
An Automated Verification Framework for
HalideIR-Based Compiler Transformations

Yanzhao Wang and Fei Xie
Department of Computer Science

Portland State University
Portland, OR 97201, USA
{wyanzhao, xie}@pdx.edu

Zhenkun Yang, Jeremy Casas, Pasquale Cocchini and Jin Yang
Strategic CAD Labs

Intel Corporation
Hillsboro, OR 97124, USA

{zhenkun.yang, jeremy.casas, pasquale.cocchini, jin.yang}@intel.com

Abstract—HalideIR is a popular intermediate representation for
compilers in domains such as deep learning, image processing, and
hardware design. In this paper, we present an automated verifi-
cation framework for HalideIR-based compiler transformations.
The framework conducts verification using symbolic execution
in two steps. Given a compiler transformation, our automated
verification framework first uses symbolic execution to enumerate
the compiler transformation’s paths, and then utilizes symbolic
execution to verify if the output program for each transformation
path is equivalent to its source. We have successfully applied this
framework to verify 46 transformations from the three most-
starred HalideIR-based compilers on GitHub and detected 4
transformation bugs undetected by manually crafted unit tests.

I. INTRODUCTION

HalideIR [17] is a popular intermediate representation (IR)
widely used in deep-learning [5], image processing [3], and
hardware designs [2], [7], [10], [16]. HalideIR separates the
specification of an algorithm from its execution schedule and
provides various transformations, such as unrolling loops, par-
allelizing, loop nesting, and vector operations, for optimizing
execution schedules. This feature allows designers to efficiently
experiment with various optimizing transformations for an algo-
rithm because they can change an algorithm’s execution sched-
ule without modifying the algorithm itself. Therefore, HalideIR
enables fast algorithm optimization iterations. Besides built-
in transformations, e.g., unrolling, and loop nesting, HalideIR
also provides interfaces for developers to implement their own
transformations, further extending HalideIR’s scalability.

Despite intensive testing, bugs in HalideIR-based compiler
transformations do happen and can cause incorrect target code
generated from correct source programs. It is impractical to
fully prove the correctness of HalideIR-based compilers due
to their large code bases. A weaker formal technique - the
translation validation approach, introduced by [15], has been
widely used in compiler verification [11], [13], [13], [20],
[20]. This approach checks each compilation result against the
source program and guarantees the transformation’s correct-
ness. However, it is insufficient for proving the correctness of
a transformation because it does not verify all applications of
the transformation.

In this paper, we introduce an automated verification frame-
work for HalideIR-based compiler transformations. This frame-
work features a novel two-step symbolic execution approach:
it first uses symbolic execution to enumerate all execution

paths for the given transformation and then utilizes symbolic
execution conduct translation verification on each symbolic
path explored. If our framework can certify the equivalence
between all outputs of a given transformation and its corre-
sponding symbolic input, it can certify the correctness of the
transformation.

We have applied this framework to the three most-starred
HalideIR-based compilers from GitHub: HeteroCL [7], Halide-
HLS [16], and Stanford AHA’s Halide-To-Hardware [2]. In
total, we have verified 46 transformations from those compilers
and detected four transformation bugs during verification, all
of which were undetected by the unit tests accompanying these
compilers.

The remainder of this paper is organized as follows. Section
2 discusses related work. Section 3 presents the methodology
and architecture of our verification framework. Section 4 and
5 provides implementation details for this architecture. Section
6 presents experimental results and discusses the limitations of
our approach. Section 7 summarizes our verification approach
and test results.

II. RELATED WORK

Formal compiler certification and translation validation are
the two mainstream formal approaches for verifying compiler
transformations.

Formal Compiler Certification: This approach formally
verifies if every transformation of a compiler preserves the
semantics of the input program, e.g., CompCert [9] is a
compiler for C that is formalized and verified in Coq. However,
compiler certification is a highly complex and labor-intensive
process, and every compiler revision requires reproofing. These
drawbacks hinder future compiler improvements. Newcomb et
al. [14] present an automatic verification tool for soundness
and termination of HalideIR’s rewriting system. This tool only
supports checking the Halide Simplify transformation. In
addition, this tool only checks the correctness of HalideIR
rewriting, and it cannot detect runtime errors introduced by
illegal code generation. In comparison, our approach supports
more types of transformations. Furthermore, since our approach
verifies runtime code generated from HalideIR, it can detect
code bugs and runtime errors such as overflows.

