
Class-based Quantization for Neural Networks
Wenhao Sun1, Grace Li Zhang2, Huaxi Gu3, Bing Li1, Ulf Schlichtmann1

1Chair of Electronic Design Automation, Technical University of Munich (TUM), Munich, Germany
2Hardware for Artificial Intelligence Group, TU Darmstadt, Darmstadt, Germany
3School of Telecommunications Engineering, Xidian University, Xi’an, China

Email: {wenhao.sun, b.li, ulf.schlichtmann}@tum.de, grace.zhang@tu-darmstadt.de, hxgu@xidian.edu.cn

Abstract—In deep neural networks (DNNs), there are a huge
number of weights and multiply-and-accumulate (MAC) opera-
tions. Accordingly, it is challenging to apply DNNs on resource-
constrained platforms, e.g., mobile phones. Quantization is a
method to reduce the size and the computational complexity of
DNNs. Existing quantization methods either require hardware
overhead to achieve a non-uniform quantization or focus on
model-wise and layer-wise uniform quantization, which are not as
fine-grained as filter-wise quantization. In this paper, we propose
a class-based quantization method to determine the minimum
number of quantization bits for each filter or neuron in DNNs
individually. In the proposed method, the importance score of each
filter or neuron with respect to the number of classes in the dataset
is first evaluated. The larger the score is, the more important the
filter or neuron is and thus the larger the number of quantization
bits should be. Afterwards, a search algorithm is adopted to exploit
the different importance of filters and neurons to determine the
number of quantization bits of each filter or neuron. Experimental
results demonstrate that the proposed method can maintain the
inference accuracy with low bit-width quantization. Given the
same number of quantization bits, the proposed method can also
achieve a better inference accuracy than the existing methods.

I. Introduction
Deep neural networks (DNNs) have shown superb perfor-

mance on tasks such as image classification [1] and object
detection [2]. However, the performance of neural networks
grows along with the size. A large model such as ResNet-
50 [1] has 25.6 million parameters. Since the processors need
to wait for massive weights to be loaded into the cache, the
increasing number of weights not only requires more storage
but also increases the inference time. These large requirements
of computing and memory resources pose challenges to the
deployment of DNNs on resource-constrained devices, such as
mobile phones. Therefore, it is necessary to find a way to reduce
the weight size of DNNs.

To address this problem, many methods, e.g., pruning and
quantization, have been applied to DNNs. Pruning is an efficient
way to remove weights in DNNs to reduce the size, such as [3]–
[5]. In pruning a neural network, the insignificant weights are
masked. Therefore, the storage requirements can be reduced,
and the processors can skip the pruned weights to speed up
the inference. However, pruning is a coarse-grained method,
because it only has the ability to remove weights. It is difficult
to decide whether the weights that are insignificant but still
contribute to the accuracy of the model should be removed,
which makes it hard to balance performance and efficiency.
On the other hand, quantization is a fine-grained method. It
quantizes the weights and activations to a low bit-width, such

as 8-bits or 4-bits. Also, if weights are quantized to 0-bit, it
means those weights are pruned. Therefore, besides removing
useless weights, quantization can provide more flexibility to
reduce the size of insignificant weights by setting the bit-width
of them to a lower number. Accordingly, the model size of the
neural networks and the inference accuracy can be fine-tuned
to achieve a better balance compared with pruning.

There are two kinds of quantization, namely non-uniform
quantization and uniform quantization. Non-uniform quantiza-
tion is a method that quantizes the weights and activations
with unequal quantization intervals, in which the weights and
activations in the same interval share the same quantized value,
such as [6]–[8]. For example, in ResNet-18, the distribution of
weights is concentrated in the near-zero region. Hence, there
should be more quantization intervals in the near-zero region to
make the weights distinguishable [8]. However, the hardware
implementation of non-uniform quantization is difficult [9],
since it is hard to implement arithmetic operations between
values with different quantization intervals. The other kind of
quantization is uniform quantization, in which the quantization
intervals between quantized values are equal. Uniform quan-
tization may introduce more quantization errors, because the
quantization intervals cannot be adjusted to fit the distribution
of weights. However, uniform quantization can be implemented
on existing neural network processors directly or with minor
hardware modifications. Therefore, uniform quantization is
more practical compared with non-uniform quantization when
hardware implementation is taken into account.

