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Abstract—As SSD failures seriously lead to data loss and service
interruption, proactive failure prediction is often used to improve
system availability. However, the unidimensional SMART-based
prediction models hardly predict all drive failures. Some other
features applied in data centers and enterprise storage systems
are not readily available in consumer storage systems (CSS). To
further analyze related failures in production SSD-based CSS,
we study nearly 2.3 million SSDs from 12 drive models based
on a dataset of SMART logs, trouble tickets, and error logs.
We discover that SMART, FirmwareVersion, WindowsEvent, and
BlueScreenofDeath (SFWB) are closely related to SSD failures.
We further propose a multidimensional-based failure prediction
approach (MFPA), which is portable in algorithms, SSD vendors,
and PC manufacturers. Experiments on the datasets show that
SFWB-based MFPA achieves a high true positive rate (98.18%)
and low false positive rate (0.56%), which is 4% higher and 86%
lower than the SMART-based model. It is robust and can con-
tinuously predict for 2-3 months without iteration, substantially
improving the system availability.

Index Terms—SSD, multidimensional features, failure predic-
tion, machine learning, system availability

I. INTRODUCTION

SSDs have been the preferred choice for users as they offer
better performance and durability than HDDs and are more
resistant to shock and vibration. However, failures of system
components may cause data loss, increase data recovery costs,
and affect services and system availability. Failures of the
storage drive are reported as the major component failures [1]–
[3]. The reported downtime cost for 63 data centers increased
from $5,617/min in 2010 to $8,851/min in 2016 [4].

Therefore, passive fault tolerance mechanisms including
replication, Erasure Codes (EC), and Redundant Arrays of
Independent Disks (RAID) have been proposed to reduce the
impact. But the system availability is still severely reduced as
these measures are taken after failures. By contrast, proactive
fault tolerance mechanisms can anticipate failures and migrate
data and services out of the unhealthy storage drives, which
can reduce downtime costs and significantly improve system
availability. There have been many studies [5]–[12] on proactive
fault tolerance mechanisms based on HDDs for their compar-
atively long history.

However, as a novel storage drive, the proactive fault tol-
erance mechanism of NAND flash-based SSDs has received
relatively less attention. Some studies on SSD reliability focus
on specific error analysis of simulated workload in a controlled
laboratory environment [13], [14]. Some focus on error types
and their relationship with workloads, drive age, and wear-
out [12], [15]–[18]. Several [19]–[22] develop several failure

prediction models in data centers. But these unidimensional
features-based models with high false alarm rate are hard to
predict all drive failures [11].

Besides, the current research on SSD mainly focuses on the
data center or enterprise-grade SSDs, and there is little research
on consumer-grade SSDs. The data of consumer storage sys-
tems (CSS, e.g., Office/Desktop Computers, Laptops) are as
important as data of enterprise storage systems. Enterprise-
grade and consumer-grade SSDs differ significantly in multiple
dimensions, including flash, P/E cycle, performance, and usage
scenarios. However, for cost concerns, the current CSS does
not have passive fault-tolerant mechanisms widely deployed in
data centers or enterprise storage systems, let alone proactive
fault tolerance mechanisms such as failure prediction. CSS only
provides failure detection technologies based on SMART (self-
monitoring, analysis, and reporting technology) thresholds,
which increases the risk of data loss for individual users. A
large percentage of users rarely think about backing up their
data. The backup data is not real-time, which is hard to ensure
that the data is up-to-date. Some data is also not suitable
for backup to the cloud. Once an SSD fails, data recovery is
difficult and costly (even several times the price of the SSD).

Furthermore, the failure prediction model used for HDD and
enterprise-grade SSD in data centers and enterprise storage
systems is not fully applicable to consumer-grade SSD. The
differences exist not only between HDDs and SSDs but also
between enterprise-grade and consumer-grade SSDs. The pre-
diction model of HDD/enterprise-grade SSD cannot be used
to predict consumer-grade SSD failures. SMART attributes are
widely utilized to predict HDD failures [6], [7], [9], [10]. Some
others predicted HDD failures by combining SMART with I/O,
performance, and location attributes [8], [11]. Jacob et al. [19]
develop models for SSDs in data centers only based on error
logs. But these features other than SMART are not readily
available to CSS as users are relatively scattered and vary in
usage time and habits. Other dimensional compelling features
should be explored to improve the model prediction effect.

