
MA-Opt: Reinforcement Learning-based Analog Circuit
Optimization using Multi-Actors

Youngchang Choi, Minjeong Choi, Kyongsu Lee, and Seokhyeong Kang*
Department of EE, POSTECH, Pohang, South Korea

*shkang@postech.ac.kr

Abstract—Analog circuit design requires significant human efforts and
expertise; therefore, electronic design automation (EDA) tools for analog
design are needed. This study presents MA-Opt that is an analog circuit
optimizer using reinforcement learning (RL)-inspired framework. MA-
Opt using multiple actors is proposed to provide various predictions of
optimized circuit designs in parallel. Sharing a specific memory that affects
the loss function of network training is proposed to exploit multiple actors
effectively, accelerating circuit optimization. Moreover, we devise a novel
method to tune the most optimized design in previous simulations into
a more optimized design. To demonstrate the efficiency of the proposed
framework, MA-Opt was simulated for three analog circuits and the results
were compared with those of other methods. The experimental results
indicated the strength of using multiple actors with a shared elite solution
set and the near-sampling method. Within the same number of simulations,
while satisfying all given constraints, MA-Opt obtained minimum target
metrics up to 24% better than DNN-Opt. Furthermore, MA-Opt obtained
better Figure of Merits (FoMs) than DNN-Opt at the same runtime.

Index Terms—Analog circuit optimization, RL-inspired, multiple actors,
shared elite solution set, near-sampling method

I. INTRODUCTION

Digital circuit designs exploit electronic design automation (EDA)
tools, but analog and mixed-signal (AMS) designs still require human
efforts and expertise. For AMS designs, significant knowledge of
circuits and many simulations for parameter fine-tuning to satisfy
performance specifications are required. Furthermore, device char-
acteristics become more complicated owing to CMOS technology
scaling, which complicates AMS designs in an existing manner and
incurs a long time to market. Consequently, EDA tools for sizing
analog circuit components to provide optimized circuits are required.

Previous studies for automation of analog circuit sizing can fall
into two classes: knowledge-based and optimization-based methods.
In the knowledge-based methods, knowledge of circuits is translated
into methods and equations [1], [2]. However, these methods are
not scalable because they are dependent on knowledge that circuit
designers have. Optimization-based methods can be divided into two
categories: equation-based and simulation-based methods. Equation-
based methods [3]–[6] use simulation data to describe circuit perfor-
mance as polynomial equations or regression models, and to search
for an optimal solution, these methods are applied to convex or
non-convex formulated problems. Equation-based methods are fast in
general, but they can not express circuit performances accurately due
to their deviations from the real values obtained by circuit simulations.

On the contrary, simulation-based methods directly exploit the
results of circuit simulations. Simulation-based methods employ black-
box function optimization methods or learning-based optimization
methods. Particle swarm optimization (PSO) [7] and advanced differ-
ential evolution (DE) [8] have been proposed to explore the solution
space efficiently, but they have low convergence rates. Bayesian
optimization (BO) has been applied to analog circuits and it has
optimized circuit designs by replacing circuit sizing with black-box
function optimization problems using Gaussian process regression
(GPR) [9]–[11]. The main drawback of BO is the computational
complexity of training, O(N3), where N is the number of training
data points. For BO, the simulation time increases rapidly as the

number of simulations increases. Reinforcement learning (RL) meth-
ods such as the deep deterministic policy gradient (DDPG) [12] have
been employed for analog circuit sizing [13]–[15] as learning-based
optimization methods. However, these frameworks require thousands
of SPICE simulations for circuit optimization.

To overcome the shortcomings of the RL-based circuit optimiza-
tions, DNN-Opt framework [16] has been proposed. DNN-Opt is an
RL-inspired method that modifies the DDPG method that uses an RL
actor-critic method [17]. In addition, DNN-Opt adopts the advantages
of RL, BO, and population-based techniques [20]. Therefore, it can
realize optimized circuit designs that satisfy their performance con-
straints within a few simulations. DNN-Opt deploys a single agent
to explore design spaces, so it may be insufficient for DNN-Opt to
explore the design spaces because the diversity of circuit parameters
provides a number of dimensions for state spaces, and sizing circuit
designs requires continuous state spaces.

