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Abstract—In automotive systems, an important timing require-
ment is that the time disparity (the maximum difference among the
timestamps of all raw data produced by sensors that an output
originates from) must be bounded in a certain range, so that
information from different sensors can be correctly synchronized
and fused. In this paper, we study the problem of analyzing the
worst-case time disparity in cause-effect chains. In particular,
we present two bounds, where the first one assumes all chains
are independent from each other and the second one takes the
fork-join structures into consideration to perform more precise
analysis. Moreover, we propose a solution to cut down the worst-
case time disparity for a task by designing buffers with proper
sizes. Experiments are conducted to show the correctness and
effectiveness of both our analysis and optimization methods.

Index Terms—automotive systems, cause-effect chain, sensor,
timestamps, disparity

I. INTRODUCTION

Automotive systems usually have deep processing pipelines
that span over multiple stages processed by different soft-
ware/hardware components with data dependencies. For ex-
ample, in autonomous vehicles, obstacle avoidance is real-
ized by a chain of computational tasks including sensing,
perception, planning and control, as shown in Fig. 11. The
system must comply with timing constraints in several aspects
to guarantee that the final control command outputs can be
executed correctly and timely. Satisfying the end-to-end timing
constraints of control paths is a prerequisite for correct and safe
systems, e.g., the success of obstacle avoidance requires that
the task chain finishes before predefined deadline. Violating
timing constraints may lead to catastrophic consequences such
as loss of human life. As a consequence, formal modeling
and analysis must be performed to guarantee that the timing
constraints are always honored at run-time. For this purpose,
the end-to-end timing constraints have been extensively studied
in the context of automotive systems [1]–[5], known as the so-
called maximum reaction time, presenting the length of time
interval from a stimulus to its corresponding response, and the
maximum data age, describing the freshness of the data.

Except for the end-to-end latency, another important timing
requirement in automotive system is that when some compo-
nent receives data originated from different sensors, the time
difference among the timestamps of the corresponding raw data
(called time disparity in this work) must be in a certain range,

*corresponding author: Nan Guan.
1The example is quoted from RTSS 2021 Industry Challenge, which is

implemented by the company PerceptIn in autonomous driving systems.

Fig. 1. A system example.

so that information from different sensors can be synchronized
and fused [6]. For example, the time difference between images
and the LiDAR data used by the perception algorithm should be
bounded by a certain threshold, so that the object perception can
be correctly performed. This problem has also been proposed
by autonomous driving industry [6] in RTSS 2021 Industry
Challenge [6]. Unfortunately, little work has been presented
for bounding the time disparity with theoretical guarantees.

The system model studied in this paper is motivated by the
recent industrial trend of allowing dynamic linking of services
and clients during run-time such as AUTOSAR [7] initiative,
known as cause-effect chains in literature. In this model,
the system consists of multiple tasks executing on different
processing units, and each task is statically assigned onto a
processing unit. In particular, a task is activated periodically
according to a given frequency and communicates with each
other asynchronously.

In this paper, we develop analysis techniques to bound the
worst-case time disparity of tasks in cause-effect chains. In
particular, we present two upper-bounds of the worst-case time
disparity of a task referring to the backward time of chains,
where the first one assumes all chains are independent from
each other and the second one takes the fork-join structures into
consideration to perform more precise analysis. We also derive
bounds for the worst-case and the best-case backward time of
a chain by exploring the data propagating behaviors under non-
preemptive scheduling algorithm, which is more precise than
existing results. Moreover, we propose an optimization design
to cut down the worst-case time disparity by designing buffers
with different sizes. Experiments are conducted to verify our
analysis techniques and optimization. The results show that our
methods are effective and efficient.
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II. PRELIMINARY

In this section, we present a formal characterization of the
system model, which is motivated by the autonomous driving
system developed by the company PerceptIn [6] and also
complies with cause-effect chains in AUTOSAR compliant
automotive systems [7].

A. System Model

We consider an application modeled as a Directed Acyclic
Graph (DAG) G, called cause-effect graph, deployed on a
hardware platform consisting of several Electronic Control
Units (ECUs). The graph is denoted by G = ⟨V,E⟩, where
V is the set of vertices and E the set of edges. Each vertex
in V represents a task τi, and is characterized by a tuple
(W (τi), B(τi), T (τi)). W (τi) and B(τi) denote the Worst-
Case Execution Time (WCET) and Best-Case Execution Time
(BCET) of τi, respectively. T (τi) is the period of τi. An edge
(τi, τj) ∈ E denotes the input channel of τj (respectively, the
output channel of τi), which can be considered as a buffer with
size 1, and represents the data dependency between τi and τj .
We call τi a predecessor of τj , and τj a successor of τi. A task
with no incoming/outgoing edges is called a source/sink task of
G. Each task is statically mapped to an ECU and the mapping
is fixed in prior. The communicating between two tasks mapped
to different ECUs is modeled as a periodic task on the bus [5],
[8], [9], e.g., Control Area Networks (CANs) [10] .