Translation Validation: The translation validation approach
was first introduced by [15]; it introduces a weaker formal tech-

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

Fig. 1. Workflow of Translation Validation Approach

nique that effectively certifies the conformity of a compiler’s
individual executions to the compiler’s specification. This ap-
proach compares a compiler’s input and output for its specific
application. Figure 1 depicts the workflow for the translation
validation approach, where both the source and target programs
are sent to a validator. If the validator finds the generated target
program correctly implements the source program, it produces
proof; otherwise, it produces a counterexample. Alive2 [11] im-
plements a translation validation tool for LLVM, which verifies
application instances of a compiler transformation, but cannot
fully verify the transformation. In comparison, our approach
can fully verify and certify compilers’ transformation because
it synthesizes symbolic execution with translation validation.
Our framework first employs symbolic execution to enumerate
all possible execution paths for a HalideIR-based compiler
transformation, and then uses translation validation to certify
the equivalence of the input and the outputs generated by those
paths.

III. PROPOSED METHODOLOGY

Symbolic execution [6] is a powerful technique for exploring
program execution paths; however, it may face challenges such
as state-space explosions. Modern compilers, e.g., GCC [1],
and LLVM [8], usually have unbounded loops and complicated
structures in their transformations, rendering symbolic execu-
tion ineffective in exploring compiler transformation paths.

We observed that HalideIR provides a mechanism that can
potentially reduce complexities for symbolic execution of a
compiler transformation: Each transformation algorithm was
further divided into mutators for different IR nodes. HalideIR
uses pattern matching to apply the proper mutator to each node
to optimize codes, while GCC and LLVM need unbounded
loops to iterate through different IR nodes. The pattern match-
ing mechanism adopted by HalideIR renders unbounded loops
inside a transformation unnecessary, making it efficient and ef-
fective to apply symbolic execution to HalideIR-based compiler
transformations. Figure 2 shows an example of a HalideIR
transformation: the Simplify transformation that reduces a
complex IR into a simpler form. This complex transformation
is composed of mutators for different IR nodes such as Cast,
Ramp, and Add. The input for the mutator in Figure 2 is
an Ramp node. Depending on different conditions, there are
three possible output nodes: Broadcast, Self , or Ramp. For
this example, if we can check the equivalence of all three
output nodes (Broadcast, Self , and Ramp) with the input
node Ramp, we can verify the correctness of this mutator. If
all mutators pass verification, then the transformation is correct.

Figure 3 illustrates our automated transformation verification
framework for HalideIR-based compiler transformations. Our

framework has two parts: the symbolic enumeration of trans-
formation paths and the translation validation. First, our frame-
work collects all mutators from a HalideIR transformation.
Then, to overcome the drawback that the translation validation
approach cannot fully verify compiler transformations, our
framework makes each mutator’s input node fully symbolic
and use our symbolic execution engine to explore all execution
paths of a mutator under test. The framework collects all sym-
bolically transformed IR nodes generated by the mutator, then
lowers the source IR node and all symbolically transformed IR
nodes to LLVM bitcode, executable by KLEE [4]. If KLEE
asserts all the target bitcode is equivalent to the source bitcode,
the mutator is certified; otherwise, our framework reports a
counterexample. If all mutators of a transformation are certi-
fied, our framework certifies the HalideIR transformation. Our
approach makes a HalideIR node fully symbolic and guarantees
full coverage when exploring the transformation paths of the
mutators.

IV. ENUMERATION OF TRANSFORMATION PATHS

In this section, we discuss how to symbolically enumerate the
HalideIR transformation paths. Figure 4 shows an overview of
HalideIR syntax. There are two HalideIR node types: Expr and
Stmt. Expr represents certain value and has a data type, such
as Max, Add, and Div. Stmt is a program statement such
as IfThenElse. Because HalideIR entities are implemented
using C++ class, e.g., all Stmt nodes such as AssertStmt and
IfThenElse inherit from the base class Stmt. This brings
challenges for existing symbolic execution tools like KLEE
since these tools do not readily support C++ classes. Therefore,
we implement a HalideIR object support library to encode
HalideIR C++ objects symbolically.