In this paper, we study nearly 2.3 million SSDs of
12 drive models spanning nearly two years. An in-depth
study of trouble tickets shows that multidimensional features
SFWB, namely SMART, FirmwareVersion, WindowsEvent, and
BlueScreenofDeath, are intrinsically related to SSD failures. We
further propose a Multidimensional-based Failure Prediction
Approach (MFPA) to predict SSD failures.

To conclude, we make the following contributions:
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• To the best of our knowledge, we are the first to study
consumer-grade SSD failures in the actual CSS and find that
SSD failures can be manifested as drive-level and system-
level failures.

• We discover that new multidimensional features SFWB are
associated with SSD failures. The drive-level features in-
cluding SMART and Firmware Version and the system-level
features including WindowsEvent and BlueScreenofDeath can
indicate SSD errors.

• Based on SFWB, we further develop MFPA — an effective
SSD failure prediction method. Through the optimization for
discontinuous data, identification of failure timestamp, time-
series-based model optimization, and validation of multiple
algorithms, MFPA achieves 98.18% true positive rate (TPR)
and 0.56% false positive rate (FPR).

• Experiment results prove that SFWB-based MFPA is robust
and insensitive to machine learning (ML) algorithms, man-
ufacturers and time periods.

II. BACKGROUND AND MOTIVATION

Features Used for Failure Prediction in data centers:
SMART is designed to monitor drives’ health without inter-
ruption [5]. Current disk failure prediction is mainly based
on SMART attributes [6], [7], [9], [10], [20], [23], [24].
Beyond the SMART attributes, Researchers utilize other fea-
tures (error/performance/location logs, etc.) to build the failure
prediction model [8], [11], [19].

Methods for Failure Prediction: Almost all disk vendors
use the original threshold-based algorithms [5] to trigger a
failure alarm when a single SMART attribute exceeds the
threshold value. However, the TPR is only 3%-10%, and
FPR is 0.1% in such cases. Statistical Methods can improve
failure detection accuracy, mainly including parametric and
non-parametric models. However, the TPR only increases to
56%-70%, and FPR decreases to nearly 1% [10]. To improve
prediction capability, ML algorithms (such as Bayes, SVM,
RF, LSTM, CNN LSTM, etc.) are widely used for the failure
prediction of storage drives [7]–[11], [23], [25], [26].

Research on SSD Availability: Fewer studies have been
done on SSD failure prediction, especially for SSD in CSS.
Most existing studies [12]–[17] have focused on the statistical
analysis of the availability of SSDs deployed in enterprise
storage systems and large data centers, while related research on
SSDs in CSS lacks. Some studies [19]–[22] build several failure
prediction models for SSD in data centers. While these research
mainly focus on enterprise-grade SSD, relating research for
consumer-grade SSD lacks.

The data of CSS and enterprise storage systems are equally
important. The above research of failure prediction based on
HDDs and SSDs mainly focuses on data centers or enterprise
storage systems. However, they are not directly applicable to
CSS. The failure prediction of storage drives in CSS faces many
challenges that data centers do not face.

(1) It is necessary to utilize the proactive failure pre-
diction for SSD-based CSS. Original SMART-threshold-based
failure detection technologies provided by PC manufacturers
cannot predict failures and reduce the risk of data loss. Users

in CSS do not have the passive fault tolerance mechanisms
adopted by users in enterprise storage systems and data centers.
Even if users adopt other storage media for data backup, it
is not easy to ensure the timeliness of backup. Some data is
also not suitable for backup to the cloud. Data recovery is
complicated and costly when a failure happens on SSD. Hence,
introducing proactive failure prediction technologies into CSS
can significantly alleviate this problem.

(2) Data discontinuity and uncertainty of failure time in
CSS reduce the quality of data and affect the performance
of model prediction. There are differences between data
centers and CSS. Individual users are scattered and cannot
be centrally managed as conveniently as data center users,
especially in data collection and failure collection. Data centers
provide service on a 24/7 basis, which can easily collect data
regularly. While the startup time of CSS is irregular, data
collection at the hr/min level is unrealistic, resulting in the
discontinuity of the dataset. Individual users would not seek
repair immediately once the drive fails, so the interval between
failure and repair makes it challenging to determine the SSD’s
actual failure time.