Many methods try to improve the performance of uniform
quantized networks. [10] is a model-level uniform quantization
method, which uses knowledge distillation to improve the
performance of quantized networks. [11] improves the perfor-
mance of model-level uniform quantized networks performed
on accumulators with low bit-width by adjusting the loss
function. [12] uses multiple settings of batch normalization
layer to endow the model-level quantized neural networks
with the ability to change the quantization bit-width after
training, and it also uses knowledge distillation to improve
the inference accuracy. [13] improves the training process of
model-level uniform quantized networks by gradient scaling to
reduce the errors in back propagation. But these approaches
still ignore the flexibility of multi-bit quantization. Multi-bit
quantization is an approach which quantizes the layers or filters
to different bit-widths. The important layers or filters can be
arranged to higher bit-width, and the insignificant layers or

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

filters can be arranged to lower bit-width. In this way, the
size of neural networks can be reduced, while the inference
accuracy can be efficiently maintained. The challenge of multi-
bit quantization is how to find the bit-width for different parts
of the neural network. [14] arranges the bit-width at layer-level
by reinforcement learning. However, compared with filter-level
quantization, layer-level quantization is not sufficiently fine-
grained. Reinforcement learning is also difficult to search the
bit-widths at filter-level, since the search space is significantly
larger than the search space for layer-level quantization. [8]
uses a loss-based iteration method to arrange filter-level bit-
width, but it focuses on non-uniform quantization and needs
multiple back propagation iterations to find the best bit-width
for each filter.

In this work, we propose a class-based quantization (CQ)
method to find the bit-width for each filter or neuron in
uniform quantization according to the user desired average bit-
width. The bit-width criteria of each filter or neuron is the
number of classes to which the filter or neuron is important.
Given a pre-trained model, the importance scores of each filter
or neuron will be collected by one-time back propagation.
Based on the importance scores, the search algorithm will
find the bit-width for each filter or neuron and reduce the
average bit-width below the user desired average bit-width.
After refining with knowledge distillation, the models will have
similar performance as the original models but with much
smaller average bit-width of weights.

The contributions of this work are listed as follows:
• This work proposes an efficient class-based method to find

the bit-width for each filter or neuron in quantization. It
calculates the importance of each filter or neuron to the
classes and keeps a higher bit-width on filters or neurons
with higher importance scores.

• The proposed algorithm only needs one-time back prop-
agation to collect the importance scores of each filter or
neuron. In the search phase, the algorithm uses inference
of validation samples, such as images, instead of back
propagation. Therefore, the algorithm is efficient and easy
to implement.

• Experimental results demonstrate that the proposed class-
based uniform quantization method can achieve similar
inference accuracy of the original models with much lower
average bit-width. Compared with the existing methods,
under the same bit-width setting, this method can achieve
better inference accuracy.

II. Background and Motivation
A. Background

Out of the two kinds of quantization schemes, non-uniform
quantization, and uniform quantization, uniform quantization is
more practical and hardware friendly. Therefore, in this work,
we focus on uniform quantization to determine the number of
quantization bits for weights in filters or neurons.

In uniform quantization, for a full-precision input x of the
quantizer, the quantizer first clips x to the range of [a, b], where
a is the lower bound of input x, and b is the upper bound.
For weights, a is equal to −b, and the upper bound b is the

maximum absolute value of weights in the layer. Since ReLU is
used as the activation function, the activations should always be
positive. Therefore, for activations, a is equal to 0. The upper

Layer-0

(Input Layer)

Layer-1

Layer-2

(Output Layer)
CAT DOG CAT DOG

Pruned

CAT DOG

Important for cat

Important for dog

Important for both

(a) (b) (c)

Fig. 1. An example of the data path and the importance of neurons for different
classes. (a) paths for the class of cats; (b) paths for the class of dogs. (c)
overlapping of the class paths.

bound b of activations is acquired by performing inference, and
it is still the maximum absolute value of activations in the layer
during the inference.