In this study, MA-Opt, a novel RL-inspired framework that adopts
multiple actors and other techniques, is proposed. For RL methods, a
parallel RL paradigm, such as the general RL architecture (GORILA)
[18] and asynchronous advantage actor-critic (A3C) [19], have been
proposed to achieve better results than RL using a single agent.
These RL methods deploy multi-agents running in parallel to generate
more data and explore the state space more effectively. Similarly, to
overcome the drawback of exploration of the existing RL-inspired
framework, we propose the RL-inspired framework that uses multi-
agents and parallelism. In addition, to exploit multi-agents effectively
in an RL-inspired framework, we propose sharing an elite solution
set that comprises the best circuit designs simulated and affects the
loss function of network training. Furthermore, we propose a tuning
technique that finds a more optimized design than the previous best
design. The key contributions of this study are as follows:

• The proposed framework uses multiple actors to make diverse
predictions of optimized circuit designs. Because multiprocessing
is applied, training actors and performing SPICE simulations for
circuits predicted by actors are implemented in parallel.

• We propose a shared elite solution set that affects network
training. By sharing an elite solution for each actor, the update
of an elite solution set is boosted and that assists training actors;
thus, sharing an elite solution set for multiple actors enhances
circuit optimization.

• We employ a near-sampling method to optimize the circuits. The
near-sampling method generates samples adjacent to the most
optimized design from previous simulations, and a critic network
that mimics the SPICE simulator is applied to predict results
of the sampled designs. Because circuit designs are sampled
densely, the near-sampling method can successfully search for
the optimized design.

The rest of the paper is organized as follows. In Section II, we
present the details of the proposed framework. In Section III, we
provide the experimental results and compare the performances of our
proposed framework with other optimization methods. We conclude
the paper in Section IV.

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

Fig. 1. The proposed framework.

II. PROPOSED FRAMEWORK

This section introduces the proposed framework. We formulate the
circuit sizing optimization problem, and explain the architecture of
MA-Opt. A near-sampling method is devised to find more optimized
designs and introduced in this section.

A. Problem Formulation

A constrained optimization problem for analog circuit sizing was
formulated as follows:

minimize f0(x)

subject to fi(x) ≤ 0 for i = 1, ...,m
(1)

where, x ∈ Dd is the parameter vector, Dd is the design space, and
d is the number of design variables to be sized. f0(x) is the target
metric that should be minimized; here, fi(x) is a metric that denotes
the ith constraint.

B. MA-Opt Architecture

MA-Opt consists of an actor-critic deep neural network architecture
with multiple actors and a single critic, a circuit simulator, original
samples, pseudo-samples, and a shared elite solution set (Fig. 1). By
applying population-based techniques [20] to the original samples
in the design space, the pseudo-samples are generated and used to
train a critic network. Subsequently, the critic network predicts the
performance of given parameter vectors. The actor networks propose
new parameter vectors for simulations by using the critic network’s
predictions. For the MA-Opt framework, most notations obey an RL
method.
Design: A group of circuit parameters is represented as a vector x
of size d. Finding the value of x satisfying Eq. 1 is the optimization
goal.
Population: A group of simulated designs.
Design Population Matrix: This is denoted by X ∈ RN×d, where
N is the population size. The kth row in X is the kth design xk.
Total Design Set: A total design set Xtot is a design population
matrix that consists of all designs where circuit simulations were
executed.
Elite Solution Set: An elite solution set XES ∈ RNes×d is a design
population matrix that comprises the best Nes solutions of the total

design set Xtot in terms of a figure of merit (FoM) ranking. To
quantify circuit sizing optimization, an FoM function, g(·), is defined
as follows:

g[f(x)] = w0×f0(x)+

m∑
i=1

min(1,max(0, wi×|
fi(x)− ci

ci
|)) (2)

where wi is the weighting factor, fi(x) is the ith SPICE simulation
value of design x, and ci is a constraint of fi(x). Moreover, an elite
solution set of size Nes is used to limit the search space of an actor
network.
State Space: Design x represents a state as an RL notation. The kth

design xk represents the kth state sk.
Action Space: The notation ak is an action of the kth state sk, and is
the change required to optimize the kth design xk, which is denoted
as ∆xk. When an action of the kth design xk is applied, the next
design of xk is xk +∆xk.
Critic Network: In general, a critic-network parameterized by θQ

