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Abstract—We propose to leverage state-of-the-art symbolic exe-
cution techniques from the Software (SW) domain for processor
verification at the Register-Transfer Level (RTL). In particular, we
utilize an Instruction Set Simulator (ISS) as a reference model and
integrate it with the RTL processor under test in a co-simulation
setting. We then leverage the symbolic execution engine KLEE
to perform a symbolic exploration that searches for functional
mismatches between the ISS and RTL processor. To ensure a
comprehensive verification process, symbolic values are used to
represent the instructions and also to initialize the register values
of the ISS and processor. As a case study, we present results
on the verification of the open source RISC-V based MicroRV32
processor, using the ISS of the open source RISC-V VP as a
reference model. Our results demonstrate that modern symbolic
execution techniques are applicable to a full scale processor co-
simulation in the embedded domain and are very effective in
finding bugs in the RTL core.

I. INTRODUCTION

Verification of the processor at the Register-Transfer Level (RTL) is
crucial since the processor is a key component in every embedded
system. Due to its ease of use and scalability, simulation-based
methods still form the primary backbone of the verification effort.
Moreover, modern design flows for embedded systems rely on
Virtual Prototypes (VPs) as a reference model for the Hardware
(HW) development stage. Regarding the processor, the relevant
component of the VP is the Instruction Set Simulator (ISS), which
is an abstract model of the processor and thus fetches, decodes
and executes one instruction after another. To generate processor-
level input stimuli several test generation techniques have been
proposed that improve upon the classical randomized instruction
stream generation. A notable direction is the model-based approach
that relies on a constraint-based specification to guide the test gen-
eration process [1]–[3]. Further optimizations have been proposed
by propagating constraints among multiple instructions in a more
effective way [4]. However, model-based approaches require sig-
nificant effort to provide a respective input format specification. A
recent trend, that tries to mitigate this issue, is to leverage automated
verification techniques from the SW domain and apply them in
the HW domain. A particular effective technique in this regard is
fuzzing [5], [6]. Modern coverage-guided fuzzer work by mutating
randomly created data and are guided by coverage, hence they do
not require an input model specification [7], [8]. Fuzzing has been
shown very effective for processor-level stimuli generation [9] and
by using an ISS as reference model for the RTL processor under
test, an effective fuzzing-based processor verification methodology
is obtained [10]. However, while being very effective, even a state-

of-the-art fuzzing-based approach is still suceptible to miss corner
case bugs as it is an inherently incomplete testing approach.
Looking again for inspiration in the SW domain, the working
solution to address the issue of finding corner-case bugs efficiently
is by using the symbolic execution technique. In contrast to fuzzing,
it is a formal verification technique that allows to execute a pro-
gram using symbolic expression, that efficiently represents sets of
concrete values, and thus enables to explore large state spaces more
efficiently and comprehensively [11]. State-of-the-art symbolic ex-
ecution engines, such as KLEE, have been very effective in finding
numerous intricate bugs in SW programs [12]–[14]. Following the
success story from the SW domain, first reaserch approaches start to
leverage symbolic execution in the HW domain. However, the focus
is mainly on test-case generation techniques to boost the obtained
coverage for general RTL designs [15]–[17]. An effective processor
verification methodology using symbolic execution is to the best of
our knowledge not yet available.
In this paper, we thus propose to leverage state-of-the-art symbolic
execution techniques for processor verification at the RTL and de-
scribe an effective open source tool flow that takes the requirements
of a modern system design flow into account. In particular, we
utilize an ISS, which is readily available as a C++ description in
a modern VP-based design flow, and integrate it with the RTL pro-
cessor under test in a co-simulation setting using a testbench. The
testbench is designed to provide the same instructions to the ISS
and processor, and compare the register values after execution. To
ensure a comprehensive verification process, symbolic values are
used to represent the instructions and also to initialize the register
values of the ISS and the processor. Following a standard RTL
design flow, we assume that the processor description is available
in Verilog, which is then translated into a C++ description using the
open source verilator tool. As such the RTL processor can be inte-
grated with the C++ ISS in a combined C++ co-simulation. We then
leverage the open source C++ symbolic execution engine KLEE
to perform a symbolic exploration according to the co-simulation
setting. We designed dedicated symbolic execution interfaces in
our testbench to enable such an integration and as such we can
benefit from the vast symbolic execution optimizations that KLEE
provides. As a case study, we present results on the verification
of the open source RISC-V based MicroRV32 processor1. We use
the ISS from the open source RISC-V VP2 as functional reference
model for the MicroRV32 processor. Our results demonstrate that
modern symbolic execution techniques are applicable to a full scale

1Available at GitHub https://github.com/agra-uni-bremen/microrv32.
2Available at GitHub https://github.com/agra-uni-bremen/riscv-vp.
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processor co-simulation in the embedded domain and are very
effective in finding bugs in the RTL core.