1 class Broadcast {
2 Expr value;
3 int lanes;
4 }
5
6 void visit(const Broadcast *op, const Expr &self) {
7 Expr value = mutate(op->value);
8 if (value.as<Max> && op->lanes > 1)
9 expr = value;

10 else if(value.as<Min>)
11 expr = Min::make(value, op->lanes);
12 else
13 expr = Add::make(value, op->lanes);
14 }

The code above shows the definition for Broadcast node,
and its sample corresponding mutator. In the mutator, it first
checks if the value is a Max node, and lanes is larger than 1
(Line 8). If yes, it transforms Broadcast node to the value
node. If the value is a Min node, it transforms the input
Broadcast node to a new Min node. Otherwise, it transforms
Broadcast node to an Add node.

To verify this mutator, we need to encode all members of
the Broadcast node object symbolically: value, and lanes.
The lanes is a C-built-in integer, and value has the Expr
type here, which can be any Expr node types in Figure 4.
For lanes, making it symbolic is trivial and we can directly
call klee make symbolic. To make value fully symbolic to
verify transformations, intuitively, we can use KLEE to try

!

!

Fig. 2. An example of HalideIR transformation.

Fig. 3. Architecture of Automated Verification Framework for HalideIR-Based Compiler Transformations

Fig. 4. Example of HalideIR syntax

every possible Expr node types, but this leads to a state-space
explosion. Therefore, it is necessary to limit types for value
to the ones the mutator uses. For example, a HalideIR might
have more than 37 types of node, but the mutator only uses
two Max, and Min. Accordingly, KLEE only needs to try the
two node types.

Algorithm 1: hooked-as
Input: The type to test: T
Output: The instance of the input type: I

1 I ← Nil
2 pid ← fork-state()
3 if pid == 0 then

// Call type T’s constructor
4 I ← new-node(T)
5 symbolize-c-built-in-member(I)
6 return I
7 end
8 return Nil

To prune types of Expr members for the node under test,
we implement two algorithms in our framework: the hooked-as
function in Algorithm 1 and Algorithm 2.

Algorithm 2: Prune types for node under test that has
Expr members
Input: The node under test: σ
Input: The mutator program under test: Mutator
Output: Pruned types of node for expr members of σ:

SavedTypes
1 SavedTypes← ∅
2 symbolize-c-built-in-member(σ)
// Execute the mutator symbolically

3 for i←Mutator do
4 if as(type, expr member) called then
5 I ← hooked-as(type)
6 if I then
7 SavedTypes ← ⟨type, expr member⟩
8 end
9 end

10 end
11 foreach ε ∈ expr members of σ do
12 SavedTypes← ⟨OtherExpr, ε⟩
13 end
14 return SavedTypes

We first implement the hooked-as function to explore every
type of Expr that the mutator uses. As Algorithm 1 shows,
this function takes the to-be-checked type from the original as
function, T , as the input. The output, I , is an instance of the
input type T .

This algorithm first forks the state of the program (Line
2). Subsequently, the algorithm calls the type T ’s constructor
to construct a new instance in the child-process, where it
symbolizes all its C-built-in members and returns this new
instance (Line 3-6). Next, the algorithm returns the Nil in the
parent process.

!

!

We then implement Algorithm 2 to prune types for node
under test. The inputs for this algorithm are both the mu-
tator program under test and the mutator’s node σ. First,
this algorithm symbolizes all C-built-in members of σ and
executes the mutator symbolically. If the as function is called,
the algorithm calls the hooked-as function. If the hooked-as
returns a new instance, the Algorithm 2 saves the type and
the expr member of σ that calls the as function (Line 5-
8). Otherwise, it continues to explore the as function’s failed
path. Because our framework has already forked the state in
the hooked-as function, it can explore both paths.

