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Abstract—Optimal control of electric vehicle (EV) batteries
for maximal energy efficiency, safety and lifespan requires that
the Battery Management System (BMS) has accurate real-time
information on both the battery State-of-Charge (SoC) and its
dynamics, i.e. long-term and short-term energy supply capacity, at
all times. However, these quantities cannot be measured directly
from the battery, and, in practice, only SoC estimation is typically
carried out. In this article, we propose a novel parametric
algebraic voltage model coupled to the well-known Manwell-
McGowan dynamic Kinetic Battery Model (KiBaM), which is able
to predict both battery SoC dynamics and its electrical response.
Numerical simulations, based on laboratory measurements, are
presented for prismatic Lithium-Titanate Oxide (LTO) battery
cells. Such cells are prime candidates for modern heavy offroad
EV applications.

I. INTRODUCTION

A key challenge in optimal control of battery systems is
that the energy content (State-of-Charge, SoC) is not measur-
able outside the battery. In practice, mathematical modeling
of SoC is thus often based on voltage (V ) and current (I),
which can be measured. One seeks a SoC dependent dynamical
Equivalent Circuit Model (ECM), that can predict the electrical
response of the battery (see e.g. [1], [2]), and that model is
then used for SoC estimation via simple Coulomb counting.
However, it is important to emphasize that the obtained SoC
estimate is static and memoryless, i.e., it does not address the
effect of the usage history of the battery on the energy (or
power).

To address battery energy dynamics, in this article, we
take an opposite battery modeling approach: We propose a
simple algebraic electrical subsystem model coupled to a
more complex dynamical model of the energy subsystem. The
energy model considered herein is the Kinetic Battery Model
(KiBaM) specification introduced by Manwell and McGowan
in 1993 [3], see Fig. 1. It is well known to be able to
represent the recovery and rate-capacity effects seen in real
batteries [4], among others. The challenge with the KiBaM
model is relating it to the battery voltage and current, which
is necessary for parameter identification and practical use.
Manwell et al. [5] proposed the simple algebraic specification
V = Voc − RsI , where Voc denotes the open-circuit voltage
and Rs the internal resistance of the battery, but without
relation to SoC. Further, Bako et al. [6] and Manwell et al.
[5] proposed a rational voltage models with SoC dependence.
On the other hand, Fenner et al. [7] proposed a parametric
rational-exponential voltage law targeted at replicating the
response seen in constant current discharge tests. However, the
nonlinearities in these electrical subsystem models potentially

KiBaM

Bound 
Charge

Available 
Charge

c1-c

y2 y1

(c, k, E0, E1, E2)

Interior-point Optimization

Battery

D
at

a 

A
cq

u
is

it
io

n

V
o

lt
a

g
e 

M
o

d
el

 

y1(t),y2(t)

I(t)

V(t),I(t)DTrain

k

Fig. 1. Overall view of the proposed battery model and parameter identifi-
cation methodology

make parameter identification complex, and also impose a
heavier computational burden on the battery SoC estimation
during runtime. It is, therefore, of considerable theoretical and
practical interest to establish a simple and computationally
lightweight but accurate electrical subsystem model to be
augmented with the KiBaM. Such a model is presented herein,
along with its offline parameter identification method, which
utilizes standard dynamic discharge profile laboratory test data
[8].

II. BATTERY MODEL

We couple the well-known Kinetic Battery Model (KiBaM)
to our proposed linear voltage model. The KiBaM models
the electro-chemical dynamics of battery’s internal states and
represent the energy/charge balance, while the voltage model
relates KiBaM to the battery’s terminal voltage. Then, given
the training data, we jointly optimize the parameter set of
the coupled model p = (c, k, E0, E1, E2) using interior-point
optimization method [9].

Fig. 1 illustrates the overall view of the proposed method.
The KiBaM stores the electric charge in two tanks, bound
charge tank and available charge tank which are connected
through a limited-rate valve. Variables y1 and y2 represent
the amount of charge in each tank, k represents the flow rate
through the valve and c ∈ (0, 1) represents the relative capacity
of the tanks. The dynamics of charge in each tank is modeled
by the following differential equations:

dy1

dt
=

k

1− c
y2(t)−

k

c
y1(t)− I(t) (1a)

dy2

dt
= −

k

1− c
y2(t) +

k

c
y1(t) (1b)

The proposed voltage model is a linearly parameterized
equation describing voltage response of the battery based on
the Rint equivalent circuit model [10] and internal energy
levels of the two tanks as:
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Fig. 2. KiBaM parameters (k, c) and voltage model parameters (E0, E1, E2, Voc, Rs) over SoC level. Red points indicate the optimized parameters of each
subrange and blue lines indicate their linear interpolation over the whole range of SoC.

V (t) = VOC −Rs · I(t) +E0 +E1 ·
y1(t)

Q0

+E2 ·
y2(t)

Q0

(2)

where Rs is the battery internal resistance, VOC is the battery
open-circuit voltage, Q0 is the nominal capacity of the battery
and E0, E1 and E2 are the parameters. Finally, we defined the
SoC at each time by:

SoC(t) =
y1(t) + y2(t)

Q0

(3)

It is essential to mention that, in our experiments, param-
eters of Rint, KiBaM and voltage model are all dependent
on current SoC level. Therefore, all should be subscripted
with SoC(t) in equations 1a, 1b and 2, but for notational
convenience, this dependence is not explicitly denoted.

We fit the proposed model to the measurement data by
utilizing interior-point optimization. It is well-known that
non-linear programming methods such as interior-point are
sensitive to the chosen initial point. Therefore, to mitigate this
effect, we propose a four-stage parameter identification method
that finds a reasonably good initial point by incrementally
increasing the complexity of the optimization (details are
omitted due to space constraints).

III. EXPERIMENTS

The battery cell considered herein is a 23Ah Toshiba
SCiBTM LTO battery cell. To train the model and validate the
results, we used data from Discharge Pulse Power Charac-
terization (DPPC) tests [8]. The test was performed in room
temperature at two different charge rates.

We obtained 0.065% mean percentage error and 1.6 mV
mean absolute error for voltage prediction on out-of-sample
test data that outperforms previous methods and is marginal for
various demands in battery voltage estimation. The optimized
parameters are presented in Fig. 2 as functions of SoC. The
change in SoC-dependent parameters shows that the battery
behaves significantly differently at various SoC levels. Con-
sidering the parameter k, for example, it can be seen when
the battery is full, the charge transfer rate from the bound
charge tank to the available charge tank is higher than when it
is empty, thus faster energy recovery can be obtained at fully
charge. Additionally, the trend in parameter c suggests that the
bound charge tank is used to store the charge as a reserved
energy unit which is released as the SoC drops. Trends in VOC

and Rs are as expected, and E0 almost similar trend to VOC ,
affecting the predicted voltage as a correction value for VOC .

IV. CONCLUSION AND FUTURE WORK

The structural modeling that is proposed in this paper,
enables the opportunity to utilize the hidden states of charge,
namely y1 and y2, in the optimal control applications in which
short-term high power demands can be controlled w.r.t. the
value of y1 and long-term planing based on energy reserve
is enabled with the knowledge of y2. Moreover, the optimal
control algorithm can utilize these information to schedule a
rest period after a demanding workload to recover the battery
voltage level. Another intresting future direction of this work
is to incorporate ambient temperature and battery aging into
the model as two important factors that can majorly affect
battery behavior. Additionally, since usually the initial state
of the battery is unknown, there is need to apply a filtering
method to estimate the internal hidden states of the model
based on measurable input and output of the battery system.
Extended Kalman filters are among the best candidates for
such purposes.
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