II. RELATED WORK

As mentioned in the introduction, symbolic execution techniques,
which have been very effective in the SW domain, are increasingly
leveraged to tackle problems in the HW domain. One important
research direction is to automatically generate test cases that im-
prove the coverage of the HW under test. [18] present an approach
based on static analysis in combination with symbolic execution
techniques applied on execution traces of the RTL design to sys-
tematically drive up the branch coverage. [15] propose applying
symbolic execution tools from the SW domain to generate test
vectors for RTL designs and evaluate their approach using a floating
point unit. [16] present a control flow graph assisted approach
that enables to guide the symbolic execution engine in uncov-
ering specific remaining coverage targets. [17] describe further
optimizations to boost scalability by avoiding overlapping searches
involving multiple coverage targets. Beside test vector generation
to improve the coverage, another research direction that employs
symbolic execution techniques at the RTL is the security evaluation
of the design. [19] present a method for exploits generation by
using a backward symbolic execution approach based on a set of
security-critical invariants. [20] describe an approach that works
by adding security-critical assertions into the RTL design and then
show that leveraging symbolic execution is effective in detecting
assertion violations. However, an effective processor verification
methodology using symbolic execution at the RTL in combination
with a VP-based reference model, as proposed in our paper, is to
the best of our knowledge not yet available.
Classic formal verification approaches targeting RTL designs rely
on HW model checking techniques that verify the design against
a set of properties specified in temporal logic, e.g. [21]–[23]. The
most notable approach for formal RISC-V processor verification
is RISCV-formal. It is a framework for formal verification based
on Bounded Model Checking (BMC) [24]. For the verification,
RISC-V-formal needs complex formal models as a reference, and
our approach only requires a C++ description already used in
Virtual Prototypes. Virtual Prototypes can be used for the rapid
development of new functionality and debugging. Furthermore,
RISCV-formal is incapable to find implementation mismatches
between an ISS and a RTL processor implementation. These mis-
matches complicate debugging and can lead to subtle HW/SW
interaction errors that may lead to security vulnerabilities. And
last but not least, RISCV-formal does not support Control and
Status Registers (CSRs). Consequently, our symbolic execution
based approach, is complementary to classical formal verification
approaches.

III. BACKGROUND ON RISC-V
RISC-V is an open and royalty-free Instruction Set Architecture
(ISA). It has a modular design and is popular in industry and
academia. The RISC-V specification is administered by the non-
profit RISC-V International association, which was founded in
2015 [25]. The RISC-V specification is divided into two volumes.
The first part is the unprivileged specification [26]. The heart of
RISC-V is the instruction set I that is available in 32bit, 64bit, and
128bit versions. RISC-V has additional instruction set extensions
like Multiply/divide (M) or Compressed instruction (C). The second
volume is called the privileged architecture [27]. It contains all
components needed for the hardware-software interactions like
Control and Status Registers (CSRs) for hardware identification,
trap handling, and performance measurement.

IV. PROCESSOR VERIFICATION USING SYMBOLIC
EXECUTION

In this section, we present our proposed processor verification
approach, which is based on co-simulation and symbolic execution.
We start with a general overview and then describe the relevant parts
in more detail.

A. Overview
Fig. 1 shows an overview on our approach. The complete flow
starts with a SpinalHDL processor description and a C++ ISS
description (left side of Fig. 1). SpinalHDL is an open-source high-
level hardware description language that is based on Scala. It aims
to give the hardware designers a tool to design a new abstraction
level to create reusable code [28]. Popular open source processor
implementations that are based on SpinalHDL are VexRiscV [29]
and MicroRV32 [30]. Next, the SpinalHDL processor description
is configured based on the configuration description and translated
using the Scala Build Tool (SBT) into an RTL core. Likewise,
the C++ ISS description is configured into a C++ ISS. Because
the RTL core and the C++ ISS are configured based on the same
processor configuration description, the RTL core and the C++
should behave in the same way at the functional level. Next,
the RTL core is transcompiled (verilated) into a cycle-accurate
C++ equivalent using the open source tool named verilator [31].
The transcompiled RTL core (C++) and ISS (C++) are combined
with the co-simulation main and compiled into bytecode using the
LLVM toolchain to create the processor co-simulation (right side
of Fig. 1). The co-simulation contains the processor and ISS bind-
ings, symbolic execution interface, instruction stream, symbolic
memory & registers, and a voter that compares the functionality of
the ISS and the RTL core. The symbolic processor co-simulation is
executed on the C++ symbolic execution engine KLEE to generate
test vectors in order to find bugs and create a high coverage test set.
The essential components of the co-simulation are described in the
following subsection in detail.