(3) The differences between enterprise-grade and
consumer-grade SSD make the model for the former
cannot be directly used for that of the latter. There are
some differences between client SSDs and enterprise SSDs at
both the drive level (e.g. controller, NAND quality, and FTL
algorithms) and the user level (e.g., workload and power on/off
behavior). It is incorrect to use a model for HDD or SSD with
SLC/MLC flash and PCIe/SAS interface to predict the failure
of SSD with TLC flash and SATA interface.

(4) Beyond SMART, other features for failure prediction
in data centers are not entirely applicable to CSS. Due to
the high FPR or low TPR, the SMART-based models may raise
the misclassification overhead, leading to additional data mi-
gration, unnecessary service interruption, and latent economic
losses. Other features (workloads/location logs) relevant to SSD
failures in data centers are not readily available in CSS. The
application usage habits of individual users vary considerably,
and so does the relevant load and performance information.
The location information (disk/server/rack/room) is related to
drive failures in data centers, while that of servers in CSS is so
widely distributed that it is of little help for failure prediction.

III. OUR PROPOSED SCHEME

A. Scheme Overview
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Fig. 1: Scheme overview
Fig.1 shows the overview of our proposed scheme, which

consists of two parts: the data mining and application of SSD
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failures in production CSS. The former is used for mining
the multidimensional features related to SSD failures in CSS.
An in-depth study is conducted on nearly 2.3 million SSDs
spanning nearly two years, in which multidimensional features
(SMART, Firmware, WindowsEvent, BlueScreenofDeath, etc.)
are proved to be related with SSD failures. The latter is the
application of the failure prediction model of SSD. It builds an
effective failure prediction model for SSDs by optimizing data
preprocessing and model training.

B. Multidimensional features (SFWB) related to SSD failures

The upper-layer services could already be affected before a
complete SSD failure. Many of the system-level events are early
signals of disk errors. The trouble tickets provided by the after-
sales department detail various hardware and software problems
or prompts (such as machine case/screen/motherboard/SSD
damage or software faults).

TABLE I: RaSRF—Replaced as SSD Related Failures
Failure Level Category Causes Pct.

Drive Level
(31.62%) Components failure

Storage drive failure 31.13%
Firmware upgrade failure 0.42%

Overtemperature 0.07%

System Level
(68.38%)

Boot/ Shutdown failure

Blue/Black screen after startup 21.44%
Unable to boot/ shutdown 15.84%

Bootloop 7.73%
Stuck startup icon 3.20%

System running failure

Response delay/ blue screen 8.66%
Unauthorized system installation 5.43%

System partition damage 2.58%
Automatic shutdown/ restart 1.94%

System upgrade/ recovery failure 0.78%
Application error Apps crash/ report errors/ stuck 0.77%

By mining the trouble tickets, we discover the details re-
lated to SSD failure (named RaSRF-Replaced as SSD Related
Failures) . As presented in Table I, SSD failures can be mani-
fested as drive-level and system-level ones. Drive-level failures
(31.62%) include descriptions of SSDs directly identified as
faulty, and the symptoms include slow read/write, data loss,
data failure after firmware upgrade, automatic restart, etc.
System-level failures (68.38%) contain system startup or soft-
ware running errors. 48.21% of the failures occur during system
startup or shutdown, and 20.16% occur during system running.
The combination of driver-level and system-level errors helps
comprehensively identify the eventual SSD failures.

TABLE II: SMART attributes
ID # Attribute Name ID # Attribute Name

1 Critical Warning 9 Host Write Commands
2 Composite Temperature 10 Controller Busy Time
3 Available Spare 11 Power Cycles
4 Available Spare Threshold 12 Power On Hours
5 Percentage Used 13 Unsafe Shutdowns

6 Data Units Read 14 Error Media and Data
Integrity Errors

7 Data Units Written 15 Number of Error
information Log Entries

8 Host Read Commands 16 Capacity

Observation #1: SMART (S) comprehensively reflects the
health status of SSD. SMART is designed to detect and report
various indicators of drive reliability, including multiple types
of errors and operational data. It has been widely used for
failure prediction of storage drives. Except for capacity, the
vendors only provide 15 SMART features for M.2 SSDs, which
is listed in Table II. Based on S 12 (power on hours), we plot
the failure time distribution of SSDs in CSS. As shown in Fig.2,
the failure numbers are higher in infancy, tend to be stable, and

then gradually increase during the wear-out period. It fits the
bathtub curve of the SSD lifecycle.
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Fig. 2: Failure distribution Fig. 3: Failure rate of FVs