In the end, for each expr member of σ, Algorithm 2
adds the OtherExpr node to its SavedTypes (Line 12).
OtherExpr is a placeholder Expr type that we added to
HalideIR to cover the other case in the mutator, such as Line
12-13 in the Broadcast mutator example. Using this algorithm,
for the node under test with Expr members, our framework can
efficiently collect only the Expr types that the mutator uses.

Take the Broadcast mutator as an example. Our framework
first symbolizes the lanes of the Broadcast node. When the
first as is called (Line 8), Algorithm 2 saves the Max type
for value to SavedTypes. Then, this algorithm continues
exploring the second as function and repeats this process.
When the program ends, the algorithm saves OtherExpr.
Consequently, the pruned types for the value of Broadcast
node are Max, Min, and OtherExpr.

After pruning types of Expr members for the node under
test, the last step to fully explore the mutator paths is construct-
ing the harness. This step is trivial: our framework directly
symbolizes C-built-in members. And for Expr members, our
framework collects the pruned types, and then calls each
type’s constructor. For the newly constructed instances of the
constructors, our framework recursively implements the same
symbolization and construction process. It implements a similar
process to Stmt nodes.

V. TRANSLATION VALIDATION FOR MUTATOR UNDER TEST

In translation validation, we contribute an equivalence check-
ing algorithm using KLEE to verify HalideIR nodes. Halide
provides the capability to generate C code directly. Therefore,
unlike other translation validation approaches [11], [13], [19],
[20] which need to encode compiler IR semantics in SMT and
verify the SMT instances using a SMT solver, such as Z3 [12],
we replace this encoding process by reusing Halide’s existing C
backend because KLEE already provides support for verifying
C programs. In our translation validation stage, our framework
lowers the input node of the mutator and the generated target
nodes into C programs and compile them into LLVM bitcode,
and then it checks their equivalence using KLEE.

As discussed in section 4, we need to check the equivalence
for two types of Halide nodes: Expr and Stmt. Consider a
given mutator function τ , an input Expr node EI , and a set
of target output nodes generated from the input: EO. A set
of C expressions PI and PO are generated from EI and EO

using C backend. Then we use symbolic execution to assert
their equivalence. The mutator τ is correct iff:
∀⟨EI , EO⟩ ⇒ sym-exe(assert(PI , PO)) == true

In other words, since Expr in HalideIR represents a value of
a certain type, we can establish the correctness for the mutator
τ when the expressions generated from τ ’s input Expr node
and output Expr nodes are equivalent. We can use klee assert
to prove this directly.

For Stmt nodes, the approach is different since Stmt nodes
are pieces of code, and we cannot check their equivalence
directly. As shown in Figure 4, children of a Stmt node could
be Expr nodes or another Stmt nodes. As Algorithm 3 shows,
when the input node SI is a Stmt node, our framework first
checks if the output node SO has the same type as the input
node (Line 1) to establish the correctness for the mutator τ .
If yes, the equivalence checking is trivial since the framework
compares both nodes member by member. If the input node SI

has Expr children, the framework traverses all Expr nodes
and conducts equivalence checking the same way using the
Expr checking algorithm (Line 2-8). For Stmt members, the
framework check those nodes by recursively calling this Stmt
checking function (Line 10-11). The HalideIR’s mutator trans-
formation guarantees that there will not have infinite recursion.

If the input node and the output Stmt node have different
types, we cannot check the equivalence by direct comparison.
According to HalideIR’s definition, Stmt nodes produce side-
effecting on the system state. To compare if two Stmt nodes
with different types are equivalent, we need to compare their
final system state after symbolic execution. The system state
for Stmt nodes includes input and output variables. The
input variables are variables within the Stmt that are neither
allocated nor written by Allocate or Store nodes. While the
output variables are variables within the Stmt that are written
by the Store nodes but not allocated by the Allocate nodes.
To check the equivalence for two Stmt nodes whose types
are different, first, our framework traverses the abstract syntax
tree (AST) of SI and SO and collects the input variables
for SI and SO: II and IO, and output variables: OI , and
OO (Line 14). Next we check if II ≡ IO. If not, two Stmt
nodes are not equivalent (Line 15-16). If yes, the framework
compiles SI and SO using the C backend into PI and PO,
and symbolically executes them (Line 18-19). Then it checks
if the output variables OI and OO are equivalent (Line 20-22)
to determine the equivalence of the Stmt nodes.