The clipped value xc is defined as

xc =

b x ≥ b

x a < x < b

a x ≤ a

. (1)

Then, the clipped input xc is normalized and quantized to xr

by N levels, which is given by

xr = round

(
(N − 1) ∗ xc − a

b− a

)
∗ 1

N − 1
. (2)

Afterwards, the quantized result xq will be given by a rescaling
of xr:

xq = (b− a) ∗ xr + a. (3)

B. Motivation
The drawback of uniform quantization is that it may degrade

the accuracy of the quantized neural network. To find a better
way to mitigate the degradation, we propose a class-based
method, where the class is a group of images or other kinds of
data sharing a same label. The concept is that different neurons
have different contributions to the final outputs of the neural
network, and the contribution may vary in different classes.
Figure 1 provides an example of this concept. It shows a
multilayer perceptron (MLP), which predicts the pictures of
cats and dogs. The neurons which significantly contribute to
cats and dogs are not the same. Some neurons contribute only
to one of the classes of cats or dogs, while some neurons
contribute to both classes. The rightmost neuron in Layer-1
contributes to none of the class, so that it can be pruned.

In quantization, we assume that the neurons which contribute
to many classes are more important than the neurons that con-
tribute to fewer classes. Based on this assumption, every filter
or neuron can be given an importance score, which indicates
the number of classes that the filter or neuron contributes to.
Then, we can use the importance score as a criterion to search

!

!

the bit-width arrangement, which is the set of the quantization
bits for each filter or neuron.

III. Approach
In this section, we will introduce the proposed class-based

quantization method in detail. The goal of the quantization is
to reduce the average bit-width of weights to the desired bit-
width B for the neural network. The quantization starts from
the pre-trained full-precision model. After performing one-time
back propagation, we can obtain the importance scores of each
filter or neuron. Then, the search algorithm will find the bit-
width for each filter or neuron. Finally, the model is quantized
according to the bit-width arrangement and refined to recover
the accuracy. In the following, we describe how to calculate
the importance scores of neurons in Section III-A, and how
to calculate the importance scores of filters in Section III-B.
Then, we introduce the search algorithm for finding the bit-
width arrangement in Section III-C. Finally, we describe the
refining of the quantized neural networks in Section III-D.
A. Class-based importance scores for neurons

To efficiently obtain the importance scores, we use a class-
based method. In this method, the importance score of each
neuron for all classes is calculated. Then, the importance score
of each filter is the max score of all neurons related to the filter.

The calculation of the importance scores of each neuron for
each class is based on the critical pathway theory [15]. As
shown in Figure 1, neurons may have different contributions
for different classes. A neuron in the critical pathway means
that if it is removed, the output of the model will be changed
significantly. In other words, the neuron in the critical pathway
contributes significantly to the output of the neural network.
Therefore, we can measure the difference of the output for an
input image xm to obtain the importance score of this image.
m ∈ {1, ...,M} is the index of class, and M is the number
of classes. The definition of the importance score of a neuron
with respect to image xm can be written as

sm(i,j) =
∣∣Φθ(xm)− Φθ

(
xm; aij ← 0

)∣∣ (4)

where sm(i,j) is the importance score of the neuron j ∈
{1, ..., Ni} in the layer i ∈ {1, ..., L} for a single image xm.
L is the number of all layers. Φθ(xm) denotes the output of
the neural network for sample xm, and aij is the activation of
neuron i in the layer j. aij ← 0 in (4) means that the activation
of the neuron j in the layer i is frozen at zero, so that it does
not participate in the computation.

The computation in (4) is intuitive, but it is very time-
consuming, because we need to perform the forward prop-
agation for L ∗ Ni times to calculate the importance scores
for all neurons. To reduce the complexity, we follow [16] to
approximately calculate (4) by Taylor expansion, which is given
by

sm(i,j) =
∣∣∣aij∇ai

j
Φθ(xm)

∣∣∣ (5)

where ∇ai
j

is the gradient of the output of the model with
respect to the mask of the neuron j in the layer i. In this way,
we only need to perform the back propagation once to obtain
the importance scores of all the neurons for image xm. After the

importance scores for all neurons are obtained, a threshold ϵ is
used to decide whether the neurons are in the critical pathway.
If sm(i,j) > ϵ, the neuron j in the layer i is in the critical pathway

Fig. 2. Histograms of the number of filters versus the importance scores in a
floating-point VGG-small [17] network trained on CIFAR10. The x-axis shows
the number of filters, and the y-axis shows the importance scores of filters.

of image xm. Empirically, ϵ should be a number very close to
zero. In this work, we set ϵ to 10−50.