approximates the Markov Decision Processes (MDP) return value
Q(st,at|θQ). The original role of this network is modified to a
regression of the SPICE simulator. Its input is (x,∆x) ∈ D2d, and its
output is simulation predictions Q(x,∆x|θQ) ∈ Rm+1, where one-
dimension is for target metric and m for constraint metrics.
Actor Network: The role of an actor is prediction for change of
optimized designs. To predict various optimized designs, multiple
actors were adopted for the RL-inspired framework. All actor networks
were parameterized by θµ1 , θµ2 ,. . . θµNact , where Nact denotes the
number of actors. Their input is a state sk, and each actor θµi returns
an action ak,i = µ(sk|θµi). In MA-Opt, each actor network θµi

presents the change to optimize xk as: ∆xk,i = ak,i = µ(xk|θµi).
Critic-Network Training: Population-based techniques that generate
N2 pseudo-samples using N original samples effectively train the
critic network. By using two samples, xi and xj , and vectors re-
turned by the circuit simulator, f(xi) and f(xj), pseudo-samples are
generated as follows:

xps
ij = (xi,∆xij) = (xi,xj − xi)

f ps(xps
ij) = f(xj)

(3)

In the proposed framework, pseudo-samples are generated by using
designs in the total design set Xtot. The critic network is trained by
the mean square error (MSE) loss function with a batch-size of Nb

pseudo-samples as follows:

L(θQ) =
1

Nb(m+ 1)

Nb∑
k=1

m+1∑
l=1

|Q(xk,∆xk)
l − f(xk +∆xk)

l|2 (4)

where Q(xk,∆xk)
l is the lth approximated metric of the kth pseudo-

sample and f(xk+∆xk)
l is the simulation result for the kth pseudo-

sample. Unlike multiple actors, multiple critics are not used because
using multiple regression models for circuit simulation does improve
optimization, but consumes more memory resources than using one
critic network.
Actor-Network Training: After training the critic network, the actor
networks are trained by using the g(·) function and replacing the
SPICE simulation values f(x) with the critic-network predictions
Q(x,∆x). To search optimized designs by exploiting predictions of
actors, a proper loss function for training actors is required. The actor
networks are trained by the following loss function with a batch-size
of Nb pseudo-samples as follows:

L(θµi) =
1

Nb

Nb∑
k=1

(g[Q(xk, µ(xk | θµi))] + ||λ ∗ violk||2) (5)

!

!

Fig. 2. Types of elite solution sets for multiple actors: (a) individual elite
solution sets; (b) a shared elite solution set.

Fig. 3. Framework of the near-sampling method.

where µ(xk | θµi) is the action vector ∆xk,i obtained from the
ith actor network θµi . When training a single actor, to prevent any
boundary violation and restrict the search space, element-wise vector
multiplication (λ ∗ violk) is applied (Eq. 5) by using an elite solution
set, where λ is a significantly large weighting coefficient. For action
∆xk, the total boundary violation violk is defined as follows:

violk = max(0, lbrest−(xk+∆xk))+max(0, (xk+∆xk)−ubrest) (6)

where lbrest and ubrest are the boundary vectors determined by the
elite solutions as follows:

lbirest = min(xi) ∀i = 1, . . . , d

ubirest = max(xi) ∀i = 1, . . . , d

where, xi is the column vector comprising the ith design parameter
of all elite solutions.

In DNN-Opt [16], only one actor is used, so one elite solution set is
applied for the actor-network training. However, in MA-Opt, to train
multiple actors, each actor can possess its own elite solution set (Fig.
2a), or share one elite solution (Fig. 2b). Of those, using a shared elite
solution set XSES ∈ RNes×d is adopted from two perspectives, the
update speed of elite solutions and memory consumption. If actors
are trained with their own elite solution set, Nact elite solution sets
are needed, and each elite solution set can be updated up to only
one elite solution for one simulation. In contrast, if each actor shares
one elite solution set, only one elite solution set is required and the
elite solution set can be renewed up to Nact elite solutions for one
simulation. Instead of using their own elite solutions set for each actor,
using a shared elite solution set not only saves memory resources, but
also enhances the renewing boundary violation of the loss function
(Eq. 5) while training actors by enhancing the speed updating of
a shared elite solution set. The speed improvement of updating the
boundary violation may assist in training actors and enhance their
design predictions of actors. Thus, for DNN-Opt deploying multiple
actors, using a shared elite solution set is expected to improve circuit
optimization.

