
Novel Efficient Synonym Handling Mechanism for
Virtual-real Cache Hierarchy

Varun Venkitaraman∗ Ashok Sathyan∗ Shrihari P. Deshmukh∗ Virendra Singh∗
∗ Indian Institute of Technology Bombay

Abstract—Optimizing L1 caches for latency is critical to im-
proving the system’s performance. Generally, virtually indexed
physically tagged (VIPT) caches are preferred L1 cache con-
figuration because we can perform address translation and set
indexing parallely, resulting in reduced L1 cache access latency.
However, an address translation is essential for every L1 cache
access. Address translation significantly contribute to the system’s
total power consumption. To reduce power consumed due to
address translation, virtually indexed virtually tagged (VIVT)
caches appears to be an attractive alternative. However, VIVT
caches are plagued with the issue of synonyms. Prior works
introduce new hardware structures in the cache hierarchy to
detect and resolve synonyms. Rather than adding extra hardware
structure to the cache hierarchy, we propose a new cache hierarchy
design that modifies the last-level cache’s tag array to detect
and resolve synonyms. Our proposed scheme enhances system’s
performance by 22% on average and also reduces the dynamic
energy consumption of the cache hierarchy by as much as 89%.

Index Terms—Virtual caches, Energy-efficiency, Synonyms,
Cache memories

I. INTRODUCTION

Modern processors optimize L1 caches to enhance perfor-
mance indifferent to energy consumption. Consequently, the
local cache hierarchy significantly contributes to the processor’s
total core power consumption. Intel’s study [1] states that the
caches consume about 12% - 45% of the total core power.
Typically, designers choose VIPT L1 caches. However, in case
of VIPT L1 caches, a Translation lookaside buffer (TLB) access
is necessary for every L1 cache access. According to Intel [1],
the TLBs consume about 3% - 13% of the total core power.
Decreasing the number of TLB lookups will result in reduced
energy consumption due to TLB accesses. To accomplish this,
a viable approach would be to use VIVT L1 caches instead.
Regardless of the benefits, VIVT caches suffer from the issue
of synonyms which negatively impacts the performance. Prior
studies propose various techniques to resolve synonyms for
facilitating the implementation of VIVT L1 caches [2]–[4]. In
general, previous proposals use additional hardware structures
to detect and resolve synonyms. However, introducing addi-
tional hardware structures to handle synonyms will increase
the critical path length for L2 cache-sensitive applications
leading to system performance degradation. Furthermore, Yoon
et al. [3] demonstrated that for small cache sizes, typical
of L1 caches, the number of pages with active synonyms is
relatively low. Only a small number of L1 cache accesses
come from pages with active synonyms. Leveraging these
observations, we propose an energy-efficient speculation-free
synonym handler in this work that alleviates latency overheads
for synonym handling. Instead of adding new structures, we

CPU

VIVT L1 CACHE

TLB

CACHE-BLOCK 
INFORMATION TABLE (CBIT)

L2 Cache Data Array

Vx

hit

Vx (miss)

Physical page number 
of Vx and Vy

L2 hit

Synonym hit 
of Vx

Coherence 
Request

Virtual 
Address 

Generation

L1 Cache 
Access

Synonym 
Resolution

Lower 
Level 

Caches L2 Victim for eviction

L2 miss

Vy (Victim for eviction)

❶

❷

❸

❺

❹

❻

Fig. 1. Proposed Virtual-Real Cache Hierarchy

modify the existing L2 cache tag array by augmenting the
location information of all the cache blocks present in the cache
hierarchy to detect and resolve synonyms.

II. PROPOSED SCHEME

Fig. 1 depicts the proposed two-level cache hierarchy where
Vx and Vy are synonyms. The core accesses the VIVT L1
cache using virtual address (VA) Vx. On an L1 cache hit, the
core receives the data for VA Vx, without the need for address
translation (Fig. 1 1 ). When a cache miss occurs, it can either
be due to a synonym or genuine L1 cache miss. To identify
the type of cache miss, we propose a synonym handler, cache-
block information table (CBIT). Here, CBIT is the modified
L2 tag array which is used to detect and resolve synonyms.
On an L1 cache miss, the VA is translated to physical address
(PA) using the TLB (Fig. 1 2 ). CBIT is accessed using this
PA (Fig. 1 3 ). The CBIT, indexed using the PA, tracks all the
cache-blocks present in both the L1 and the L2 caches. If there
is a CBIT miss, then the memory access is not a synonym miss.
In the case of a CBIT hit, there are two possible scenarios.
First, if the CBIT entry points to the L1 cache, then the L1
cache miss is due to synonym access (Fig. 1 4 ). The core reads
the data from the L1 cache by using the location information
given by CBIT. There is no need for tag comparisons for
L1 synonym re-access (Fig. 1 4 ). Second, if the CBIT entry
points to the L2 cache, then it is a genuine L1 cache miss
(Fig. 1 5 ). Here, the core reads the required data from the L2
cache data array by using the location information given by
CBIT. In case of a CBIT miss, the demanded cache-block is
not present in the cache hierarchy (Fig. 1 6 ) and is brought
from the main memory. To compact CBIT design, we analyzed
the redundancy present in the L2 cache tags. For SPEC 2006
CPU benchmark suite, we observe that the maximum number

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA 

	



TABLE I
BASELINE SYSTEM CONFIGURATION

Core
Single core, ROB = 192 entry, LQ = 32 entry,

SQ = 32 entry, Fetch width = 4,
Frequency = 3 GHz.

Caches
2 level hierarchy, Inclusive at all levels, Writeback,

LRU replacement policy, 64B cache block size,
Separate L1 instruction and data caches.