B. Symbolic Co-Simulation
In the following, we describe the essential parts of the co-
simulation. The co-simulation main loop consists of the following
parts: the initialization of the symbolic memory and sliced symbolic
registers, the handling of the Data Bus (DBus) and Instruction Bus
(IBus) of the RTL Core and the connection to the symbolic memory,
the monitoring of the RTL core execution behavior, including
the determination of the complete initialization, execution of ISS
steps and comparison of the execution results (Voter), and the en-
forcement of runtime limitations (Execution Controller). Next, we
describe the symbolic execution interface, the symbolic memory,
and the sliced symbolic registers. Last but not least, we describe the
voter and execution controller.

C. Symbolic Memory & Registers
In the following, we describe our symbolic memory and registers.
The IBus and DBus are separated in many processor implemen-
tations to avoid performance bottlenecks. Therefore the symbolic
memory consists of the symbolic instruction and the symbolic
data memory. The symbolic execution interface is used to con-
nect the symbolic memory and the symbolic execution engine.
The symbolic interface in our approach contains the functions
klee make symbolic and klee assume of the symbolic execution
engine KLEE. The function klee make symbolic is used to mark
a variable as symbolic. The function arguments are the variable
address, the variable size in bytes, and a freely choosable name
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Fig. 1. Overview on our proposed processor verification using a symbolic co-simulation

for the variable [32]. The function klee assume(condition) is used
to constrain the symbolic variables and adds the condition to
the current path constraints [33]. Next, we describe the symbolic
instruction memory, the symbolic data memory and last but not least
the sliced symbolic registers.

1) Symbolic Instruction Memory: The symbolic instruction
memory is the memory that provides the instructions for the co-
simulation. The instruction memory is read-only and shared be-
tween the RTL core and the ISS. It is connected via the IBus to the
RTL core and is directly connected to the ISS. If the RTL core wants
to fetch an instruction at a specific memory address, it sets the signal
IMem address and enables the signal IMem fetchEnable. The co-
simulation main redirects the request to the symbolic instruction
memory. The symbolic instruction memory checks if the instruction
at this specific address was already generated and cached. This be-
havior guarantees that the RTL and ISS are always supplied with the
same instructions to prevent false mismatches. A new instruction
is generated using the symbolic execution engine if the instruction
was not already generated. Therefore, the new instruction variable
is marked as symbolic using the function klee make symbolic.
Depending on the test scenario, klee assume is used to constrain
the instruction generation. Next, the co-simulation main writes the
generated instruction into the signal IMem instruction and enables
IMem instructionReady. The symbolic co-simulation main loop
must disable the signal IMem instructionReady i.e., after one clock
cycle, to comply with the bus protocol. Next, we describe the
symbolic data memory.

2) Symbolic Data Memory: The symbolic data memory is the
memory that provides the data for the cross-processor verification.
The data memory can be read and written and is separated for the
RTL core and the ISS. It is connected via the DBus to the RTL
core and directly to the ISS. The memory sizes of both are the same
and they are initialized with the same symbolic values in order to
prevent false mismatches. The data memory interface of the ISS has
dedicated functions to load byte, ubyte, half, uhalf and word, and to
store byte, half and word. For example, the ISS load byte function
has the goal to load a signed byte at the address of the symbolic
memory. It loads a signed 8bit value and sign extends it into a signed
32bit value. The signed extension for the RTL core is handled by
the RTL core itself. The DBus interface is based on a strobe logic
that is a known logic and used e.g: by AXI that is a ARM Bus
standard [34] or by the open Wishbown bus standard [35]. Another