After training actors, each actor θµi propose the change ∆xk,i to
optimize its input design xk, and a circuit simulation for the proposed

Algorithm 1 Optimization with Multi-Actors and Critic Networks
1: Initialize actor and critic network parameters θµ1 , θµ2 . . . ,

θµNact . . . and θQ

2: Generate pseudo-samples by using Xtot (Eq. 3)
3: Train the critic network (Eq. 4)
4: Train the actor networks (Eq. 5)
5: Calculate FoM for each design in Xtot (Eq. 2)
6: Choose Nes designs in Xtot with smallest FoM to form XSES

7: for i = 1, 2, . . . Nact do
8: xsample

i ← argmin
x∈XSES

g[Q(x, µi(x))] (Eq. 2)

9: Execute SPICE simulation of xsample
i and obtain the FoM

(Eq. 2)
10: Xtot ← Xtot ∪ xsample

i

11: end for

design xk+∆xk,i is executed. Thus, using Nact actors requires Nact

actor-network trainings and Nact circuit simulations. The runtime for
optimization may increase if training actors and circuit simulations
are executed sequentially; therefore, parallelism is applied. Training
actors and SPICE simulations are implemented over Nact CPU cores
through multiprocessing.

C. Near-Sampling Method

We devise a near-sampling method (Fig. 3) to search for a design
that is better than the most optimized design xopt found in previous
simulations by exploiting designs adjacent to xopt. This method begins
by sampling Nsamples designs near xopt. The ith design parameter of
xopt, xi,opt, has a sampling radius δi and samples are generated within
the range [xi,opt − δi, xi,opt + δi] to form a near-sampling set XNS .
Subsequently, using a critic network as a regression model of SPICE
simulation and the FoM function (Eq. 2), FoMs of Nsamples designs
sampled near xopt can be predicted. For each sample xns in XNS ,
(xopt, xns−xopt) ∈ D2d is generated and used as an input vector of
the critic network. The critic-network prediction Q(xopt, xns−xopt)
is applied to the FoM function (Eq. 2), so the FoM of xns can be
predicted. After predicting the FoM values of the sampled designs, the
design predicted as the best solution of Nsamples samples, xpredicted

opt ,
was selected. The SPICE simulation was executed for xpredicted

opt , and
if the FoM of xpredicted

opt is better than the FoM of xopt, xopt is
replaced by xpredicted

opt .
For the successive near-sampling method, compact sampling near

xopt is required to use a critic network as an accurate regression
model. For an intensive sampling density, Nsamples should be large,
and δi for each design parameter xi should be small enough, such that
this method does not realize a dramatically optimized design, unlike
the optimization using actor-critic training. Thus, the near-sampling
method was applied after finding the optimized design satisfying all
given performance constraints. After finding the design that meets all
constraints, both optimizations with actor-critic training and the near-
sampling method were implemented alternatively. Optimization with
actor-critic training incurs a significant change in xopt and can achieve
a numerically optimized design with a lower optimization success rate
than the near-sampling method. Thus, optimization with actor-critic
training can be regarded as exploration, and the near-sampling method
serves as exploitation.

D. Overall Proposed Framework

Using the optimization with multi-actors and critic networks (Al-
gorithm 1) and the near-sampling method (Algorithm 2), the overall
proposed framework (Algorithm 3) is provided. Nact actors were

!

!

Algorithm 2 Near-Sampling Method
1: xopt ← argmin

x∈XSES

g[f(x)] (Eq. 2)

2: XNS ← ∅
3: for N = 1, 2, . . . Nsamples do
4: xns ← UniformDistribution(xopt − δ, xopt + δ)
5: XNS ← XNS ∪ xns

6: end for
7: xpredicted

opt ← argmin
xns∈XNS

g[Q(xopt, xns − xopt)] (Eq. 4)

8: Execute SPICE simulation of xpredicted
opt and obtain the FoM (Eq.

