2023 Design, Automation & Test in Europe Conference (DATE 2023)

ADEE-LID: Automated Design of Energy-Efficient
Hardware Accelerators for Levodopa-Induced
Dyskinesia Classifiers

Martin Hurta, Vojtech Mrazek, Michaela Drahosova, and Lukas Sekanina
Faculty of Information Technology, Brno University of Technology, Brmo, Czech Republic
{ihurta, mrazek, drahosova, sekanina} @fit.vut.cz

Abstract—Levodopa, a drug used to treat symptoms of Parkin-
son’s disease, is connected to side effects known as Levodopa-
induced dyskinesia (LID). LID is difficult to classify during
a physician’s visit. A wearable device allowing long-term and
continuous classification would significantly help with dosage
adjustments. This paper deals with an automated design of
energy-efficient hardware accelerators for such LID classifiers.
The proposed accelerator consists of a feature extractor and a
classifier co-designed using genetic programming. Improvements
are achieved by introducing a variable bit width for arithmetic
operators, eliminating redundant registers, and using precise
energy consumption estimation for Pareto front creation. Evolved
solutions reduce energy consumption while maintaining classifica-
tion accuracy comparable to the state of the art.

Index Terms—Ilevodopa-induced dyskinesia, energy efficiency,
hardware accelerator, genetic programming.

I. INTRODUCTION

Parkinson’s disease (PD) is one of the most common neuro-
logical conditions. Patient care primarily suppresses symptoms
using a levodopa drug, which can result in levodopa-induced
dyskinesia (LID). A wearable device allowing long-term contin-
uous LID classification would be a great source of information
and help physicians adjust the dosage to suppress PD symptoms
and, at the same time, reduce LID.

The usual goal of studies covering the design of the LID
classifier is achieving the highest accuracy while deploying
computationally expensive methods [1], [2]. Data transfer to an
external device using such an expensive method is inconvenient
and involves transferring vulnerable health data. Lones et al.
[1] proposed a LID-classifier model utilising a sliding window
of 32 samples of low-level movement features and designed
it using genetic programming (GP). Hurta et al. [3] proposed
a model of the LID classifier and used GP for the automatic
design of an energy-efficient feature extractor (FE). The FE
and classifier design is a complex problem that was solved
using a co-design approach. Their model also reduced data
representation to an 8-bit integer.

The state-of-the-art solution [3] does not consider the sub-
byte operations successfully used in machine learning acceler-
ators [4], [5]. Moreover, as evolved classifiers do not often
utilize all sliding window samples, eliminating unnecessary
circuits could reduce energy consumption. Lastly, the hardware
complexity of evolved circuits was estimated using the number
of arithmetic operations in [3], while adopting a standard
synthesis procedure would provide more precise results.

II. PROPOSED METHODOLOGY

The proposed approach for the automated design of an
energy-efficient LID classifier is shown in Fig. 1. FE and
classifier are evolved using Cartesian GP (CGP) [6]. CGP is
an iterative optimization algorithm with integer netlist repre-
sentation trying to maximize the design quality. The FE and
classifier have their bit widths (3 to 12 bits considered) included
in their netlists. They are designed simultaneously by switching
the currently-evolved population in each epoch. Populations
interact through the evaluation phase, where candidate solu-
tions of one population (e.g., the classifiers) are evaluated in
connection with the currently best candidate solution from the
other population (i.e., the FE). The best candidate solution from
the current population is used as the parent of the next gener-
ation of candidate solutions. The fitness of candidate solutions
is given as the classifier accuracy (AUC) of the composition
of the FE and classifier. We also implement the coevolution
of Adaptive Size Fitness Predictors [3] that accelerated the
evolution process further. The final combination of FE and
classifier is evaluated on separate test data.
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Fig. 1. Overview of the proposed methodology for the evolutionary design of
energy-efficient LID classifiers.

LID classifier comprises two central units being evolved, i.e.
the FE and classifier, and the rest of the model needed for
their interaction. First, the FE is applied separately to each
data source. Individual features are then aggregated to form an
approximate mean, using the bit shift to the right by two and
subsequent additions. Features are extracted every 0.01s, and
stored in up to 32 registers representing the sliding window
used by the classifier. The exact number of registers is given
by the oldest sample used by the classifier. The whole LID
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classifier generates L — 31 responses for recording L samples.
The generated response contains information about the detected
level of dyskinesia. Due to the possibility of different bit widths
of input data, FE, and classifier, logical shifts to the right are
used to achieve the required widths.

III. RESULTS

The CGP evolves both populations in the same way as
presented in [3], with a limit of 10,000 generations. As CGP is
a stochastic method, 1,100 independent runs were performed to
allow precise evaluation of the method. Data used for training
and evaluation (i.e. four LIDs, Sitting, and Walking data sets)
came from two separate clinical studies; they were used in the
same way as in [1]. The synthesis using Synopsys Design Com-
piler targeting 45 nm ASIC technology on 100 MHz frequency
was used to estimate the energy consumption.