example is the native bus interface of the RISC-V processor named
PicoRV32 [36]. If the RTL core wants to load data at a memory
address, the core enables the signal DMem enable and writes the
requested address into the signal DMem address. Additionally, the
core sets the signal DMem wrStrobe. The strobe value identifies
which of the 32-bytes at the address should be accessed. Valid
strobe values are 0001, 0010, 0100 and 1000 to access a byte, 0011
and 1100 to access a half word and 1111 to access a full word.
The symbolic co-simulation main loop redirects the request to the
strobe based interface of the symbolic data memory. The strobe
based interface has a load and a store function. As arguments, this
two functions have a combination of memory address and strobe.
In opposite to the ISS binding, the strobe based interface does not
handle the signed/unsigned convertation. Next, the main loop writes
the data into the signal DMem readData and enables the signal
DMem dataReady. Again, the symbolic co-simulation main loop
must disable the signal DMem dataReady i.e., after one clock cycle
to comply with the bus protocol. In the following, we describe the
sliced symbolic registers.

3) Sliced Symbolic Registers: For processor verification, every
instruction should be tested with arbitrary values to cover all pro-
cessor instruction functionalities. Because RISC-V is a load/store
architecture, most instructions receive their values exclusively from
the registers. Only the load and store instructions can access the
memory. Thus, it would be sufficient to fill only the memory with
symbolic values because symbolic values can be loaded from the
symbolic memory into the registers, and from there, these symbolic
values can be propagated further. However, this would have the
disadvantage that the length of the instruction trace would have
to be at least two to test all instruction functionalities. A minimal
instruction trace length of two would unnecessarily increase the
state space of the verification problem. To solve this problem, we fill
the registers with symbolic values. However, simply filling the bank
register would also unnecessarily increase the verification problem
because the register bank in RISC-V contains 32 32bit values. In
order to keep the verification state space as small as possible, we
slice the registers into three parts. The first slice of RISC-V contains
the register x0. According to the specification, the x0 register is
hardwired to zero. Thus this register cannot be symbolic in order
to keep the verification approach sound. The next slice consists of
the symbolic registers. These registers are initialized with arbitrary
values to verify every case of the processor instructions. After
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the initialization, the register can be read and written like regular
registers. This part should be sufficiently large but not larger than
needed to keep the state space small. In the last slice are the regular
registers, which can be written and read normally. For a processor
that implements RV32I, it is perfectly adequate to have only two
symbolic registers and fill the rest of the symbolic register bank
with regular registers because no RV32I instruction has more than
two source registers. Next, we describe the voter and the execution
controller of our symbolic co-simulation.

D. Voter & Execution Controller
The voter is based on the RISC-V Formal Interface (RVFI) [37].
RFVI is part of the riscv-formal [24] framework for formal verifi-
cation of RISC-V processors, which allows to observe the execution
state of the processor at runtime. After the RTL core has executed
an instruction, the rvfi valid signal is enabled. The other signals
deliver the execution results as long as this signal is enabled. The
results contain values like the actual and old PC and the value of the
target register of the executed instruction. Next, the ISS follows up
and executes the current instruction. After the execution, the voter
compares the execution results of the RTL core and the ISS. If there
was an execution mismatch, the voter throws an exception and quits
the simulation. If no mismatches were found, the simulation would
be terminated after the instruction limit or clock cycle limit was
reached. After the simulation, the model will be cleaned up, and the
memory is freed. In the following, we describe the evaluation of our
processor verification approach.

V. EVALUATION

This section presents our case study and discusses the evaluation
results. Our case study aims to evaluate the applicability of sym-
bolic execution in combination with a co-simulation for cross-level
processor verification. The co-simulation for our case-study uses
the MicroRV32 processor [30] as Device Under Test (DUT) and
the ISS from the open-source RISC-V VP [38] as reference imple-
mentation. As instruction set we consider the RV32I+CSR ISA that
is supported by MicroRV32. The MicroRV32 processor already has
been extensively tested using constrained random techniques [39]
and was also verified using the RISC-V formal [24] tool, which
applies a Bounded Model Checking (BMC) approach.
Our case study is structured into two parts. In the first part we report
the results we obtained on verifying the MicroRV32 core. In the
second part of our case study, we aim to evaluate the symbolic ver-
ification performance using a representative set of injected RV32I
errors. All experiments of the two parts are conducted on a Linux
server with an Intel Xeon Gold 6240 CPU. Next, we will start with
the first part of our evaluation.

