
Abstract—With the advancement of CMOS technologies, 

circuits have become more vulnerable to soft errors, such as 

single-node-upsets (SNUs) and double-node-upsets (DNUs). To 

effectively provide nonvolatility as well as tolerance against 

DNUs caused by radiation, this paper proposes a nonvolatile and 

DNU resilient latch that mainly comprises two magnetic tunnel 

junction (MTJ), two inverters and eight C-elements. Since two 

MTJs are used and all internal nodes are interlocked, the latch 

can provide nonvolatility and recovery from all possible DNUs. 

Simulation results demonstrate the nonvolatility, DNU recovery 

and high performance of the proposed latch. 

Index Terms—Radiation hardening, latch reliability, soft error, 

recovery, nonvolatility 

I. INTRODUCTION 

As the dimensions of CMOS transistors scale down, the 

critical charge and threshold voltage of CMOS transistors are 

sharply reduced. Radiation effects have become a severe 

reliability challenge for nano-scale CMOS circuits [1]. CMOS 

integrated circuits are becoming more and more vulnerable to 

soft errors. Instead, magnetic tunnel junction (MTJ) is 

intrinsically immune to radiation effects, and it is considered 

as a promising candidate for building next-generation 

nonvolatile memory due to its nonvolatility, high speed and 

compatibility with CMOS circuits [2-4]. However, the CMOS 

peripheral circuits remain vulnerable to particle strikes [5]. 

Moreover, in advanced nano-scale CMOS technologies, the 

impact of a particle striking can lead to the state changes of 

two nodes in a cell, which is called a DNU [6]. Therefore, the 

reliability of hybrid MTJ/CMOS circuits is a critical problem. 

In this paper, we propose a high-performance (low-delay) 

and DNU-recoverable spintronic retention latch. The 

nonvolatility achieved by MTJ guarantees zero standby power 

without losing data when the circuit is in the Power-OFF state. 

II. PROPOSED SOLUTION AND SIMULATION RESULTS 

Figure 1 shows the schematic of the proposed radiation 

hardened nonvolatile latch. It can be seen that the latch 

comprises two parts, namely DNU Recoverable Latch Part and 

Nonvolatile Shadow Part. When CLK = 1 and NCK = 0, the 

transmission gates are ON. Therefore, nodes N1, N2, N7 and 

Q are driven by D through the transmission gates. N3, N4, N5, 

N6, N8 and N9 can obtain values by inverters or C-elements 

(CEs). Meanwhile, the current flowing through the MTJs 

changes the relative direction of magnetization of the free 

layer and the fixed layer. Then, the values can be stored in the 

two MTJs. When CLK = 0 and NCK = 1, the transistors in 

transmission gates connected to D are OFF. Simultaneously, 

the clock-controlled transistors in the clock-gating (CG)-based 

CEs are ON. As a consequence, nodes N1, N2, N7 and Q are 

driven by the CEs and the CG-based CEs, respectively. At this 

moment, all interlocked feedback loops in the latch can be 

formed to retain values reliably. 
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Fig. 1. Proposed radiation hardened nonvolatile latch. 

When the power supply is reconnected, the circuit starts to 

restore values. When PRE = 0, N1, N2, N4, and N6 can be 

charged to VDD. At this time, the circuit does not form any 

feedback loop, so that the above four nodes cannot be affected 

by other nodes. When RES = 1, the fixed layer of MTJ1 and 

MTJ2 connects to the ground. The nodes connected to the 

MTJ with the P state are discharged faster than the nodes 

connected to the MTJ with the AP state because the AP state 

has a higher resistance than the P state. As a result, with the 

different states of the two MTJs, <N1, N2> and <N4, N6> 

have different logic states. Therefore, the other nodes 

successively obtain their correct values. 

Let us discuss the DNU self-recovery of the latch. Due to 

the symmetric structure of the latch, we only need to consider 

four possible cases, i.e., Case 1 to Case 4 in the following. 

Case 1: A DNU impacts two nodes, which are both the 

input of an inverter and one input of a CE.  

Case 2: A DNU impacts two nodes, one node being both 

the input of an inverter and one input of a CE and another 

node being the only input of CEs. There are two types. The 

first type is that the two nodes are both the inputs of a CE, e.g., 

CE1. The second type is that the two nodes are the inputs of 

different CEs, e.g., CE1 and CE3. 

Case 3: A DNU impacts two nodes that are only the inputs 

of CEs (one node is one input of a CE and another node is one 

input of another CE). 

Case 4: A DNU impacts two nodes that are the inputs of a 

CE except the node-pairs in Cases 1 through 3. 