Observation #2: Firmware (F) affects SSD availability.
SSD firmware update fixes known bugs that might otherwise
trigger driver errors or even SSD failures in older versions.
Vendors have different naming conventions for FirmwareVer-
sion (F), ranging from strings to numeric values. In Fig.3, we
calculate the failure rate of different FirmwareVersion for faulty
SSDs. We name F j according to the time sequence of Vendor
i (i.e., i F j). Vendor I has 5 different FirmwareVersions with
high failure probability, especially I F 1 and I F 2. Vendor
II has 3 FirmwareVersions, and Vendor III and IV have 2.
For all the 5 SSD vendors, the failure rate of the earlier
FirmwareVersion is higher than that of the latter. The earlier
the firmware version, the higher the failure rate. We observe
that most SSDs in the historical dataset remain on the fixed F
rather than update. The possible cause may be that the SSD
management software does not push the update notification, or
the user does not perform the update-driven action.

Observation #3: Some WindowsEvents (W) are early sig-
nals of SSD failures. As shown in Table I, when an SSD starts
to fail, the SSD/system/application will gradually experience
various errors. WindowsEventViewer helps troubleshoot various
windows problems.

TABLE III: WindowsEvent logs
ID# Description
W 7 The device has a bad block
W 11 The driver detects a controller error on Disk i

W 15 The Disk i is not ready for access yest
W 49 Configuring the page file for crash dump fails.
W 51 An error is detected on device during a paging operation

W 52 The driver detects that device has predicted it will fail.

W 154 The IO operation at logical block address 0x5e50d0 for Disk i
fails due to a hardware error

W 157 Disk has been surprisingly removed
W 161 MSExchageIS(303) File System error during IO on database.

It displays logs of application and system messages, includ-
ing errors, information messages, and warnings. We investigate
WindowsEvent descriptions in Table III and find some of them
are related to SSD failures. We track and collect the number
of Ws occurring each day. Fig.4 lists the cumulative total
of W 161 metrics distributions for healthy and faulty storage
drives before failure. Faulty SSDs (F1-F4) are more likely than
healthy SSDs (N1-N4) to experience various W errors before
the eventual failure.

Fig. 4: Sum of W 161 Fig. 5: Sum of B 50

Observation #4: Some BlueScreenofDeath (B) logs are
early signals of SSD failures. BlueScreenofDeath is an error
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screen displayed on a windows computer after a fatal system
error. It is caused by various problems, such as general hard-
ware failures or unexpected terminations of critical processes.
Through further investigation into the causes of B, we find
that many B errors are related to SSD failures (see Table IV).
Damaged storage drives, bad sectors, and various storage drive
issues all result in B. We daily collect the number of B listed
in Table IV. Fig.5 presents the cumulative distribution of B 50
for healthy and faulty SSDs. Compared to the healthy SSDs
(N1-N4), the faulty SSDs (F1-F4) are more likely to encounter
various B errors before the eventual failure.

TABLE IV: BlueScreenofDeath logs
ID# Attributed Name ID# Attributed Name
0x23 FAT FILE SYSTEM 0xE4 WORKER INVALD

0x24 NTFS FILE SYSTEM 0xFC ATTEMPTED EXECUTE OF
NOEXECUTE MEMORY

0x48 CANCEL STATE IN
COMPLETED IRP 0x10C FSRTL EXTRA CREATE

PARAMETER VIOLATION

0x50 PAGE FAULT IN
NONPAGED AREA 0x12C EXFAT FILE SYSTEM

0x6B PROCESSL INITIALIZATION
FAILED 0x135 REGISTRY FILTER

DRIVER EXCEPTION

0x77 KERNEL STACK INPAGE
ERROR 0x13B PASSIVE INTERRUPT ERROR

0x7A KERNEL DATA INPAGE
ERROR 0x157 KERNEL THREAD PRIORITY

FLOOR VILOATION
0x80 NMI HARDWARE FAILURE 0x17E MICROCODE REVISION MISMATCH
0x9B UDFS FILE SYSTEM 0x189 BAD OBJECT HEADER
0xC7 TIMER OR DPC INVALID 0x1DB IPI WATCHDOG TIMEOUT
0xDA SYSTEM PTE MISUSE 0xC00 STATUS CANNOT LOAD