A. Case Study: Symbolic Verification of MicroRV32
In this section we present the first part of our case study that aims
to verify MicroRV32I using the instruction subset RV32I+CSR.
In particular we report and discuss all the mismatches and errors
that we have found by continously applying our co-simulation
based approach. In this process we observed that mismatches
and errors can often be detected rather quickly (we will provide
further information on runtime results in the next section) but
a more comprehensive exploration can take significantly longer
runtime. An exemplary execution in this regard had a runtime of
586905 seconds, executed 101434788 instructions, explored 848
paths completely and 408 paths partially, and generated a total
of 1256 test cases. Please note that the need for sliced symbolic
registers is evidenced by the fact that a non-optimized symbolic

TABLE I
CO-SIMULATION RESULTS (R), SHOWS THE ERRORS (E) AND MISMATCHES

(M) IN MICRORV32 AND THE VP (E*)
Instruction & CSR Example Description R

LW LW x0, x0, 0x1 Missing alignment check M
LH LH x0, x0, 0x1 Missing alignment check M
LHU LHU x0, x0, 0x1 Missing alignment check M
SW SW x0, x0, 0x1 Missing alignment check M
SH SH x0, x0, 0x1 Missing alignment check M
SHU SHU x0, x0, 0x1 Missing alignment check M
WFI WFI Missing WFI instruction E
unimpl. CSRs csrrwi x0, 0, 0x400 Missing trap at access E
marchid csrrci x1, 1, marchid Missing trap at write E
mvendorid csrrw x0, x0, mvendorid Missing trap at write E
mhartid csrrs x1, x1, mhartid Missing trap at write E
mideleg csrrw x1, x0, mideleg VP traps at mideleg read E*
medeleg csrrwi x1, 0, medeleg VP traps at medeleg read E*
mip csrrw x0, x0, mip Trap at write access E
mcycle csrrw x0, x0, mcycle Trap at write access E
mcycle csrrw x1, x0, mcycle Cycle Count Mismatch M
minstret csrrw x2, x0, minstreth Trap at write access E
minstret csrrw x1, x0, minstret Cycle Count Mismatch M
mcycleh csrrw x0, x0, mcycleh Trap at write access E
minstreth csrrw x0, x0, minstreth Trap at write access E
cycle csrrsi x1, 0 unimpl. Unprivileged CSR M
cycleh csrrsi x2, 0 unimpl. Unprivileged CSR M
instret csrrsi x0, 0, instret unimpl. Unprivileged CSR M
instreth csrrsi x0, 0, instreth unimpl. Unprivileged CSR M
time csrrsi x2, 0, time unimpl. Unprivileged CSR M
timeh csrrsi x2, 0, timeh unimpl. Unprivileged CSR M
mhpmcounter3-31 csrrw x0, x0, mhpmcounter16 unimpl. Privileged CSR M
mhpmcounter3-31h csrrw x2, x0, mhpmcounter3h unimpl. Privileged CSR M
mhpmevent3-31 csrrw x3, x2, mhpmevent16 unimpl. Privileged CSR M
mscratch csrrw x1, x2, mscratch unimpl. Privileged CSR M
mcounteren csrrwi x1, 0, mcounteren unimpl. Privileged CSR M

