
A Hardware-Software Cooperative
Interval-Replaying for FPGA-based Architecture

Evaluation
Hongwei Cui1, Shuhao Liang1, Yujie Cui1, Weiqi Zhang1, Honglan Zhan2,

Chun Yang3, Xianhua Liu3 and Xu Cheng3
School of Computer Science, Peking University, Beijing, China

1{cuihongwei, liangshuhao, YujieCui, zhangweiqi}@pku.edu.cn, 2laan.z@stu.pku.edu.cn,
3{yangchun, liuxianhua, chengxu}@mprc.pku.edu.cn,

Abstract—Open-source processors and FPGA provide more
real and accurate results of the new microarchitecture design,
but the long execution time for running large benchmarks on
FPGA boards still hinders researchers. This paper proposes a
hardware-software cooperative interval-replaying. It uses simula-
tors to create checkpoints for arbitrary program intervals and
provides an extensible and portable checkpoint loader to re-
execute selected intervals. In addition, this paper extends RISC-
V ISA and proposes an event-based sampling design to find
hot program intervals with more representative microarchitecture
characteristics. By using checkpoints in hot regions, researchers
can quickly verify the effectiveness of microarchitecture designs on
FPGA and alleviate the speed bottleneck of FPGA. The correctness
and effectiveness of the checkpoint scheme and the event-based
sampling design are evaluated on FPGA. The experimental results
show that the solution is effective.

Index Terms—Open-source processors, FPGA, RISC-V, Check-
point, Sampling

I. INTRODUCTION

With the development of RISC-V projects, researchers can
utilize the RISC-V ecosystems and FPGA boards to execute
the complete benchmarks on a real-world operating system to
evaluate the effectiveness of their wosks. Unfortunately, the
resource limitation of FPGA boards still hinders researchers
from utilizing open-source processors. For example, some
SPEC CPU2006 benchmarks will take more than 30 hours on
the SonicBOOM processor [1], which runs at 50 MHz on the
Digilent Genesys 2 FPGA board.

Previous research works proposed the checkpointing tech-
nique for speeding up program simulation, such as ELFies [2]
for X86 ISA and Intrinsically Checkpointed Assembly Code
(ITCY) [3] for Alpha ISA. However, ELFies needs to rely on
the PinPlay [4] framework, and ITCY needs to insert extra
codes into the program binary.

This paper proposes a hardware-software cooperative
interval-replaying solution. It first provides an event-based
sampling design based on RISC-V ISA for choosing the
desired program intervals for replaying. Second, it provides an
extensible general checkpoint design to assist researchers in
replaying the intervals of single-threaded programs on FPGA
boards. We evaluate our solution with SPEC CPU2006 and
SPEC CPU2017 on the SonicBOOM processor.

II. HARDWARE-SOFTWARE COOPERATIVE
INTERVAL-REPLAYING

This section first introduces the event-based hardware sam-
pling design used to help researchers to choose the desired pro-
gram interval. Next, it presents the main ideas and challenges
of the general checkpoint design for interval replaying.

A. Choosing Hot Program Interval

Choosing the program interval with more obvious microar-
chitectural characteristics will help researchers to evaluate
new designs efficiently and quickly. To this end, this work
provides an event-based hardware sampling design to obtain
the hardware events information of each program interval on
open-source RISC-V processors.

This design utilizes the reserved RISC-V user-level control
and status register (CSR) to configure and assist hardware
sampling, including configuring the sampling period and the
sampled hardware event. In order to capture the triggered
sampling signal on software, this design sets the signal to a
special syscall and uses the process trace (ptrace) to capture it,
which avoids modifying the OS codes.

B. Replaying Program Intervals

This work presents a general checkpoint design for replaying
the desired program intervals on FPGA boards. It first uses the
gem5 simulator [5] to collect program runtime information and
create checkpoint files. The information collected includes the
logical registers’ values and the first instruction address at the
beginning of the interval, the executed syscalls’ information,
and the necessary memory states.

Second, it provides an extensible and general checkpoint
loader for reading checkpoint files and re-executing program
intervals on FPGA boards. This loader is independent of
checkpoints and OS, making it easier to debug and extend new
features. To increase the generality and extendibility of our
design, we address the following challenges.

a) The system call handling challenge: Since the exe-
cution of syscalls relies on OS resources, to ensure its cor-
rectness and increase the generality of the design, we choose
to reconstruct the architectural effects of syscalls. Therefore,

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA 

	



we save all input and output parameters and memory updates
associated with the syscalls executed in the interval. Before
replaying the interval, these syscalls will be replaced with jump
instructions that redirect the processor to a specific function that
reconstructs their effects.

b) Interval replaying exit challenge: During the interval
replaying, the replaying process needs to be actively terminated
after the desired interval has been completely re-executed.
Otherwise, it may be terminated abnormally due to accessing
or executing uninitialized memory.