With the above algorithms, our validation framework can
conduct translation validation for HalideIR’s transformation
paths efficiently.

VI. EVALUATION RESULTS

This section evaluates the efficiency and effectiveness of
our automated verification framework. We have applied this
framework to the three most starred HalideIR-based compil-
ers on Github: HeteroCL [7], Halide-HLS [16], and Stan-
ford AHA’s Halide-To-Hardware project [2]. We have verified
46 transformations from the three compilers and detected 4
transformation bugs undetected by manually crafted unit tests
accompanying these compilers. We classify the compiler bugs
identified into two categories: incorrect transformations and
compiler crashes, e.g., compiler execution paths that cause
core dumps or overflow. Incorrect transformations are tricky

!

!

Algorithm 3: check-stmt
Input: The input Stmt node SI

Input: The output Stmt node SO

1 if same-type(SI , SO) then
2 foreach ε ∈ Expr members of SI do
3 PI , PO ← compile(ε of SI , ε of SO)
4 eq ← sym-exe(assert(PI , PO))
5 if not eq then
6 return false
7 end
8 end
9 foreach s ∈ Stmt members of SI do

10 check-stmt(s of SI , s of SO)
11 end
12 end
13 else

/* Collect all system state vars */
14 II , IO, OI , OO← get-state-var(SI , SO)
15 if not II ≡ IO then
16 return false
17 end
18 PI ,PO ← compile(SI , SO)
19 sym-exe(PI , PO, II , IO, OI , OO)
20 if not OI ≡ OO then
21 return false
22 end
23 end
24 return true

since this type of bug produces no warning throughout a
compiler workflow. However, they produce incorrect results in
the generated code, which are difficult to detect and debug for
compiler users. Due to the complexity of HalideIR, a theorem-
proving approach can only verify its limited parts. Even though
earlier projects attempted to formalize HalideIR semantics and
formally certify its rewriting system [14], [18], they could not
detect bugs that we found.

This evaluation was conducted on a workstation with a 12-
core AMD Ryzen 5900x CPU, 128 GB RAM, and Ubuntu
20.04 operating system. We set the maximum memory con-
sumption for each transformation to 64GB. The evaluation
results are summarized in Table I. In HeteroCL, we verified
7 transformations, and the total line of code is 8432. We
found one new incorrect transformation in HeteroCL and four
compiler crashes. The peak memory consumption is 25.3 GB.
In Halide-HLS, we verified 9 transformations and detected 2
transformation bugs and 1 crash bug during the verification.
The peak memory consumption is 28.6 GB. The total lines of
code are 10518. In the Halide-To-Hardware project, we verified
30 transformations and detected one inconsistent transformation
during the translation validation stage. And the peak memory
consumption is 33.4 GB. The total lines of code are 8604. Next,
we discuss some bugs we detected with our framework.

TABLE I
EVALUATION OF OUR FRAMEWORK ON HALIDEIR-BASED COMPILERS

Compiler HeteroCL Halide-HLS
Halide-
To-
Hardware

of Transformation Verified 7 9 30
Memory Usage (GB) 25.3 28.6 33.4
of Lines 8432 10518 8604
of Incorrect Transformations 1 2 1
of Compiler Crashes 4 1 0

A. Sample Bug from HeteroCL

In HeteroCL, we verified the compiler transformations such
as CodegenC, RemoveNoOp, LiftAllocateAttrs, and Sim-
plify. During the verification of the Simplify function, we de-
tected an incorrect transformation in the IfThenElse mutator:

1 const EQ *eq = next.as<EQ>();
2 const NE *ne = next.as<NE>();
3
4 if (eq && is_const(eq->b) && !or_chain) {
5 then_case = substitute(eq->a, eq->b, then_case); }

As illustrated by the above code fragment, in Line 4, if the
IfThenElse’s condition is an Eq expression, the right-hand
side (RHS) of the Eq expression is a constant, and the body of
the IfThenElse is not an Or expression, this transformation
will replace all use occurrences of the left-hand side expression
of the Eq expression in the Then case of IfThenElse with
the right-hand side expression of Eq (Line 5).