execution requires more than 30 days of runtime. The results of
our experiment, in finding errors and mismatches, are listed in
Table I. The first column of the table states the instruction or the
Control and Status Register (CSR) that is responsible for the error
or mismatch (column: Instruction & CSR). The second column
shows an example instruction that triggers the error or mismatch
(column: Example). The next column contains a short description
of the found error or mismatch (column: Description). Finally, the
last column (column: R) classifies the result as being an error in
the RTL core (E), an error in the ISS (E*), or an implementation
mismatch between RTL core and ISS (M) due to multiple possible
valid implementations according to the RISC-V ISA. All the results
are reported to and have been directly confirmed by the author
of MicroRV32. In the following, we describe the listed errors and
mismatches in more detail. The RV32I load and store Instructions
LW, LH, LHU, SW, SH, and SHU are used to load and store data
from and to the memory. The processor has multiple permissible
handling options, according to the RISC-V ISA, if the memory
address is misaligned. For example, a core can raise a trap or fully
support misaligned loads and stores. The implementations of the
ISS and the RTL core have a mismatch in handling this behavior.
The RTL core fully supports misaligned loads and stores, and the
ISS checks for misaligned addresses and raises traps. The Wait for
Interrupt instruction (WFI) is defined in the RISC-V privileged ar-
chitecture and is available in all privileged modes. This instruction
aims to hint to the implementation that the current core can stop
execution until an interrupt arrives. As the specification states, it
is also legal to implement the instruction as a NOP. The RTL core
implementation contains the error that the WFI is not implemented
at all, and an attempted execution erroneously raises a trap. If a CSR
instruction wants to access non-existent CSRs, the implementation
must raise an illegal instruction exception. The RTL core is not
compliant to the specification, because it does not raise an exception
in this case. Each core has the following read-only ID registers:
Machine Architecture ID Register (marchid), Machine Vendor ID
Register (mvendorid), and Hart ID Register (mhartid). According
to the specification, an illegal instruction exception must be raised
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if a write attempt to a read-only CSR occurs. The RTL core does
not raise these mandatory illegal instruction exceptions. All traps at
any privilege level are default handled in machine mode. In order
to increase performance, the core implementations can provide
individual bits in the read-write CSRs medeleg (exceptions) and
mideleg (interrupts) to delegate the handling to a lower privilege
level. The ISS implementation is erroneous because it raises a
trap at every read attempt of medeleg and mideleg. The Machine
Interrupt Register mip and the Machine Counters: mcycle, minstret,
mcycleh, minstreth have one thing in common: they can be written.
The RTL core has the error that it raises a trap at every write access
to the previously described CSRs. In order to enable performance
monitoring, the RISC-V machine mode provides machine cycle
counters. Examples of these CSRs are the mcycle CSR that counts
the number of executed clock cycles, and the minstret CSR that
counts the number of retired instructions. The ISS and the RTL core
both implement these CSRs but have a deviating counting logic.
This deviating logic is no error but only a mismatch because the
detailed behavior is not specified (mismatches in the cycle count
are actually expected due to the abstract, non-cycle accurate, timing
model in the ISS). Other mismatches are the results of the fact, that
the ISS implements much more performance counters than the RTL
core. The ISS additionally implements the unprivileged counter: cy-
cle, cycleh, instret, instreth, time, timeh, and the Machine Counter
mhpmcounter3-31, mhpmcounter3-31h. Furthermore, the RTL core
does not implement the Machine Counter Setup CSR mhpmevent3-
31, Machine Scratch CSR mscratch, and the Machine Counter-
Enable Register mcounteren. Due to the large degree of different
valid implementation choices that the RISC-V ISA offers, it is im-
portant to have effective methods available that detect mismatches
in order to support the designer in providing an exactly matching
configuration of ISS and RTL core. In the following, we describe
the second part of our evaluation.

B. Performance Evaluation with Injected Errors

In order to evaluate the performance of our verification approach we
use a error-injection methodology. In particular, we have defined
a set of 10 error (E0 to E9) that cover a broad range of different
functionality in the RTL core and represent common errors that may
occur during the implementation.
E0: The first injected error is a fault in the decoding behavior of
the logical left shift RV32I instruction SLLI. The highest bits of the
instruction encoding are 7-bits with the value 0. SLLIW is a RV64I
instruction that has the same encoding as the RV32I instruction
RV32I. The RV64I specification also contains a reserved instruction
that has nearly the same encoding with only the difference, that
the 7th highest bit has the value 1. As E0 we injected a don’t care
bit in the decoding table of the instruction SLLI at the 7th highest
bit. Thus, the processor decodes the reserved RV64I erroneously to
SLLI.
E1: Similar to E0, we marked the same encoding bit as don’t care
in the logical right shift instruction RV32I SRLI.
E2: Also in the logical right shift instruction RV32I SRLI, we
marked the same bit as don’t care.
E3: The next injected error is a STUCK-at-0 fault at the lowest
result bit in the arithmetic add immediate instruction ADDI.
E4: In the subtraction instruction SUB we injected a STUCK-at-0
fault at the highest result bit.
E5: The next fault is injected into the unconditional jump instruc-
tion Jump And Link (JAL). The injected error F5 prevents that JAL
does change the PC.

