884 0.864 0.704 0.885 0.865 0.707

enhancement method, which almost enables MVDNet to main-
tain accuracy when fusing temporally unaligned Radar/Lidar
frames. For Radar/Lidar frames with different offset, we syn-
thesize paired Radar/Lidar frames with corresponding offset to
train MVDNet model from scratch.

Under the same experimental setting, the results of our
method are summarized in Table II. The MVDNet offset means
that the MVDNet model is trained on the Radar/Lidar frames
with a specific offset, offset∈ {1, 2, 3, 4, 5}. For the unaligned
Radar/Lidar frames with a specific offset, the MVDNet model
trained on corresponding paired Radar/Lidar frames outper-
forms these MVDNet models trained on other offset frames.
Comparing Table II and Table I, the accuracy of our enhance-
ment training method on unaligned Radar/Lidar frames with
each specific offset is almost equal to the original MVDNet
model on aligned Radar/Lidar frames (offset=0). The results
demonstrate that, on the premise of increasing the fusion
frequency, our proposed fusion method maintains accuracy even
when the Radar/Lidar frames are time unaligned.

C. Exploiting Different Enhancement Strategies

In order to enable MVDNet model to deal with Radar/Lidar
frames with various offset, we exploit two different enhance-
ment strategies.

Separate training strategy. For temporally unaligned
Radar/Lidar frames with different offset, the first strategy
is to train a corresponding MVDNet model separately for
each offset frame. During training, we firstly train a shared
MVDNet model based on the paired Radar/Lidar frames with
offset=⌈ratio/2⌉, and share the parameter weights of its MVD-
RPN among other MVDNet models which deal with different
offset frames. Secondly, MVD-RFN of each MVDNet model
is fine-tuned based on corresponding offset frames. We can
obtain multiple MVDNet models and each model deals with
the Radar/Lidar frames with a specific offset. The evaluation
results based on ORR dataset are summarized in Table III. The
MVDNet separated offset means that the MVDNet model is
fine-tuned on the Radar/Lidar frames offset, offset∈{0,1,2,...,5}.
We observe that for the Radar/Lidar frames with a specific
offset, each MVDNet separated offset model fine-tuned on cor-

responding offset frames can get the best accuracy performance
compared with other models.

Mixed training strategy. The second strategy is to mix the
same amount of paired Radar/Lidar frames with various offset
together. During training, we use the new mixed training set
to train a MVDNet mixed model from scratch. We expect to
obtain a MVDNet mixed model that can handle Radar/Lidar
frames with different offset. The evaluation results are summa-
rized in Table IV. We observe that, for Radar/Lidar frames with
different offset, the MVDNet mixed model can achieve similar
and good accuracy performance with different IoU settings.

Comparing the results of the above two strategies,
we observe two phenomena. First, for the aligned
Radar/Lidar frames (offset=0), the separately fine-tuned
MVDNet separate 0 model achieves slightly better accuracy
than the MVDNet mixed model. Second, for other unaligned
Radar/Lidar frames (offset∈{1,2,3,4,5}), the MVDNet mixed
model achieves better accuracy than separately fine-tuned
MVDNet separated 1/2/3/4/5 models. Therefore, how to
design a unified MVDNet model for various Radar/Lidar
frames is a trade-off.

For separated training strategy, we design a multi-branch
unified MVDNet as shown in Fig. 5. The unified MVDNet
consists of three modules. The first module is feature extractors
for Radar/Lidar frames. Due to the property that the lower
layer of the neural network extracts low-level features [25], the
low-level feature extractors can be used as the shared feature
extractors for Radar/Lidar frames with different offset. The
second fusion module has multiple branches, and each branch
is used to fuse Radar/Lidar frames with a specific offset. The
third module is a new input offset, which is used to determine
which branch should be chosen for inference.

D. Impact of Historical Information

In order to navigate the trade-off between latency and perfor-
mance, we exploit two historical frame selection and matching
strategies, which aim to reduce inference latency.

Historical frame skipping strategy. In the basic fusion
method (Fig. 3), the current and historical paired Radar/Lidar
frames are time consecutive. As shown in Fig. 6(a), if
the num history=2, the current and two consecutive paired
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TABLE III
OVERALL PERFORMANCE OF SEPARATELY TRAINED MVDNET MODELS : AP OF ORIENTED BOUNDING BOXES IN BEV.

Model
offset 0 1 2 3 4 5
IoU 0.5 0.65 0.8 0.5 0.65 0.8 0.5 0.65 0.8 0.5 0.65 0.8 0.5 0.65 0.8 0.5 0.65 0.8

MVDNet separated 0 0.899 0.878 0.736 0.848 0.826 0.679 0.838 0.817 0.675 0.83 0.809 0.68 0.802 0.79 0.671 0.803 0.792 0.663
MVDNet separated 1 0.887 0.866 0.719 0.887 0.866 0.722 0.884 0.864 0.722 0.884 0.856 0.722 0.876 0.855 0.711 0.874 0.847 0.711
MVDNet separated 2 0.867 0.846 0.708 0.876 0.856 0.656 0.886 0.865 0.722 0.883 0.856 0.722 0.874 0.855 0.718 0.867 0.854 0.712
MVDNet separated 3 0.861 0.84 0.689 0.868 0.848 0.699 0.877 0.856 0.71 0.888 0.868 0.723 0.88 0.859 0.714 0.879 0.859 0.713
MVDNet separated 4 0.841 0.82 0.682 0.848 0.828 0.694 0.858 0.838 0.703 0.878 0.859 0.725 0.887 0.868 0.725 0.879 0.86 0.723
MVDNet separated 5 0.869 0.848 0.702 0.867 0.847 0.699 0.875 0.855 0.701 0.885 0.865 0.711 0.887 0.867 0.711 0.887 0.867 0.712

TABLE IV
OVERALL PERFORMANCE OF THE MIXED TRAINING MVDNET MODEL: AP OF ORIENTED BOUNDING BOXES IN BEV.