C. SFWB-based failure prediction model (MFPA)
Based on the above discovered multidimensional features

(SFWB), we build the failure prediction model for SSD in CSS.
(1) Optimization of the discontinuous data. The dataset

consists of serial number (S/N), model, timestamp, interface,
capacity, S{1...m}, F, W{1...i}, B{1...j}. S/N is the identifier of
an SSD. The model shows the vendors of SSD. The interface is
PCIe 3.0*4. Label encoding technology is adopted to handle the
firmware version that is a character variable. We calculate the
accumulative values of W and B as the input features because
the daily number of W and B is hard to detect trends.

Fig. 6: Data Discontinuity

RaSRF S/N IMT Description

DataSet S/N Pt_d S|F|W|B|· · ·

Eventual
Failure Time
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Fig. 7: Eventual failure time
Unlike data centers that continuously collect data, the dis-

continuity of data is the particularity of CSS. The healthy data
cannot be recorded daily as there is no guarantee that users will
turn on their computers daily. The timestamp of the dataset in
CSS is relatively scattered. As shown in Fig.6, Vendor I’s total
number of faulty SSDs ranges from 23 to 77 within a single
interval over two months. The faulty SSD F1 has the logs at
timestamps (0, 2-6, 9-13). That of F2 and F3 are (0, 3, 5-8, 11,
13-15) and (0, 11-14) respectively. If the data of some faulty
SSDs is discontinuous and the time window between adjacent
time points is too long (e.g., F3), the data cannot be used for
subsequent model training; otherwise, the model performance
will be affected. We remove the data with a long interval (≥
10) and fill the mean value of adjacent time windows(= 3) for
partial discontinuous data.

(2) Identification of the eventual failure time. Unlike the
datasets in the data center that can be conveniently labeled as

faulty or healthy, the data of CSS require manual intervention
and labeling. The SSDs of CSS are labeled through the corre-
sponding S/N in RaSRF from trouble tickets. As presented in
Fig.7, RaSRF records SSD failures in trouble tickets, including
S/N, initial maintenance time (IMT), and corresponding failure
descriptions. Dataset stands for the history SSD logs, including
S/N, tracking point date (Pt d), and value of SFWB. It is
inaccurate to directly label IMT i in the RaSRF closest to
Pt d i in the dataset as the failure time of SSD i. There may
be a time interval (ti) between Pt d i and IMT i because a
faulty SSD may not be immediately sent to the after-sales
department. A threshold θ is taken to address the problem. If
ti ≤ θ, the Pt d i closest to IMT i is used as the SSD failure
time point. Otherwise, the corresponding {IMT i - θ} is taken.
The attribute value of the faulty disk generally changes during
a period before the failure occurs. The value of θ is set to
7 through the sensitive test. If the threshold is too high, the
feature value of the faulty disk around {IMT i - θ} is similar
to that of the healthy disk, increasing the model’s FPR; if it is
too low, many faulty disks have no data around {IMT i - θ},
reducing the model’s TPR.

(3) Time-series-based optimization. The datasets of SSD
health status are characterized by imbalance and time series.
Faulty SSDs data collected within 7, 14, or 21 days before
failures are generally selected as positive samples. The negative
samples are selected from the healthy SSDs in proportion to the
positive ones (e.g., 3:1 or 5:1). We adopt the RandomUnder-
Sampler algorithm to balance the minority and majority classes.
We further optimize sample segmentation and cross-validation.

(3.1)Timepoint-based sample segmentation. As shown in
Fig.8(a) (1), a dataset is usually divided into a training set
(Tr) and a test set (Te) in a particular proportion (m:n) (e.g.,
10:1). However, this method does not consider the time series
of data. The training set may contain future data, while the test
set may include historical data, which increases the possibility
of inaccurate prediction. Therefore, as shown in Fig.8(a) (2),
a timepoint-based sample segmentation method is adopted.
Initially, the data of Tr and Te are chosen from the given time
window (TW for short) in the historical dataset. Then, Tr and
Te are segmented by the time point in a learning time window
(LW for short). The data within LW are used as Tr, and the
remaining data form Te.
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(b) Cross-Validation

Fig. 8: Timeseries-based Optimization
(3.2)Time-series-based Cross-Validation. The k-fold Cross