Afterwards, a batch of validation images in class m with size
Ns are fed to the model. By back propagation, we can obtain
the set sij including the scores of all images in the batch. Then,
for neuron j in the layer i, we define the importance score βm

(i,j)

for class m as the percentage of images where the neuron is
in its critical pathway, which is given by

βm
(i,j) =

1

Ns
| {s ∈ sij | s > ϵ} | (6)

where s is the importance score of a single image for neuron j
in the layer i. Then, the importance score of the neuron j in the
layer i for all classes is defined as the sum of the importance
scores of all classes, which is given by

γi
j =

M∑
m=1

βm
(i,j). (7)

B. Class-based importance scores for filters
To calculate the importance scores of each filter, we use the

max score of all neurons related to the filter as the importance
score of the filter to prevent ignoring the most important
neurons in the filter. The definition of the importance score
of a filter is given by

φi
k = max{γ | γ ∈ Γi

k} (8)

where φi
k is the importance score of the filter k ∈ {1, ..., Ci} in

the layer i. Ci is the number of filters in layer i. Γi
k is the set

of importance scores defined in (7). γ is the importance score
of a neuron in Γi

k.
Figure 2 shows the histograms of the number of filters versus

the importance scores of the filter from a VGG-small network
trained on CIFAR10. When a neuron has an importance score
close to 0, it means that the neuron is not important to any
class. When a neuron has an importance score close to 10
corresponding to the number of classes in CIFAR10, it means
that the neuron is important to all classes. We can observe that
different layers have different distributions. For example the

!

!

Fig. 3. An example of the search process for VGG-small [17] on CIFAR10.
The x-axis shows the indexes of the filters after sorting, and the y-axis shows
the importance scores of the filters.

distribution of layer-5 is skewed left, which means that most
of the neurons in layer-5 are only important to a few classes.
But layer-2 is skewed right and has more neurons important to
more classes.
C. Searching for the bit-width arrangement

After the calculation of the importance score of each neuron
or filter, the next step is to search for the bit-width arrangement
for the quantization. The goal of this search is to reduce the
current average bit-width bcur of the model to the desired
average bit-width B after the quantization of weights. As the
bit-width of the model decreases, the accuracy of the model
will also drop. Therefore, the challenge is how to balance the
bit-widths for filters or neurons and the inference accuracy of
the neural network.

Instead of directly searching for the bit-width of each filter
or neuron, we first sort all the filters or neurons according
to their importance scores for an efficient heuristic bit-width
determination. In the example shown in Figure 3, a curve
represents the filters sorted according to the importance scores
of a convolutional layer. Then, by determining some thresholds
of the importance scores, the filters or neurons can be divided
into several groups, where the filters or neurons in the same
group share the same bit-width. Assuming that the allowed
highest bit-width is N , we need to find N thresholds, which
are denoted as pk, k ∈ {1, ..., N}. For 1 < k < N , filters
or neurons between the threshold pk and pk−1 are assigned to
k − 1 bits. Filters and neurons whose importance scores are
below p1 are assigned to 0 bits in quantization, which means
that the filters or neurons are pruned. Filters and neurons whose
importance scores are above pN are assigned to N bits in
quantization.

In the search process, the bit-widths of all filters and neurons
are initialized to N . Then, the first threshold to be determined is
p1, which is gradually moved upward from 0 with step D. As p1
increases, some insignificant filters or neurons with importance
scores below p1 will be quantized to 0-bit and pruned, which
means the inference accuracy of the neural network may start to
drop. We set the target inference accuracy Tk, k ∈ {1, ..., N},
to decide where pk should stop and be determined. T1 is a
preset value and less than the accuracy of the original neural

network. For k > 1, the Tk is given by

Tk = Tk−1 ∗R (9)

where Tk and Tk−1 are the target inference accuracy of the
current and previous thresholds, respectively. R ∈ [0, 1], is
a decay factor. Once the current inference accuracy of p1 is
less than the target inference accuracy T1, the threshold p1
is determined. Thereafter, for k > 1, the thresholds pk are
determined as follows: starting from the position of pk−1,
the threshold pk is moved and the accuracy Tk is evaluated
similarly. The threshold search process is repeated until all the
thresholds are determined or the current average bit-width bcur
of the neural network is less than the desired bit-width B.