Our verification found counter-examples caused inconsistent
behaviors during verification. As Figure 5 shows, the Print in
the illustrating C code on the left should print -1. On the right
side is the correct IR. In the middle is the HeteroCL generated
IR. The Print function prints 0 instead of -1, because the
transformation replaces all uses of x in the Then case with 0,
which is the RHS expression of the Eq operator.

Fig. 5. A HeteroCL transformation bug.

B. Sample Bug from Halide-To-Hardware

Since the two incorrect transformation bugs we found in the
Halide-HLS project are similar to the one found in Halide-To-
Hardware, we only present a detailed description of the Halide-
To-Hardware bug. For Halide-To-Hardware, we have verified
HalideIR transformations such as Simplify, CodegenC, and
RemoveDeadAllocations. While verifying the Call mutator in
the Simplify Call function, we found an incorrect transfor-
mation.

1 Input<Buffer<uint64_t>> input {"input",1};
2 Output<Buffer<uint64_t>> output {"output", 1};
3 void create_algorithm() {
4 hw_output(x) = input(x) & (uint64_t)(0x3FFFFFFFFF);
5 output(x) = hw_output(x);
6 }

The above code is the counter-example that causes incorrect
behavior. When executing the above code, the program is
supposed to clear the 39th and 40th bit of the Input buffer.

!

!

1 uint64_t _114 = (uint64_t)(63);
2 uint64_t _115 = _113 & _114;
3 int32_t _116 = _output_s0_x - _17;

In the C code generated by Halide-To-Hardware from the
above code, where the constant becomes 63, instead of the
original 0x3FFFFFFFFF. The transformation produces incorrect
results, and there are no compiler warnings during compilation.
After discussions with the developers of Halide-To-Hardware,
they confirmed this is a bug due to the combination of the Call
mutator and Halide-To-Hardware’s backend Codegen module.

1 else if (op->is_intrinsic(Call::bitwise_and)) {
2 Expr a = mutate(op->args[0]),
3 Expr b = mutate(op->args[1]);
4
5 uint64_t ub = 0;
6 int bits;
7
8 if (const_uint(b, &ub) &&
9 is_const_power_of_two_integer(make_const(a.type(),

10 ub + 1), &bits)) {
11 expr = Mod::make(a, make_const(a.type(), ub + 1));
12 }

As the above code from the Call mutator in the
Simplify Call transformation shows, it converts the And
operator to a Mod operator when the RHS value of the And
operator plus one is the power of two (lines 9-11).

1 int bits;
2 if (is_const_power_of_two_integer(op->b, &bits)) {
3 ostringstream oss;
4 oss << print_expr(op->a)
5 << "&" << ((1 << bits)-1);
6 print_assignment(op->type, oss.str());
7 }

In the Mod mutator of CodegenC shown above, when
printing this Mod expression, the expression ((1 << bits)−1)
has the type of 32 bits instead of the original 64 (in line 5). This
downcast causes the compiler to produce incorrect behavior
during transformation.

C. Limitations
Currently, we only support integer data types due to the

limitation of KLEE. Our automated verification framework
only supports bounded intra-mutator transformations, i.e., the
execution of a mutator does not depend on other mutators. And
if there is a loop in a mutator, it must be bounded.

VII. SUMMARY

In this paper, we have presented an automated verification
framework for HalideIR-based compiler transformations. This
framework applies symbolic execution to (1) explore HalideIR
transformation paths and then (2) check the equivalence of
the symbolic input and outputs for each symbolic transforma-
tion path explored. Its effectiveness and efficiency have been
demonstrated by successfully verifying the three most-starred
HalideIR-based compilers on GitHub and detecting several
transformation bugs that manually crafted unit tests failed to
identify.

VIII. ACKNOWLEDGMENT

This research is partially supported by Semiconductor Re-
search Corporation Contract: 2932.001 and a gift from Intel
Corporation.