Validation is widely applied for model training. The training
datasets are divided into k subsets in Fig. 8(b) (1). Each iteration
will choose one subset as a validation sample (Va), while the
remaining k-1 subsets are integrated into the training sample
(Tr). However, the timing features of the data are still under-
utilized. The training k-1 subsets may contain future data, while
the validation subsets may contain historical ones, reducing
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Fig. 9: Across Features(a) Fig. 10: Across MLs(a) Fig. 11: Across Vendors(a) Fig. 12: Across Months(a)

Fig. 13: Across Features(b) Fig. 14: Across MLs(b) Fig. 15: Across Vendors(b) Fig. 16: Across Months(b)
prediction accuracy. The time-series-based cross-validation is
proposed to address the problem in Fig.8(b) (2). The data are
divided into 2*k subsets (labeled 1, ..., 2k) in chronological
order. The corresponding Tr consists of records occurring only
before the records that form Va. Consequently, the model will
not be trained by future samples. The consecutive k subsets are
for building the model in each iteration, and the following k+1
subset is for validation.

(4) Multiple ML Algorithms and Hyperparameter Op-
timization. With the proposed SFWB, the optimization of
data preprocessing and model training, we realize the failure
prediction model based on multiple ML algorithms, including
Bayes, SVM, RF, GBDT, and CNN LSTM. The hyperparameter
controls the learning process, and other parameters (node
weights) are obtained by training. Different model training
algorithms need different hyperparameters, such as maximum
tree depth and max features for RF and the neural network’s
learning rate and mini-batch size. We utilize Grid Search,
combined with time-series-based cross-validation, to optimize
the value of hyperparameters.

(5) Feature Group Sets. We adopt various input datasets to
verify the validity of different features. As presented in Table
V, we divide them into seven different feature groups: SFWB,
SFW, SFB, SF, S, W, and B. Group S is the baseline. Although
each group set contains multiple attributes, not all of them
are associated with SSD failures. We implement a sequential
forward selection algorithm [27] to select the optimal subset.

TABLE V: Feature Groups
SMART Firmware WindowsEvent BlueScreenofDeath

SFWB 16 1 5 23
SFW 16 1 5 NaN
SFB 16 1 NaN 23
SF 16 1 NaN NaN
S 16 NaN NaN NaN
W NaN NaN 5 NaN
B NaN NaN NaN 23

IV. EVALUATION AND ANALYSIS

(1) Dataset. The dataset consists of nearly 2.3 million M.2
SSDs based on 3D TLC NAND flash that supports the NVM
Express protocol. As listed in Table.VI, they are mainly from
four manufacturers (I to IV) with 12 models of different
capacities (from 128GB to 1TB) and layers (from 32-layer to
96-layer). The four manufacturers’ total Replacement Rate (RR)

TABLE VI: Dataset
Manu.
/Model F/F Protocol FlashTech Total Sum failure Sum RR

I
M.2

(2280) NVMe1.* 3D TLC

270,325 1850 0.0068
II 1,001,278 669 0.0007
III 908,037 463 0.0005
IV 152,405 172 0.0011

is 0.0068, 0.0007, 0.0005, and 0.0011 respectively. We train the
prediction model based on vendors rather than the traditional
model based on disk series.

The confusion matrix (displays the number of true pos-
itives (TP), false positives (FP), false negatives (FN),
and true negatives (TN)) is widely used to evaluate
the effectiveness of the classification model. Accuracy
(ACC=(TP+TN)/(TP+TN+FP+FN)) is the ratio of all correctly
predicted cases and all cases of the data. True positive rate
(TPR=TP/(TP+FN)) is the proportion of correctly predicted
cases. False positive rate (FPR=FP/(FP+TN)) refers to the
expectancy of the false positive ratio. AUC (the area under the
ROC curve) represents the trade-off between TPR and FPR.
Beyond the above metrics, the newly introduced Positive De-
tection Rate (PDR=(TP+FP)/(TP+TN+FP+FN)) is proposed
to reflect the ratio of all predicted positive cases and all cases.