In case we have a very small desired bit-width B, after the
iterations finish, the current average bit-width bcur may still
be larger than the desired B. In this case, we simply move
the highest bit-width threshold pN upward with step D until
reaching the maximum value of the importance scores, and the
current average bit-width bcur is checked whether it is less
than the target bit-width B. At this stage, changing the bit-
width of filters or neurons from the highest bit-width to the
second highest bit-width, such as from 4-bit to 3-bit, causes less
accuracy drop than changing the bit-width of filters or neurons
from the 1-bit to 0-bit, where 0-bit means that the filters or
neurons are pruned. This process is repeated from pN to p1
until bcur is less than B.

The search process is illustrated in Figure 3. The blue curve
shows the sorted importance scores of the filters in a layer
of VGG-small on CIFAR10. The horizontal solid lines are the
thresholds already determined, and the horizontal dashed lines
are the thresholds currently searching. The target average bit-
width is 2.0. We set the bit-width search range to {0, ..., 4} and
set T1 = 50% and R = 0.8. In Figure 3 (a), the threshold p1
moved upward and stopped at 2.5, at that time the inference
accuracy of the model is below 50%. Then, in Figure 3 (b),
the threshold p2 moved upward and stopped at 4.0, at that time
the inference accuracy of the model is below 40%. The process
repeats until the average bit-width reaches 2.0.
D. Refining quantized neural networks

To help the model achieve a better accuracy in the re-
fining phase, knowledge distillation [18] is applied to the
full-precision model to teach the quantized model. The Loss
function Lkd in the refining phase is defined as

Lkd = α ∗ Lce + (1− α)
M∑
k=1

Yklog(
Y fc
k

Yk
) (10)

where α is a factor between 0 and 1 to adjust the priority of
Kullback-Leibler divergence, Lce is the cross-entropy loss of
the original neural network.

∑M
k=1 Yklog(

Y fc
k

Yk
) is the Kullback-

Leibler divergence [19], where M is the number of classes, Y fc
k

and Yk are the k-th outputs of the full-precision network and
the quantized network, respectively.

In the training of the quantized neural network with knowl-
edge distillation, it is hard to define the gradient of the quan-
tized weights. To solve this problem, usually straight-through

!

estimator (STE) [20] is used to update the weights in back
propagation. In this work, we also use STE in the refining phase
to train the quantized neural network to improve its accuracy.

Fig. 4. Comparison of accuracy between CQ and APN [12] with 2.0/2.0,
3.0/3.0, and 4.0/4.0 bit-width settings and full-precision models. The blue bars
are the proposed method, and the red bars are APN. The green bars are the
full-precision baseline models in [1] and [17].

IV. Experimental Results
To demonstrate the performance of the class-based quanti-

zation (CQ), three neural network configurations, VGG-small
adopted from [21], ResNet-20 [1] with expand-1 (ResNet-20-
x1) and expand-5 (ResNet-20-x5) were applied to two datasets,
CIFAR10 [22] and CIFAR100 [22], respectively. The algorithm
and neural networks were implemented with Pytorch on Nvidia
Quadro RTX 6000 GPUs.

We compared CQ with Any-precision network (APN) [12]
and WrapNet (WN) [11] under equal conditions. The results of
APN were obtained using the source code provided on GitHub
[12], and neural networks of APN were set to individual bit-
width. The results of WN were adopted from [11]. In the
training phase, the learning rate was initialized to 0.1 for
ResNets and 0.02 for VGG-small, and it was divided by 10
at 100th, 150th, and 300th epochs. The momentum was set to
0.9, and the weight decay was set to 0.0001 for ResNets and
0.0005 for VGG-small. The batch size was set to 100 for all
datasets, and training was stopped after 400 epochs.