L1 - I/D Cache
VIPT type

Size = 32 KB, Associativity = 8,
Tag access latency = 1 cycle,

Data access latency = 4 cycles.

L2 Cache (LLC)
PIPT type

Size = 2 MB, Associativity = 16,
Tag access latency = 7 cycles,

Data access latency = 14 cycles.
RAM

(main memory)
DDR3, Access latency = 45 ns,

Queue delay modeled.

Fig. 2. System Performance & Dynamic Energy Analysis

of different tags present in L2 cache tag array range from 100
to 3700. Using this observation we infer that most of the cache
blocks accessed during the execution phase are from very few
pages. We leverage the observed redundancy in the L2 cache
tags for compacting the number of entries in CBIT. We compact
the CBIT size by tracking multiple consecutive cache-blocks of
a page. Assuming that the L2 cache data array has m sets, the
CBIT that tracks n consecutive cache-blocks of a page will
contain m/n sets. Fig. 1 shows the overview of the proposed
cache hierarchy where the CBIT tracks four consecutive cache-
blocks of a page. The CBIT efficiently handles synonyms
by reducing three main components: (1) the dynamic energy
consumption due to tag comparisons of synonym re-access, (2)
the latency of the L1 synonym re-access, and (3) the L2 access
latency by directly providing the exact way number in L1
and L2 caches respectively. Though compacting CBIT provides
latency and energy benefits, it has some side effects. Since the
CBIT tracks multiple consecutive cache-blocks of a page using
a single entry, a CBIT replacement can lead to multiple cache-
block evictions in both the L1 and the L2 caches. Thus, we
require a CBIT replacement policy to minimize the proposed
scheme’s impact on cache occupancy of both the L1 and the
L2 caches.

III. EVALUATION

The latency and energy of different set-associative caches
was modeled using Cacti 6.5 in 32nm technology node [5]–[7].
Table I shows the baseline configuration used for evaluating
our proposed scheme. We use CPU SPEC2006 benchmark
applications for evaluating the proposed architectural modifi-
cations [8]. We evaluate our proposed scheme using Gem5 x86
simulator [9] in full system emulation mode. The performance
impact of the applications was studied by running the simula-
tions from the checkpoints taken at twenty billion instructions.
The applications were run for one billion instructions from

TABLE II
AREA OF DIFFERENT CBIT CONFIGURATIONS

Configuration Area (mm2) Configuration Area (mm2)
16-way 2-track CBIT 0.402 32-way 2-track CBIT 0.903
16-way 4-track CBIT 0.267 32-way 4-track CBIT 0.530
16-way 8-track CBIT 0.213 32-way 8-track CBIT 0.749

the checkpoint for warm-up, and after that, we considered
the performance over the next one billion instructions for
evaluation.

Fig. 2 shows that the 32-way-2-track CBIT configuration
provides maximum performance benefits of 22% on an av-
erage across all CPU SPEC2006 benchmark workloads even
while tracking two contiguous cache blocks in a page with
a single CBIT entry. Due to space constraints, we provide
nine applications from the benchmark suite that spans a wide
range of behavior. The dynamic energy consumption of the
cache hierarchy is shown in Fig. 2. We save around 89% cache
hierarchy’s dynamic energy by adopting our proposed scheme.
The dynamic energy consumption of the cache hierarchy is
comparatively higher for CBIT configuration with a large
number of cache blocks tracked. The area of L2 data array
is 5.54mm2, and that of the L2 tag array (for baseline) is
0.57mm2. In the proposed scheme, the L2 data array remains
the same as that in the baseline, and the CBIT replaces the
L2 tag array. Table II lists the area of CBIT for various con-
figurations. For the state-of-the-art comparison, we model VC-
DSR [3]. We also observed that the proposed technique with
32-way-4-track CBIT configuration offers performance boost of
21% over VC-DSR on an average over all the applications in
the benchmark suite.

IV. CONCLUSION

The paper proposes an efficient synonym handler, CBIT, to
facilitate VIVT L1 caches implementation, which is purely
a hardware solution. The CBIT leverages the redundancy in
tags present in the cache hierarchy. It detects and resolves all
the active synonyms. We have achieved up to 89% reduction
in the cache hierarchy’s dynamic energy consumption with a
performance boost of 22% on average.

REFERENCES

[1] A. Sembrant, E. Hagersten, and D. Black-Shaffer, “Tlc: A tag-less cache
for reducing dynamic first level cache energy,” in MICRO, 2013.

[2] J. R. Goodman, “Coherency for multiprocessor virtual address caches,” in
ACM SIGARCH Computer Architecture News, 1987.

[3] H. Yoon and G. S. Sohi, “Revisiting virtual l1 caches: A practical design
using dynamic synonym remapping,” in HPCA, 2016.

[4] X. Qiu and M. Dubois, “The synonym lookaside buffer: A solution to the
synonym problem in virtual caches,” IEEE Transactions on Computers,
2008.

[5] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P.
Jouppi, “Mcpat: an integrated power, area, and timing modeling framework
for multicore and manycore architectures,” in MICRO, 2009.

[6] S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P. Jouppi, “Cacti-
p: Architecture-level modeling for sram-based structures with advanced
leakage reduction techniques,” in ICCD, 2011.

[7] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Cacti 6.0: A
tool to model large caches,” HP laboratories, 2009.

[8] J. L. Henning, “Spec cpu2006 benchmark descriptions,” ACM, vol. 34,
no. 4, pp. 1–17, 2006.

[9] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” 2011.

!

!


	Select a link below
	Return to Previous View
	Return to Main Menu