(2) How does MFPA perform towards feature groups?
(2.1) As present in Fig.9 and Fig.13, the SFWB group

performs the best (98.18% TPR and 0.56% FPR) across all
feature groups, confirming our hypothesis that SFWB features
are helpful to the SSD failure prediction beyond the traditional
SMART-based prediction model. W and B errors are good
indicators of SSD failures. The TPR, FPR, and PDR of the
SFWB-based model are 98.18%, 0.56%, and 0.56%, compared
to 95.37%, 3.58%, and 3.67% of the SF-based model respec-
tively. Adding the F feature improves the prediction capability,
but the improvement is limited(less than 10% benefit in TPR
and FPR). Minor firmware version updates do not mean that
previous F will cause SSD failures. F is not frequently updated
unless a severe bug is found.

Fig. 17: Feature selection Fig. 18: Comparison
(2.2) Through feature selection shown in Fig.17, the TPR

of the model increases from 0.926 to 0.9818, and the FPR
decreases from 0.023 to 0.0056. The optimal feature subset
obtained from feature selection varies from vendors and data
sets. Features such as Available Spare Threshold, Error Media
and Data Integrity Errors, power cycles, W 11, W 49, W 51,
W 161, B 50, B 7A require special attention. Available Spare
Threshold is less associated with SSD failures.

Meanwhile, we compare MFPA and state-of-art studies [19]–
[22]. They build the SSD-based failure prediction model with
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some ML algorithms. Fig.18 proves that MFPA achieves the
best performance, reflecting the effectiveness of SFWB groups
for SSD failure prediction.

(3) Is MFPA portable across ML algorithms? As listed
in Fig.10 and Fig.14, we evaluate MFPA across many widely
used algorithms (Bayes, SVM, RF, GBDT, CNN LSTM). The
TPR of MFPA models based on traditional ML algorithms can
reach more than 95%. RF performs best with 98.18% TPR and
0.56% FPR. CNN LSTM achieves 94.74% TPR and 12.98%
FPR. Data discontinuity is inevitable in CSS, which leads to
poor data quality, and further affects the performance of time-
series-based CNN LSTM. The tree-based model is superior to
other models for discontinuous data.

(4) Is MFPA portable across vendors? These SSDs from
four vendors are widely used in CSS by various PC manufactur-
ers (Dell, Lenovo, HP, SAMSUNG laptop/office computers, etc.)
As listed in Fig.11 and Fig.15, SFWB-based MFPA performs
effectively across different vendors from I to III (with 98.81%,
96.89% and 97.41% AUC, respectively). The model for vendor
IV works not well as it has the fewest faulty SSDs.

(5) Is MFPA portable across time periods? We make
MFPA predict continuously for five months without iteration.
As shown in Fig.12 and Fig.16, the model’s TPR of vendor
I keeps stable for five months, while its FPR in third month
increases to 1.34%. Other manufacturers fared similarly. The
model needs iteration every 2-3 months. The historical changes
of some feature values that MFPA has learned in the past
cannot adapt to the new data, causing the increasing FPR in the
subsequent period. The model needs to be iterated periodically.

(6) Is MFPA portable across the lookahead window?
Fig.19 presents the TPR of MFPA in different lookahead
windows (up to 21 days). Failure prediction several days in
advance is sufficient for subsequent processing (such as data
backup and replacement). MFPA performs well within 5 days
(89% TPR). A long lookahead window N reduces the difference
in feature values between healthy and faulty SSDs, resulting in
a misjudgment of the model (55.66% TPR at N = 20).

Fig. 19: Across lookahead N Fig. 20: Overhead
Fig.20 lists the overhead of MFPA in various stages. Feature

engineering occupies the most overhead regarding the data
item, execution time, and storage space. For 4 million real-
time data, the model takes only about 3 minutes to complete
the prediction. Microsecond prediction can be achieved for the
model deployed on the client side. The model is iterated every
two months and pushed to the user for updates.

V. CONCLUSION

Through an in-depth study on 2.3 million SSDs from pro-
duction CSS, we find that multidimensional features (SFWB,
SMART, Firmware, WindowsEvent, BlueScreenofDeath) are
correlated with SSD failures. We further put forward SFWB-
based MFPA to predict SSD failures by optimizing discon-
tinuous data and eventual failure time identification, as well

as time-series-based sample segmentation and cross-validation.
Experiment results show that SFWB-based MFPA can achieve a
high TPR (98.18%) and low FPR (0.56%), which is 4% higher
and 86% lower than the SMART-based model. It is robust and
portable on ML algorithms, manufacturers and time periods.