The bit-width arrangement of weights was set according to
Section III, and activations were directly set to the desired bit-
widths. In the refining phase, all the parameters of the optimizer
were the same as in the training phase. In all networks, the first
layer and the output layer were not quantized as in [11] and

[12]. Because in CQ, the different filters or neurons may be

Fig. 5. Comparison of accuracy between CQ and WN [11] with 1.0/3.0, 1.0/7.0,
2.0/4.0, and 2.0/7.0 bit-width settings. The blue bars are the proposed method,
and the red bars are WN.

Fig. 6. Sorted filter importance score distribution of VGG-small with 2.0/2.0
bit-width on CIFAR10. The x-axis shows the indexes of the filters after sorting,
and the y-axis shows the importance scores of the filters or neurons.

quantized to different bit-widths, in the following experiments,
the desired bit-width settings of weights are the average of
all quantized weights and denoted as

∑N
i=1 bi
N , where N is the

total number of weights except for the first layer and the output
layer, and bi is the bit-width of the i-th weight. The knowledge
distillation loss was applied in the refining phase. α in (10) was
set to 0.3.

The comparison between the accuracy of CQ and APN is
shown in Figure 4. The bit-widths are set to 2.0/2.0, 3.0/3.0,
and 4.0/4.0 in the format of weight/activation, because the bit-
width of the weights and activations in APN can only be set to
the same number. The results show that CQ can achieve better
accuracy than APN on every bit-width setting. In VGG-small
of CIFAR10 and CIFAR100 with 3.0/3.0 and 4.0/4.0 settings,
both CQ and APN are close to the full-precision model, but CQ
still achieves better results. Note that VGG-small on CIFAR100
with 3.0/3.0 and 4.0/4.0 settings even outperforms the floating-
point network. This is because of the regularization effect of the
quantization, as pointed out in [8]. In VGG-small on CIFAR10
and CIFAR100 with 2.0/2.0 settings, CQ is better than APN for
0.42% and 2.43%, respectively. In ResNet-20-x1 on CIFAR10,
CQ and APN are close on 2.0/2.0 setting, but CQ is better
than APN on 3.0/3.0 and 4.0/4.0 settings. In ResNet-20-x5 on
CIFAR100, CQ is significantly better than APN on all bit-width
settings.

In figure 5, it shows the accuracy comparison of ResNet-20-
x1 on CIFAR10 between CQ and WN. The bit-width settings

!

!

are 1.0/3.0, 1.0/7.0, 2.0/4.0, and 2.0/7.0 as in [11]. The results
show that CQ can achieve better accuracy than WN on all bit-
width settings. Especially in 2.0/4.0 setting, the accuracy of CQ
is 1.5% higher than WN. We can also observe that the accuracy
of CQ is more stable with lower activation bit-width settings.

Fig. 7. Bit-width percentage of all neural networks with 2.0/2.0, 3.0/3.0 and
4.0/4.0 bit-width setting.

As shown in Figure 6, we take VGG-small with 2.0/2.0
setting on CIFAR10 as an example to demonstrate the bit-
widths arrangement. The horizontal lines are the thresholds
of the different bit-width settings. From bottom to top, the
thresholds of 0/1-bit, 1/2-bit, 2/3-bit, and 3/4-bit are 1.9, 2.0,
3.1, and 6.2, respectively. The layers except for layer-2 and
layer-7 have similar distributions, where considerable numbers
of the filters have lower importance scores, meaning they
only contribute to images from a few classes and should be
quantized to lower bit-width. Especially for layer-5 and layer-6,
which are the fully-connected layers, many neurons have been
quantized to 0-bit. Layer-1, layer-3, and layer-4 have smaller
percentage of filters lower than 1-bit. Instead, they have more
filters in 2-bit and 3-bit, which indicates that these layers have
more insignificant filters, but these filters still contribute to the
outputs. On the contrary, layer-2 has more filters with higher
scores. They are important for almost all images and should be
quantized to high bit-width. The layer-7, which is the last layer
before the output layer, has no filter with quantized weights
lower than 2-bit, because it needs more neurons than other
fully-connected layers to represent the output classes.