E6: RV32I provides multiple conditional branch operations. The
injected error E6 changes the behavior of Branch Not Equal (BNE)
into the behavior of Branch Equal (BEQ).
E7: The next fault flips the endianness of the Load Byte Unsigned
(LBU) memory access instruction.
E8: The injected error F8 removes the sign extension from 8-bits to
32-bits in the memory instruction Load Byte (LB).
E9: The memory instruction Load Word (LW) loads a 32-bit value.
With Fault E9, the LW instruction only loads the lower 16-bits from
memory.
In our experiments, we use a runtime limit of 24 hours. The
processor co-simulation is configured to support RV32I. In this
experiments, we only used assumptions that block the generation
of CSR instructions (which are not a part of RV32I) to filter the
known implementation mismatches that were found in the first part
of the case study.
Table II shows the results of our experiments in finding E0 to E9.
The table allows the comparison between the symbolic execution
runs for the respective injected errors and also allows the compari-
son of the respective runs with the instruction limit of one and the
respective runs with the instruction limit of two. The first column of
the table states the injected errors. The next five columns contain the
results with an instruction limit of 1. The column result describes
whether the injected error was found. The next column with the
name executed instruction contains the counter of the executed
instructions until the error was found. The column time contains
the time in seconds until the error was found. The column with
the name partial paths contains the number of partially completed
explored symbolic execution paths by KLEE. This number contains
the paths that KLEE could not complete. This can be the case
because time or memory constraints were reached, or an assertion
was triggered inside the voter that quit the test generation. The
paths column contains the number of complete explored symbolic
execution paths by KLEE. The following five columns contain
the results for the same experiment but with an instruction limit
of 2. It is striking that our symbolic cross-processor verification
approach can find all injected errors very quickly, independent of
the configuration. Please note, all times are given in seconds (s).
The first configuration with the instruction limit of 1, executed
between 2239208 and 12367140 instructions and needed between
54s and 3237s until it found the injected error. In median, 4237517
instructions were executed within a period of 543s and in total,
this configuration executed 53283172 instructions within 9685s.
The second configuration with the instruction limit of 2, executed
between 2182018 and 33959660 instructions and needed between
65s and 21994s until it found the injected error. In median, 4560215
instruction were executed within a period of 790s and in total, this
configuration executed 88712782 instructions within 37201s. As
can be easily seen, the first configuration (instruction limit 1) was
faster than the second configuration (instruction limit 2). Although
both configurations found the errors very efficiently, it is likely
that the instruction limit should be set as low as possible and only
increased incrementally for processor verification.
In summary, we demonstrated that symbolic cross-level processor
verification is an efficient approach for bug hunting. During the
development process we have been able to find 10 errors in the
well-tested RTL-core MicroRV32, 2 errors in the ISS, as well as
19 implementation mismatches between the RTL core and the ISS
(as discussed in the first case study part in Section V-A). Our error-
injection based performance evaluation in this section confirms the
strong bug hunting capabilities of our approach.

!

!



TABLE II
INJECTED ERROR RESULTS

Instruction Limit: 1 Instruction Limit: 2
Error Result # Exec. Instr. Time [s] Partial Paths Paths Result # Exec. Instr. Time [s] Partial Paths Paths

E0 3 2239482 54 63 0 3 2182018 65 64 0
E1 3 2239208 93 63 0 3 2182192 66 63 0
E2 3 2239208 55 63 0 3 2182416 66 63 0
E3 3 3122286 303 77 1 3 2957146 400 98 0
E4 3 3178044 311 78 0 3 2568932 247 68 0
E5 3 10754876 2960 72 55 3 22948714 10527 2321 16
E6 3 5296990 775 98 8 3 6163284 1179 609 4
E7 3 5912722 947 92 15 3 6792846 1325 729 5
E8 3 5933216 950 92 15 3 6775574 1332 727 5
E9 3 12367140 3237 60 72 3 33959660 21994 2876 27
Sum: 10 3 53283172 9685 758 166 10 3 88712782 37201 7618 57
Median: 4237517 543 75 5 4560215 790 354 2

VI. CONCLUSION AND FUTURE WORK

Our symbolic verification methodology revealed 10 bugs in the well
tested RTL-core MicroRV32 and found 2 errors in the reference
ISS. Moreover, our error-injection methodology further underlines
the effective bug hunting capabilities of our approach. Thus, the
results demonstrate the applicability of symbolic execution in full
scale processor co-simulation. For future work we plan to focus
on hybrid techniques combining symbolic execution with fuzzing
to provide a scalable and comprehensive verification methodology.
Moreover, we want to investigate the specification of induction-
based symbolic constraints to enable a complete processor verifica-
tion that is not relying on a bounded model checking methodology.
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