Fig. 2 shows that introducing the variable bit width does
not prevent in achieving the maximum AUC. Further, the
Mann-Whitney U-test confirmed a non-significant difference,
for aw=0.05, between the proposed and former method for all
test groups (except LIDI and Sitting, where an improvement
is observed). The variable bit width requires deciding on the
initial value of either eight bits, as in the current state-of-the-
art solution, or a random value. Results show that the random
initialisation leads to higher AUC in all test groups except
LID1, where a significant difference in favour of the 8-bit
initial setting was registered. A significant difference in favour
of random initialisation was then registered in test groups
LID3 and Sitting. The variable bit width setting, encoded as
part of the chromosome, with a random initial value is thus
fully capable of producing results of comparable quality to the
previous solutions.
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Fig. 2. The AUC score obtained from 1100 CGP runs for various bit width
settings and data sets.

A. Resulting Classifiers

A Pareto front based on the accuracy (in terms of AUC)
and energy consumption obtained by the synthesis of evolved
solutions was created to allow the selection of the best LID
classifiers possible. The parameters of selected Pareto optimal
solutions are in Tab. I. Comparison with the results of Lones
et al. [1] and Hurta et al. [3] reveals that the proposed method
provides comparable or higher AUC across all test groups
except for test group LIDI1.

In the case of Lones et al. [1], energy consumption is not
reported. Nevertheless, their energy consumption is assumed

TABLE I
ENERGY AND AUC FOR VARIOUS TEST GROUPS OF SELECTED
PARETO-OPTIMAL SOLUTIONS

Methodology ~ FE/Clas. ~ Window  Energy AUC

bitwidths size [pJ] LIDI LID2 LID3 LID34 LID4 Sitting Walking
This 9/11 28 0.228  0.553  0.737 0.921 0.962  0.983 0.968 0.906
This 9/8 24 0.226  0.557 0.740 0916 0.958  0.979 0.959 0.901
This 8/11 26 0218 0550 0739 0913 0.956  0.978 0.957 0.905
This 9/12 26 0.192 0552 0741 0916 0.956  0.975 0.959 0.912
This 912 22 0.167 0555 0.746 0912 0.955  0.976 0.957 0.914
This 10/9 31 0.146 0552 0.747 0916 0953 0971 0.957 0.868
This 6/7 32 0.093 0527 0708 0.889 0.946  0.974 0.951 0.914
Lones [1] floats — — 0.56 0.69 0.85 — 093 0.92 0.73
Hurta [3] 8/8 32 0.859 055 0.73 0.89 — 096 0.95 0.82
Hurta [3] 8/8 32 0465  0.56 0.73 0.89 — 097 0.95 0.87
Hurta [3] 8/8 32 0.513 055 0.73 0.90 — 097 0.95 0.83

to be orders of magnitude higher due to the floating point data
representation, computationally expensive magnitude calcula-
tion and a set of building blocks containing expensive functions
such as multiplication. A comparison with the results of Hurta
et al. [3] (reimplemented in our fabrication technology) shows
a decrease in energy consumption, justifying thus the need to
employ proper hardware characteristics during the evolution.

IV. CONCLUSIONS

In this paper, we proposed a method for the automated design
of energy-efficient hardware accelerators for LID classifiers.
Several improvements over the state-of-the-art method were
proposed and experimentally evaluated. These improvements
include using reduced bit widths during the automated co-
design process, optimized circuits, and estimated energy con-
sumption when creating the Pareto front.

Solutions designed by the proposed method achieved an
increase of AUC across most test groups while having sig-
nificantly lower energy consumption than solutions presented
in the literature.

ACKNOWLEDGEMENTS

This work was supported by the Czech Science Foundation
Project 21-13001S and BUT Internal Grant Agency through
project FIT-S-23-8141. The computational resources were sup-
ported by the MSMT project e-INFRA CZ (ID:90140). We
also acknowledge Prof. Stephen Smith and Dr Michael Lones
for their advice; Dr Jane Alty, Dr Jeremy Cosgrove, and Dr
Stuart Jamison, for their contribution to the clinical study that
generated the data, and the UK National Institute for Health
Research (NIHR) for adopting the study within in its Clinical
Research Network Portfolio.

REFERENCES

[1] M. A. Lones, J. E. Alty et al., “A new evolutionary algorithm-based
home monitoring device for Parkinson’s dyskinesia,” J. Med. Syst., vol. 41,
no. 11, pp. 176:1-176:8, 2017.

[2] C. Ahlrichs and M. Lawo, “Parkinson’s disease motor symptoms in
machine learning: A review,” HIIJ, vol. 2, no. 4, pp. 1-18, 2013.

[3] M. Hurta, M. Drahosova, and V. Mrazek, “Evolutionary design of reduced
precision preprocessor for levodopa-induced dyskinesia classifier,” in Proc.
of the PPSN XVII, ser. LNCS, vol. 13398, 2022, pp. 491-504.

[4] H. Qin, R. Gong et al., “Binary neural networks: A survey,” Pattern
recognition, vol. 105, p. 107281, 2020.

[5] S. Mittal, “A survey of techniques for approximate computing,” ACM
computing surveys, vol. 48, no. 4, pp. 1-33, 2016.

[6] J. E. Miller, “Cartesian genetic programming,” in Cartesian genetic pro-
gramming. Springer, 2011, pp. 17-34.



	Select a link below
	Return to Previous View
	Return to Main Menu