The DNU resilience of the proposed radiation hardened 

nonvolatile latch was demonstrated by simulations. The 

simulations were performed by using an advanced 45 nm 

CMOS technology with the Synopsys HSPICE tool. The spin 

transfer torque magnetic tunnel junction (STT-MTJ) model 

proposed in [7] was used. The simulation results for the key 

DNU injections of cases 1-4 are shown in Fig. 2. It can be 

seen that, two SNUs with sufficient charge were injected to 
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the above-mentioned node pairs to simulate DNUs, 

respectively. It is clear that the influenced node-pairs can 

rapidly recover from DNUs. 
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Fig. 2. Simulation results for key DNU injections of the proposed latch. 

Note that, in all the above simulations, we used a double 

exponential current source model to simulate all the DNU 

injections [8]. The worst-case injected charge was up to 45fC. 

The time constants of the rise and fall of the current pulse 

were set to 0.1 ps and 3.0 ps, respectively. In summary, the 

above-mentioned simulation results demonstrate the 

self-recovery from DNUs of the proposed latch. 

III. COMPARISON AND EVALUATION 

In this section, the proposed latch is compared with the 

previous STT-MTJ based radiation hardened nonvolatile latch 

designs to further assess its reliability and overhead. For a fair 

comparison, the reviewed latches were also designed using the 

same conditions, i.e., the same working temperature, the same 

supply voltage, and the same CMOS technology. 

TABLE I 
RELIABILITY COMPARISON AMONG THE RADIATION HARDENED 

NONVOLATILE LATCH DESIGNS 

Latch 
SNU 

Tolerance 

DNU 

Tolerance 

DNU 

Resilience 

Backup 

Ability 

Restore 

Ability 

Design in [1] 

Design in [2] 

Design in [3] 
Design in [4] 

Design in [5] 

Design in [6] 

√ 

√ 

√ 

√ 

√ 

√ 

× 

× 

× 

× 

× 

√ 

× 

× 

× 

× 

× 

× 

√ 

√ 

√ 

√ 

× 

× 

√ 

√ 

√ 

√ 

√ 

√ 

Proposed √ √ √ √ √ 
*Note that, there is no existing STT-based nonvolatile latch that can provide DNU 

resilience and nonvolatile function simultaneously. 

The reliability comparisons among the radiation hardened 

nonvolatile latch designs are shown in Table I. We can see 

that none of the previous latches can provide DNU 

self-recovery, and some latches cannot provide backup 

capability. Regarding our proposed nonvolatile latch, it can 

provide backup ability and restore ability. Moreover, it can 

recover from DNUs. In summary, the proposed latch can 

provide better fault tolerance. 

TABLE II 

OVERHEAD COMPARISON AMONG THE RADIATION HARDENED NONVOLATILE 

LATCH DESIGNS 

Latch 
D-Q Delay 

(ps) 

10-4×CMOS 

Area (nm2) 

MTJ  

Counts  

Power 

(μW) 

Design in [1] 

Design in [2] 

Design in [3] 

Design in [4] 
Design in [5] 

Design in [6] 

54.37 

37.56 

6.72 

43.78 
51.84 

98.53 

10.13 

9.52 

4.34 

8.30 
6.89 

15.39 

2 

2 

2 

2 
4 

2 

19.26 

12.50 

11.84 

12.37 
16.13 

18.34 

Proposed 3.71 16.87 2 20.46 
*Note that, the first-ever DNU resilience with nonvolatile function for the proposed latch is 

at the cost of indispensable CMOS area and power. 

Table II shows the overhead comparison among the 

radiation hardened nonvolatile latch designs. It can be seen 

that the proposed latch has the smallest D to Q transmission 

delay. In order to provide complete self-recovery from DNUs 

to obtain better fault tolerance for the proposed latch, slightly 

more elements are used in the latch in comparison with the 

other latches. Hence, the proposed latch has larger area and 

higher power consumption. It can be seen that the area and 

power consumption of the proposed latch are close to the 

DNU tolerant latch proposed in [6]. However, the proposed 

latch has better fault tolerance and smaller delay. 

IV. CONCLUSIONS AND FURTHER WORK 

In this paper, we have proposed a high performance and 

DNU recovery nonvolatile latch. Compared to existing latches, 

the proposed latch provides better fault tolerance and has the 

smallest delay. Simulation results have demonstrated the DNU 

recovery and low delay of the proposed latch so that the latch 

can be applied to aerospace applications that require radiation 

hardening with high performance. In our further work, we will 

consider the single event transient issue as in [9]. 
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