REFERENCES

[1] Gcc. URL: https://gcc.gnu.org/. III
[2] Halide-to-hardware. URL: github.com/StanfordAHA/

Halide-to-Hardware/. I, VI
[3] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-

Kelley, Jeffrey Bosboom, Una-May O’Reilly, and Saman Amarasinghe.
Opentuner: An extensible framework for program autotuning. In Pro-
ceedings of the 23rd international conference on Parallel architectures
and compilation, pages 303–316, 2014. I

[4] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. Klee: unassisted
and automatic generation of high-coverage tests for complex systems
programs. In OSDI, volume 8, pages 209–224, 2008. III

[5] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan,
Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze,
et al. {TVM}: An automated {End-to-End} optimizing compiler for deep
learning. In 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), pages 578–594, 2018. I

[6] James C King. Symbolic execution and program testing. Communications
of the ACM, 19(7):385–394, 1976. III

[7] Yi-Hsiang Lai, Yuze Chi, Yuwei Hu, Jie Wang, Cody Hao Yu, Yuan
Zhou, Jason Cong, and Zhiru Zhang. Heterocl: A multi-paradigm pro-
gramming infrastructure for software-defined reconfigurable computing.
In Proceedings of the 2019 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pages 242–251, 2019. I, VI

[8] Chris Lattner and Vikram Adve. Llvm: A compilation framework for
lifelong program analysis & transformation. In International Symposium
on Code Generation and Optimization, 2004. CGO 2004., pages 75–86.
IEEE, 2004. III

[9] Xavier Leroy, Sandrine Blazy, Daniel Kästner, Bernhard Schommer,
Markus Pister, and Christian Ferdinand. Compcert-a formally verified
optimizing compiler. In ERTS 2016: Embedded Real Time Software and
Systems, 8th European Congress, 2016. II

[10] Jiajie Li, Yuze Chi, and Jason Cong. Heterohalide: From image pro-
cessing dsl to efficient fpga acceleration. In Proceedings of the 2020
ACM/SIGDA International Symposium on Field-Programmable Gate Ar-
rays, pages 51–57, 2020. I

[11] Nuno P Lopes, Juneyoung Lee, Chung-Kil Hur, Zhengyang Liu, and John
Regehr. Alive2: bounded translation validation for llvm. In Proceedings
of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation, pages 65–79, 2021. I, II, V

[12] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In
International conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 337–340. Springer, 2008. V

[13] George C Necula. Translation validation for an optimizing compiler. In
Proceedings of the ACM SIGPLAN 2000 conference on Programming
language design and implementation, pages 83–94, 2000. I, V

[14] Julie L Newcomb, Andrew Adams, Steven Johnson, Rastislav Bodik,
and Shoaib Kamil. Verifying and improving halide’s term rewriting
system with program synthesis. Proceedings of the ACM on Programming
Languages, 4(OOPSLA):1–28, 2020. II, VI

[15] Amir Pnueli, Michael Siegel, and Eli Singerman. Translation validation.
In International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 151–166. Springer, 1998. I, II

[16] Jing Pu, Steven Bell, Xuan Yang, Jeff Setter, Stephen Richardson,
Jonathan Ragan-Kelley, and Mark Horowitz. Programming heterogeneous
systems from an image processing dsl. ACM Transactions on Architecture
and Code Optimization (TACO), 14(3):1–25, 2017. I, VI

[17] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris,
Frédo Durand, and Saman Amarasinghe. Halide: a language and compiler
for optimizing parallelism, locality, and recomputation in image process-
ing pipelines. Acm Sigplan Notices, 48(6):519–530, 2013. I

[18] Alex Reinking, Gilbert Bernstein, and Jonathan Ragan-Kelley. Formal
semantics for the halide language. PhD thesis, Master’s thesis. EECS
Department, University of California, Berkeley. http . . . , 2020. VI

[19] Jean-Baptiste Tristan and Xavier Leroy. Formal verification of translation
validators: a case study on instruction scheduling optimizations. In
Proceedings of the 35th annual ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 17–27, 2008. V

[20] Jean-Baptiste Tristan and Xavier Leroy. Verified validation of lazy code
motion. ACM Sigplan Notices, 44(6):316–326, 2009. I, V

!

!

	Select a link below
	Return to Previous View
	Return to Main Menu