ACKNOWLEDGMENT

This work was supported by Key Laboratory of Information
Storage System and Engineering Research Center for Data
Storage Systems and Technology, Ministry of Education, China.

REFERENCES

[1] S. Bianca. et al., “Understanding disk failure rates: What does an mttf
of 1,000,000 hours mean to you?” TOS, vol. 3, no. 3, pp. 8–es, 2007.

[2] V. K. Venkatesh. et al., “Characterizing cloud computing hardware
reliability,” in SoCC, 2010, pp. 193–204.

[3] W. Guosai. et al., “What can we learn from four years of data center
hardware failures?” in DSN, 2017, pp. 25–36.

[4] L. Ponemon, “Cost of data center outages,” Data Center Performance
Benchmark Serie, 2016.

[5] B. Allen, “Monitoring hard disks with smart,” Linux Journal, no. 117,
pp. 74–77, 2004.

[6] B. M. Madalina. et al., “Predicting disk replacement towards reliable data
centers,” in SIGKDD, 2016, pp. 39–48.

[7] X. Yanwen. et al., “Ome: An optimized modeling engine for disk failure
prediction in heterogeneous datacenter,” in ICCD, 2018, pp. 561–564.

[8] X. Yong. et al., “Improving service availability of cloud systems by
predicting disk error,” in ATC, 2018, pp. 481–494.

[9] X. Yanwen. et al., “Dfpe: Explaining predictive models for disk failure
prediction,” in MSST, 2019, pp. 193–204.

[10] Z. Ji. et al., “Hddse: Enabling high-dimensional disk state embedding
for generic failure detection system of heterogeneous disks in large data
centers,” in ATC, 2020, pp. 111–126.

[11] L. Sidi. et al., “Making disk failure predictions smarter!” in FAST, 2020,
pp. 151–167.

[12] M. Stathis. et al., “A study of ssd reliability in large scale enterprise
storage deployments,” in FAST, 2020, pp. 137–149.

[13] C. Yu. et al., “Data retention in mlc nand flash memory: Characterization,
optimization, and recovery,” in HPCA, 2015, pp. 551–563.

[14] M. K. Qureshi et al., “Avatar: A variable-retention-time (vrt) aware refresh
for dram systems,” in DSN, 2015, pp. 427–437.

[15] F. Mahdisoltani et al., “Proactive error prediction to improve storage
system reliability,” in ATC, 2017, pp. 391–402.

[16] S. Bianca. et al., “Flash reliability in production: The expected and the
unexpected,” in FAST, 2016, pp. 67–80.

[17] X. Erci. et al., “Lessons and actions: What we learned from 10k ssd-
related storage system failures,” in ATC, 2019, pp. 961–976.

[18] H. Shujie. et al., “An in-depth study of correlated failures in production
ssd-based data centers,” in FAST, 2021, pp. 417–429.

[19] A. Jacob. et al., “Ssd failures in the field: symptoms, causes, and
prediction models,” in SC, 2019, pp. 1–14.

[20] Z. Ji. et al., “Minority disk failure prediction based on transfer learning in
large data centers of heterogeneous disk systems,” TPDS, vol. 31, no. 9,
pp. 2155–2169, 2020.

[21] C. Chakraborttii et al., “Improving the accuracy, adaptability, and inter-
pretability of ssd failure prediction models,” in SoCC, 2020, pp. 120–133.

[22] R. Pinciroli et al., “Lifespan and failures of ssds and hdds: Similarities,
differences, and prediction models,” TDSC, 2021.

[23] Z. Ji. et al., “Tier-scrubbing: An adaptive and tiered disk scrubbing
scheme with improved mttd and reduced cost,” in DAC, 2020, pp. 1–
6.

[24] Z. Xinyan. et al., “Csle: a cost-sensitive learning engine for disk failure
prediction in large data centers,” in DATE. IEEE, 2022, pp. 478–483.

[25] S. Xiaoyi. et al., “System-level hardware failure prediction using deep
learning,” in DAC, 2019, pp. 1–6.

[26] L. Chuan. et al., “Ntam: neighborhood-temporal attention model for disk
failure prediction in cloud platforms,” in WWW, 2021, pp. 1181–1191.

[27] A. W. Whitney, “A direct method of nonparametric measurement selec-
tion,” TC, vol. 100, no. 9, pp. 1100–1103, 1971.

!

!


	Select a link below
	Return to Previous View
	Return to Main Menu