2)
9: if FoM(xopt) > FoM(xpredicted

opt) then
10: xopt ← xpredicted

opt

11: end if

Algorithm 3 Overall MA-Opt Framework

Require: Initial set Xinit and their evaluations f (Xinit)
1: Xtot ← Xinit

2: XSES ← Xinit

3: for t = 1, 2, . . . tmax do
4: if specs are not met then
5: Execute the optimization (Algorithm 1)
6: else if specs are met then
7: if (t mod TNS) == k then
8: Apply the near-sampling method (Algorithm 2)
9: else

10: Execute the optimization (Algorithm 1)
11: end if
12: end if
13: end for
14: return The design with the lowest FoM

deployed, and training Nact actors and Nact circuit simulations are
executed in parallel (Lines 7–11 for Algorithm 1). In our study, the
Ninit designs were initially sampled, and an initial sample set Xinit

was defined. The near-sampling method was applied with the period
TNS (Line 7 for Algorithm 3).

III. EXPERIMENT RESULTS

A. Experiment Settings

A two-stage operational transconductance amplifier (OTA) (Fig. 4a),
a three-stage transimpedance amplifier (TIA) (Fig. 4b), and a low-
dropout (LDO) regulator (Fig. 4c) were applied to our experiments.
The proposed framework was compared to other optimization meth-
ods, BO [21], DNN-Opt [16], a framework that adopts multiple actors
without using a shared elite solution set and does not apply the near-
sampling method (MA-Opt1), and a framework that adopts multiple
actors while using a shared elite solution set and apply the near-
sampling method (MA-Opt2). Synopsis HSpice was used for circuit
simulation, and the experiments were executed in Intel(R) Xeon(R)
Gold 6132 CPUs at a clock frequency of 2.60 GHz. Each circuit
was implemented in a commercial 180 nm CMOS technology. To
demonstrate each method statistically, we ran each method 10 times,
and the number of simulations was limited to 200. For each circuit, to
define an initial sample set Xinit, one hundred designs were randomly
sampled and Spice simulations were implemented for the sampled
designs, and the same Xinit was applied to each optimization method.
For the actor and critic networks of DNN-Opt, MA-Opt1, MA-Opt2

and MA-Opt, the number of hidden layers was set to two and the

Fig. 4. Schematics of three circuits: (a) two-stage OTA; (b) three-stage TIA;
and (c) LDO regulator.

number of nodes in each hidden layer was fixed at one hundred. To
use the three actors, Nact was set to three. While executing the near-
sampling method of MA-Opt, TNS was fixed at five and Nsamples

was set to 2000.
The success rate, minimum target metric, average target metric,

average FoM, and total runtime were used to evaluate the optimization
methods (TABLE II, TABLE IV, and TABLE VI). The success rate
indicates the number of successfully optimized designs that meet all
the given circuit-performance constraints within 200 simulations over
the all 10 runs, and that evaluates the feasibility of the optimization
methods. The minimum target metric was found for the optimized
designs that satisfied all constraints within 200 simulations. The
average FoM is the mean of the FoM values of designs acquired
from all 10 runs, and is indicated on a log scale to compare methods
distinctly (Fig. 5). For each optimization method, the total runtime
measured in the simulations was averaged. For a fair comparison, by
considering the difference in the simulation speed of each optimization
method, the average FoM of each method was compared based on the
total runtime of DNN-Opt [16].

B. Algorithm Comparison

1) Two-Stage OTA: The two-stage OTA has total 16 design pa-
rameters with the ranges (TABLE I). The optimization methods were
simulated using the constraints (Eq. 7). The power consumption of the
two-stage OTA was used as the target metric. RL-inspired frameworks,
DNN-Opt, MA-Opt1, MA-Opt2 and MA-Opt achieved better success
rates, average FoMs, and lower total runtimes than BO (TABLE II).
Additionally, MA-Opt2 and MA-Opt achieved the highest success
rates. The total runtime of DNN-Opt was 55%, 42%, 40% and
24% lower than those of BO, MA-Opt1, MA-Opt2 and MA-Opt,
respectively, and that was considered to the comparison for average
FoMs of the methods. The average FoMs of MA-Opt2 and MA-
Opt was better than those of DNN-Opt and MA-Opt1. Within 200
simulations, MA-Opt realized the optimized design that consumes

!

!