Figure 7 shows the percentages of all models with all bit-
width settings. We can see that all models have utilized the
flexibility of multi-bit quantization. The VGG-small network
has more filters quantized to 0-bit, most of which are in
the fully-connected layers. ResNet-20-x1 and ResNet-20-x5
should keep more filters in 1 and 2 bits instead of 0 bits,
because pruning in the convolutional layers can cause the
bigger accuracy drop than other bit-width. In 4.0/4.0 settings,
the neural networks can keep more filters in high bit-width.
Therefore, they can achieve high inference accuracy which is
very close to the full-precision models. In 2.0/2.0 and 3.0/3.0
settings, more filters are quantized to low bit-width to balance
the filters in high bit-width. The high-precision filters contribute

more to the accuracy, which allows the neural network to keep
its accuracy even in low bit-width settings.
V. Conclusion

In this paper, we have proposed a class-based quantization
scheme for DNNs, which is based on the importance scores of
neurons and filters to determine the bit-widths. Experimental
results demonstrated that with a small average bit-width of
quantization, the inference accuracy can still be maintained
with the proposed method. In addition, under the same bit-
width settings, the proposed method achieved a better inference
accuracy than other existing methods.
Acknowledgement

This work is funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) – Project-ID
497488621.
References
[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

[2] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” 2018,
doi: 10.48550/ARXIV.1804.02767.

[3] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse,
trainable neural networks,” in International Conference on Learning Repre-
sentations (ICLR), 2019.

[4] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and connections
for efficient neural network,” in Advances in Neural Information Processing
Systems (NIPS), 2015.

[5] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding,” in
International Conference on Learning Representations (ICLR), 2016.

[6] A. Zhou, A. Yao, K. Wang, and Y. Chen, “Explicit loss-error-aware quan-
tization for low-bit deep neural networks,” in IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2018.

[7] L. Hou and J. T. Kwok, “Loss-aware weight quantization of deep networks,”
in International Conference on Learning Representations (ICLR), 2018.

[8] S. Zhao, T. Yue, and X. Hu, “Distribution-aware adaptive multi-bit quantiza-
tion,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2021.

[9] R. Altilio, A. Rosato, and M. Panella, “A nonuniform quantizer for hardware
implementation of neural networks,” in European Conference on Circuit
Theory and Design (ECCTD), 2017.

[10] B. Zhuang, M. Tan, J. Liu et al., “Effective training of convolutional neural
networks with low-bitwidth weights and activations,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 44, no. 10, pp. 6140–6152,
2022.

[11] R. Ni, H. min Chu, O. Castaneda, P. yeh Chiang, C. Studer, and T. Gold-
stein, “WrapNet: Neural net inference with ultra-low-precision arithmetic,” in
International Conference on Learning Representations (ICLR), 2021.

[12] H. Yu, H. Li, H. Shi, T. S. Huang, and G. Hua, “Any-precision deep neural net-
works,” in Association for the Advancement of Artificial Intelligence (AAAI),
2021, Source code: https://github.com/SHI-Labs/Any-Precision-DNNs.

[13] J. Lee, D. Kim, and B. Ham, “Network quantization with element-wise
gradient scaling,” in IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2021.

[14] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “HAQ: Hardware-aware
automated quantization with mixed precision,” in IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2019.

[15] Y. Wang, H. Su, B. Zhang, and X. Hu, “Interpret neural networks by identify-
ing critical data routing paths,” in IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2018.

[16] A. Khakzar, S. Baselizadeh, S. Khanduja, C. Rupprecht, S. T. Kim, and
N. Navab, “Neural response interpretation through the lens of critical path-
ways,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2021.

[17] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” 2014, doi: 10.48550/ARXIV.1409.1556.

[18] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” 2015, doi: 10.48550/ARXIV.1503.02531.

[19] J. M. Joyce, Kullback-Leibler Divergence. Springer Berlin Heidelberg, 2011.
[20] G. Hinton, N. Srivastava, and K. Swersky, “Neural networks for machine

learning,” Coursera, video lectures, vol. 264, no. 1, pp. 2146–2153, 2012.
[21] Z. Qu, Z. Zhou, Y. Cheng, and L. Thiele, “Adaptive loss-aware quantization

for multi-bit networks,” in The IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2020.

[22] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features from
tiny images,” Tech Report, 2009.

!

!

	Select a link below
	Return to Previous View
	Return to Main Menu