Model
offset 0 1 2 3 4 5
IoU 0.5 0.65 0.8 0.5 0.65 0.8 0.5 0.65 0.8 0.5 0.65 0.8 0.5 0.65 0.8 0.5 0.65 0.8

MVDNet mixed 0.897 0.877 0.735 0.896 0.876 0.734 0.896 0.877 0.734 0.895 0.875 0.733 0.895 0.876 0.727 0.895 0.875 0.726

TABLE V
OVERALL PERFORMANCE OF FRAME SKIPPING METHOD: AP OF ORIENTED BOUNDING BOXES IN BEV.

offset 0 1 2 3 4 5
Strategy

IoU 0.5 0.65 0.8 0.5 0.65 0.8 0.5 0.65 0.8 0.5 0.65 0.8 0.5 0.65 0.8 0.5 0.65 0.8
Without frame skipping,

num history=4
0.897 0.877 0.735 0.898 0.869 0.722 0.899 0.877 0.724 0.89 0.867 0.722 0.888 0.86 0.709 0.885 0.865 0.707

Without frame skipping,
num history=2

0.871 0.85 0.725 0.883 0.863 0.72 0.885 0.866 0.721 0.885 0.864 0.718 0.869 0.856 0.712 0.878 0.866 0.723

With frame skipping,
num history=2

0.895 0.877 0.724 0.885 0.865 0.715 0.873 0.852 0.696 0.887 0.856 0.721 0.887 0.857 0.7 0.885 0.864 0.706
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Fig. 5. Structure of the multi-branch unified MDVNet.

Radar/Lidar frames are selected as the input frames. Consider-
ing the redundant information between successive Radar/Lidar
frames, we explore a frame skipping method, which can use
fewer frames to represent the same amount of information as
the basic fusion method. Fig. 6(b) shows our frame skipping
method with the same num history=2 configuration, we select
historical paired Radar/Lidar frames every two intervals, which
will skip several frames. Each input frames only contain 3
paired Radar/Lidar frames, but the amount of information that
can be represented is the same as that of the num history=4
configuration. We expect our strategy can provide a new way
for an accuracy-latency trade-off.

Table V shows the evaluation results. For the Radar/Lidar
frames with a specific offset, offset∈{0,1,2,...,5}, we observe
that with the same num history=2 configuration, our frame
skipping method achieves similar or even better accuracy results
than the method without frame skipping. Compared to the
num history=4 configuration, our method with num history=2
configuration has only a slight loss of accuracy. Therefore, by
skipping frames, our method reduces latency with little loss of
accuracy.
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Fig. 6. Historical frame selection strategy.

Historical frame alignment strategy. In the basic fusion
method (Fig. 3), for each 1+num history paired Radar/Lidar
frames, if the current paired Radar/Lidar frames are misaligned,
all the other historical paired frames are misaligned and exist
the same offset. However, we observe that apart from the current
paired frames, other historical concatenated Lidar frames can
find their aligned Radar frames. As shown in Fig. 7, for the
current concatenated Lidar frame at tli, it can only pair with
the latest available raw Radar frame that arrives at tri . But for
each historical concatenated Lidar frame, a new re-concatenated
Radar frame that is aligned perfectly with the Lidar frame can
be reconstructed based on two original adjacent raw Radar
frames. Based on the observation, we exploit historical frame
alignment strategy to align all historical paired Radar/Lidar
frames in time. The basic idea is, when selecting each historical
paired frame, reconstructing a new Radar frame that aligns with
the concatenated Lidar frame according to the Lidar timestamp.

Table VI compares our historical frame alignment strategy
with basic method. For the temporally unaligned Radar/Lidar
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TABLE VI
OVERALL PERFORMANCE OF HISTORICAL FRAME ALIGNMENT STRATEGY: AP OF ORIENTED BOUNDING BOXES IN BEV.

offset 1 2 3 4 5
Strategy

IoU 0.5 0.65 0.8 0.5 0.65 0.8 0.5 0.65 0.8 0.5 0.65 0.8 0.5 0.65 0.8
unaligned 0.898 0.869 0.722 0.899 0.877 0.724 0.89 0.867 0.722 0.888 0.86 0.709 0.885 0.865 0.707

aligned 0.889 0.859 0.694 0.895 0.874 0.732 0.88 0.859 0.718 0.879 0.859 0.705 0.856 0.836 0.687

frames with a specific offset, offset∈{1,2,...,5}, we observe that
our alignment strategy has no gain in accuracy.

time

Raw Radar Frame
…
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…
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paired

Re-concatenate a new Radar frame 
between two adjacent Radar frames offset

Fig. 7. Historical frame alignment strategy, num history=4.

V. CONCLUSION

In this paper, we develop techniques to fuse surround
Radar/Lidar with working frequency only limited by the faster
surround Lidar instead of the slower surround Radar, based on
the state-of-the-art Radar/Lidar fusion-based object detection
model MVDNet. As far as possible, the advantages of the fast
sampling of Lidar are played out, and a timely fusion is per-
formed in temporally unaligned Radar/Lidar frames to provide
real-time road condition information. The experiment results
demonstrate that our proposed fusion method can increase the
fusion frequency between temporally unaligned Radar/Lidar
data with almost no loss of object detection accuracy.
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