TABLE I
TYPES AND RANGES OF DESIGN PARAMETERS FOR A TWO-STAGE OTA

Types of Parameters Unit Ranges
L1, L2, L3, L4, and L5 µm [0.18, 2]
W1, W2, W3, W4, and W5 µm [0.22, 150]
R kΩ [0.1, 100]
C fF [100, 2000]
Cf fF [100, 10000]
N1, N2, and N3 integer [1, 20]

TABLE II
ALGORITHM COMPARISON FOR A TWO-STAGE OTA

Algorithm BO DNN-Opt MA-Opt1 MA-Opt2 MA-Opt
Success rate 0/10 8/10 7/10 10/10 10/10

Min power (mW) - 0.852 0.994 1.097 0.737
log10(average FoM) −0.04 −2.05 −1.25 −2.75 −2.92

Total runtime (h) 1.54 0.69 1.19 1.15 0.91

lowest power and satisfies all constraints, and the minimum power
obtained in MA-Opt was 13% lower than that of DNN-Opt.

Minimize Power
s.t. DC Gain > 60 dB Settling Time < 100 ns

CMRR > 80 dB Unity Gain Freq. > 30 MHz (7)
PSRR > 80 dB Out. Swing > 1.5 V
Phase Margin > 60 deg Out. Noise < 30 mVrms.

2) Three-Stage Transimpedance Amplifier: The three-stage TIA
has total 15 design parameters with the ranges (TABLE III). The
optimization methods were simulated using the constraints (Eq. 8). The
power consumption of the three-stage TIA was defined as the target
metric. RL-inspired frameworks achieved higher success rates, average
FoMs, and lower total runtimes than BO (TABLE IV). Additionally,
MA-Opt2 and MA-Opt achieved the highest success rates. The total
runtime of DNN-Opt was 67%, 54%, 48% and 41% lower than those
of BO, MA-Opt1, MA-Opt2 and MA-Opt, respectively, and that was
reflected to the comparison for average FoMs of the methods. The
average FoMs of MA-Opt2 and MA-Opt were better than those of
DNN-Opt and MA-Opt1. Within 200 simulations, MA-Opt realized
the design with the minimum power consumption while satisfying all
constraints, and the minimum power achieved in MA-Opt was 24%
lower than that of DNN-Opt.

Minimize Power
s.t. DC Gain > 80 dB

Unity Gain Freq. > 1 GHz (8)

Input Referred Noise < 10
√

pA/Hz.
3) LDO Regulator: A 3.3 V to 1.8 V LDO regulator was used

to our experiment. The LDO regulator has total 16 design parameters
with the ranges (TABLE V). The optimization methods were simulated
using the constraints (Eq. 9). The quiescent current of the LDO
regulator with a load current of 50 mA was used as the target metric.
VOUT, VIN= 3.3 V is the output voltage VOUT when the input voltage
VIN is 3.3 V. TL, I1→I2 is the settling time of VOUT when VIN is 3.3
V and the load current ILOAD changes from I1 to I2. TV, V1→V2 is the
settling time of VOUT when ILOAD is 50 mA and VIN changes from
V1 to V2. RL-inspired methods achieved higher success rates, average
FoMs, and lower total runtimes than BO (TABLE VI). Also, MA-Opt2

and MA-Opt showed the highest success rates. The total runtime of
DNN-Opt was 52%, 40%, 44% and 34% lower than those of BO,
MA-Opt1, MA-Opt2 and MA-Opt, respectively, and that was reflected
to the comparison for average FoMs of the methods. The average
FoMs of MA-Opt2 and MA-Opt are better than that of DNN-Opt
and MA-Opt1. Within 200 simulations, MA-Opt realized the design

TABLE III
TYPES AND RANGES OF DESIGN PARAMETERS FOR A THREE-STAGE TIA

Types of Parameters Unit Ranges
L1, L2, L3, L4, and L5 µm [0.18, 2]
W1, W2, W3, W4, and W5 µm [0.22, 150]
R kΩ [0.1, 100]
Cf fF [100, 2000]
N1, N2, and N3 integer [1, 20]

TABLE IV
ALGORITHM COMPARISON FOR A THREE-STAGE TIA

Algorithm BO DNN-Opt MA-Opt1 MA-Opt2 MA-Opt
Success rate 0/10 4/10 2/10 10/10 10/10

Min power (mW) - 0.196 - 0.190 0.148
log10(average FoM) −0.01 −1.04 −0.76 −3.43 −3.50

Total runtime (h) 1.38 0.46 1.02 0.90 0.78

that has minimum quiescent current and meets all constraints, and the
minimum quiescent current with a load current of 50 mA in MA-Opt
was 17% lower than that of DNN-Opt.