To this end, we will find a special interval exit instruction for
triggering the replaying exit. An interval exit instruction needs
to satisfy the following conditions.

• It is executed after the end of the specified interval.
• It is executed for the first time after the last syscall in the

interval. If there is no syscall, this instruction is executed
for the first time from the beginning of the interval.

As the interval exit instruction is only executed once after
the last syscall, we will replace it with a jump for terminating
the replaying process actively.

c) Extensible interval replaying design challenge: This
work proposes an extensible and general checkpoint loader for
replaying intervals. This loader is a self-contained program with
complete text and data segments and can directly use all library
functions. The main challenge is the memory layout collisions
between the loader and the target program, including the stack
collision and the text and data segments collision. To avoid
these collisions, we use gem5 to initialize the target program’s
stack address and the target program’s break pointer (brk) to
other places to reserve enough memory space for the loader’s
stack space and text and data segments.

III. EVALUATION
A. Experimental Setup

This work performs evaluations with the SonicBOOM pro-
cessor deployed on the Digilent Genesys 2 FPGA board. Table
1 lists the critical processor parameters. The SPEC CPU2006
and CPU2017 benchmarks with reference inputs are used.

TABLE I
THE PROCESSOR PARAMETERS

Component Parameter
Core 50 MHz, 2-wide fetch, 4-wide issue, 16-entry load/store

queue, 64-entry reorder buffer, TAGE branch predictor
L1-I Cache 16 KB, 64 B line, 4-way, 2 cycle access time
L1-D Cache 16 KB, 64 B line, 4-way, 2 cycle access time
L2 Cache 512 KB, 8-way, 40 cycle

For each benchmark, we sample every 200 million instruc-
tions and record the values of hardware counters. Figure 1
presents the sampling results for 523.xalancbmk r, including
three hardware performance metrics. The results show that
our design can correctly sample programs and obtain the
microarchitecture behaviours of each program interval.

Furthermore, we generate the checkpoints for each bench-
mark for ten random intervals. Each interval contains 1 billion
instructions for warming up and 200 million for evaluating the

Fig. 1. The sampling results of 523.xalancbmk r.

replaying accuracy. Figure 2 presents the average relative per-
cent error of the hardware performance metrics of the intervals
replaying compared to the sampling results. The result shows
that our design can accurately restore the microarchitecture
behaviours of the specified program intervals on FPGA boards,
especially for SPECInt benchmarks. At the same time, the low
relative percent error also indicates that our solutions to the
syscall handling and the memory layout collisions are effective.

Fig. 2. The relative percent error of the hardware performance metrics of the
benchmark intervals replaying compared to the sampling results.

IV. CONCLUSION
This work proposed a hardware-software cooperative

interval-replaying solution for alleviating the problems caused
by the resource limitation of FPGA boards. It supports archi-
tecture researchers in finding the desired program intervals and
replaying them on FPGA boards. Experimental results show
that our solution is effective.

V. ACKNOWLEDGEMENT
We greatly thank the anonymous reviewers for their insight-

ful comments. This work was supported by the National Key
R&D Program of China (Grant no. 2022YFB4500500). Chun
Yang and Xu Cheng are the Corresponding authors of this
paper.

REFERENCES

[1] J. Zhao et al., “SonicBOOM: The 3rd Generation Berkeley Out-of-Order
Machine,” In 4th RISC-V Workshop, 2020.

[2] H. Patil et al., “ELFies: Executable region checkpoints for performance
analysis and simulation,” in CGO, 2021.

[3] J. Ringenberg and T. N. Mudge, “SuiteSpecks and SuiteSpots: A method-
ology for the automatic conversion of benchmarking programs into
intrinsically checkpointed assembly code,” in ISPASS, 2009.

[4] H. Patil et al., “PinPlay: A framework for deterministic replay and
reproducible analysis of parallel programs,” in CGO, 2010.

[5] N. Binkert et al., “The gem5 simulator,” ACM SIGARCH computer
architecture news, vol. 39, no. 2, 2011.

!

!


	Select a link below
	Return to Previous View
	Return to Main Menu