Minimize Quiescent Current (ILOAD = 50 mA)

s.t. VOUT, VIN= 3.3 V > 1.75 V VOUT, VIN= 3.3 V < 1.85 V
Load Regulation < 0.1 mV/mA Line Regulation < 0.1 %/V
TL, 0.1 µA→150 mA < 35 µs TL, 150 mA→0.1 µA < 35 µs
TV,2.0 V→3.3 V < 35 µs TV,3.3 V→2.0 V < 35 µs (9)
PSRR > 60 dB.

C. Experiment Analysis

For the three circuits, the RL-inspired methods achieved higher
success rates and lower total runtime than BO (TABLE II, TABLE
IV, and TABLE VI). Moreover, the RL-inspired methods achieve
better results in terms of target metrics and FoMs. Thus, RL-inspired
methods can achieve better optimization capabilities than BO.

MA-Opt2 and MA-Opt achieved higher success rates than DNN-Opt
and MA-Opt1 within 200 simulations. In addition, because MA-Opt1,
MA-Opt2 and MA-Opt require more runtimes than DNN-Opt owing
to the context switching of multiprocessing, the average FoM of each
methods was compared considering differences of simulation speed
for a fair comparison. The average FoMs of MA-Opt1 and MA-Opt2

were better than that of DNN-Opt, so MA-Opt2 and MA-Opt tended
to find more optimized designs than DNN-Opt and MA-Opt1 at the
same runtime, and that proves the strength of adopting multiple actors
with a shared elite solution set.

MA-Opt produced the most optimized designs within 200 simula-
tions and the lowest average FoMs, demonstrating the advantage of the
near-sampling method. The effects of the near-sampling method can
be explained from two perspectives. First, the near-sampling method
can find a better design adjacent to xopt with a high success rate.
Second, the shared elite solution set updated by the near-sampling
method can change boundary violations in the loss function of actor-
networks (Eq. 5), which may assist the optimization with actor-critic
networks. Furthermore, the total runtime of MA-Opt was less than
that of MA-Opt2. When sampling many samples for predictions, the
near-sampling method requires less runtime than the training actor or
critic networks; therefore, the runtime of the near-sampling method is
less than that of optimization with multiple actors and critic networks.
MA-Opt alternatively uses the near-sampling method and optimization
with multiple actors and critic networks; thus, within the same number
of simulations, MA-Opt has a less runtime than MA-Opt2. Therefore,
MA-Opt can achieve a better optimized design and requires a shorter
total runtime than MA-Opt2.

!

!

Fig. 5. Average FoMs of three optimization cases: (a) two stage OTA; (b) three stage TIA; and (c) LDO regulator.

TABLE V
TYPES AND RANGES OF DESIGN PARAMETERS FOR AN LDO REGULATOR

Types of Parameters Unit Ranges
L1, L2, L3, L4, and L5 µm [0.32, 3]
W1, W2, W3, W4, and W5 µm [0.22, 200]
R1, R2 kΩ [1, 100]
C fF [100, 2000]
N1, N2, and N3 integer [1, 20]

TABLE VI
ALGORITHM COMPARISON FOR AN LDO REGULATOR

Algorithm BO DNN-Opt MA-Opt1 MA-Opt2 MA-Opt
Success rate 0/10 7/10 9/10 10/10 10/10

Min Q.C. (mA) - 0.320 0.335 0.382 0.265
log10(average FoM) 0.04 −0.88 −2.59 −2.79 −2.98

Total runtime (h) 1.57 0.75 1.26 1.35 1.14

MA-Opt obtained better circuit designs than DNN-Opt for the
same number of simulations. In our experiments, MA-Opt obtained
minimum target metrics of optimized designs up to 24% better than
DNN-Opt. Moreover, the average FoM of MA-Opt is better than
that of DNN-Opt; therefore, MA-Opt finds more optimized designs
than DNN-Opt at the same runtime. Thus, MA-Opt has a better
optimization capability than DNN-Opt.

IV. CONCLUSION

To improve the existing RL-inspired framework, we proposed MA-
Opt, a novel RL-inspired framework using multiple actors sharing an
elite solution set and a near-sampling method. To evaluate the proposed
framework, it was applied to three analog circuits, and then its
performance was compared with that of other methods. Optimization
with actor-critic training acts as exploration, and the near-sampling
method serves as exploitation. The experimental results revealed the
efficiency of using multiple actors with a shared elite solution set and
near-sampling method. Within the same number of simulations, while
satisfying all given constraints, MA-Opt produced minimum target
metrics up to 24% better than those of DNN-Opt. Furthermore, MA-
Opt realized better Figure of Merits than those of DNN-Opt within
the same runtime. Therefore, MA-Opt achieved a better capability of
circuit optimization than DNN-Opt.

ACKNOWLEDGMENT

This work was supported by DRAM PIM Design Base Tech-
nology Development (No.2022-0-01172) and Software Systems for
AI Semiconductor Design (No.2021-0-00754) through Institute of
Information & communications Technology Planning & Evaluation
(IITP) grant funded by the Korea government (MSIT). The EDA Tool
was supported by the IC Design Education Center (IDEC).

REFERENCES

[1] N. Horta, “Analogue and mixed-signal systems topologies exploration us-
ing symbolic methods,” Analog Integrated Circuits and Signal Processing,
2002.

[2] N. Jangkrajarng et al., “Iprail—intellectual property reuse-based analog
ic layout automation,” Integration, 2003, analog and Mixed-signal IC
Design and Design Methodologies.

[3] W. Daems et al., “Simulation-based generation of polynomial perfor-
mance models for the sizing of analog integrated circuits,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems
(TCAD), 2003.

[4] M. d. Hershenson et al., “Optimal design of a cmos op-amp via
geometric programming,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems (TCAD), 2001.

[5] Y. Wang et al., “Enabling efficient analog synthesis by coupling sparse
regression and polynomial optimization,” 2014 51th ACM/IEEE Design
Automation Conference (DAC), 2014.

[6] S. P. Boyd et al., “Geometric programming for circuit optimization,”
roceedings of International Symposium on Physical Design (ISPD), 2005.

[7] R. Acar Vural et al., “Analog circuit sizing via swarm intelligence,” AEU
- International Journal of Electronics and Communications, 2012.

[8] B. Liu et al., Automated Design of Analog and High-frequency Circuits:
A Computational Intelligence Approach. Springer, 2013.

[9] W. Lyu et al., “Batch Bayesian optimization via multi-objective ac-
quisition ensemble for automated analog circuit design,” 2018 35th
International Conference on Machine Learning (ICML), 2018.

[10] W. Lyu et al., “Multi-objective bayesian optimization for analog/rf circuit
synthesis,” 2018 55th ACM/IEEE Design Automation Conference (DAC),
2018.

[11] S. Zhang et al., “An efficient multi-fidelity Bayesian optimization
approach for analog circuit synthesis,” 2019 56th ACM/IEEE Design
Automation Conference (DAC), 2019.

[12] T. P. Lillicrap et al., “Continuous control with deep reinforcement
learning,” 2016 33th International Conference on Machine Learning
(ICML), 2016.

[13] K. Settaluri et al., “Autockt: Deep reinforcement learning of analog
circuit designs,” 2020 Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2020.

[14] H. Wang et al., “Gcn-rl circuit designer: Transferable transistor sizing
with graph neural networks and reinforcement learning,” 2020 57th
ACM/IEEE Design Automation Conference (DAC), 2020.

[15] K. Somayaji et al., “Prioritized reinforcement learning for analog circuit
optimization with design knwoledge,” 2021 58th ACM/IEEE Design
Automation Conference (DAC), 2021.

[16] A. Budak et al., “Dnn-opt: An RL inspired optimization for analog circuit
sizing using deep neural networks,” in 2021 58th ACM/IEEE Design
Automation Conference (DAC), 2021.

[17] V. Konda et al., “Actor-critic algorithms,” in SIAM Journal on Control
and Optimization. MIT Press, 2000.

[18] A. Nair et al., “Massively parallel methods for deep reinforcement
learning,” in CoRR, 2015.

[19] V. Mnih et al., ”Asynchronous methods for deep reinforcement learning,”
2016 33th International Conference on Machine Learning (ICML), 2016.

[20] R. Turner et al., “Bayesmark,” https://github.com/uber/ bayesmark, 2020.
[21] J. Snoek et al., “Practical bayesian optimization of machine learning

algorithms,” Neural Information Processing Systems (NIPS), 2012.

!

!

	Select a link below
	Return to Previous View
	Return to Main Menu