We assume W (τi) = B(τi) = 0 if τi is a source task. This
assumption is reasonable since source tasks are usually imple-
mented as external stimuli that produce data without consuming
any computing resource. Nevertheless, the assumption is made
only for simplifying the definitions and notions in the paper,
and does not limit the generality of our model.

A cause-effect chain (called chain for short) π is a path in
G, i.e., a sequence of tasks π = {π1, π2, · · · , π|π|} where πi

is a predecessor of πi+1 for each pair of consecutive elements
πi and πi+1 in π. The first and the last element in π are called
the head and the tail task of π, respectively.

(a) A DAG. (b) A job chain.
Fig. 2. Examples.

An example of a cause-effect graph is shown in Fig. 2.(a),
where the triple labeled next to each task τi corresponds to
(W (τi), B(τi), T (τi)). There are two source tasks in the graph:
τ1 and τ2.

B. Run-Time Behavior

At run-time, each task releases an infinite sequence of jobs
according to its period. We use Jk

i to denote the kth job of
task τi. r(Jk

i ), s(J
k
i ) and f(Jk

i ) denote the release time, start
time and finish time of Jk

i , respectively. The first job of each
task may be released with an arbitrary release offset relative to
the start time of the entire system.

Tasks consume data tokens from its input channels (one
or multiple) and produce output data tokens to their output
channels. When a new data token arrives, the old data token
is overwritten. That is, each job reads the latest available data
token produced by its predecessors. When a job reads an input
data token (or several input data tokens) and produces an output
data token, the input data token is called a cause of the output
data token. The data token produced by a source task indirectly
being the cause of a data token is the source of the data
token. For simplicity, we assume that the communication delay
among jobs within the same ECU is zero. The reading and
writing semantics complies with the implicit communication
[11] implemented in automotive systems, e.g, AUTOSAR.
More specifically, a job reads all data tokens from its input
channels when it starts to execute, and writes the output data
token to its output channels when it finishes. In particular, a
source task produces output data tokens but does not read any
data token. Each data token produced by a job Jk

i of a source
task τi is attributed with a timestamp t(Jk

i ). Without loss of
generality, we let t(Jk

i ) = r(Jk
i ).

A non-preemptive fixed-priority scheduler is adopted for
scheduling tasks assigned to the same ECU. We use hp(τi) to
denote the set of tasks with higher priority than τi. The worst-
case response time (WCRT) R(τi) of τi is the longest length
between the release time and finish time among all its jobs. τi
is said to be schedulable if R(τi) ≤ T (τi). The problem of
bounding R(τi) has been extensively studied in literature, and
plentiful efficient analysis techniques have been presented [12],
[13]. In this paper, we do not focus on the schedulability of
the system, and simply assume that each task is schedulable.

C. Job Chain
A job chain of π is a sequence of jobs with data dependency,

i.e., a job reads the data token associated with (not necessarily
produced by) a job released by its predecessor in the chain
for each pair of successive jobs. Numerous job chains can be
constructed during run-time with respect to different scenarios.

The immediate backward job chain, which was first intro-
duced by Dürr .el [5], is defined from the perspective of an
output data token. The immediate backward job chain ending
at the kth job released by the tail task (π|π|) of a chain π,
denoted as ←−πk, is defined iteratively from the last job in ←−πk.
We use ←−πk

i to denote the ith job in ←−πk.

Definition 1 (immediate backward job chain [5]). For each
i = 1, · · · , |π| − 1, ←−πk

i is the last job of the ith task in π that
finishes its execution no later than the start time of ←−πk

i+1.

By definition, on each chain, the immediate backward job
chain ending at the same job is unique. Under the implicit
communication semantics, a job in ←−πk reads the data token
produced by its predecessor in ←−πk. Obviously, the output data
token of the first job in ←−πk is the source of the output data
token of the last job in ←−πk. We define the backward time of
←−πk as len(←−πk) = r(←−πk

|π|) − r(←−πk
1) 2. In particular, we let

2The backward time is similar with the data age latency defined in many
previous literature but a little different: the data age of the output produced by
the kth job of π|π| is defined as f(←−πk

|π|)− r(←−πk
1).
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len(←−πk) = 0 if the immediate backward job chain ending at
the kth job released by the tail task of π does not exist, e.g, the
input channel is empty when some job in ←−πk starts to execute.

For example, the immediate backward job chain ending at a
job released by τ6 in Fig. 2.(a) on the chain {τ1, τ3, τ5, τ6} is
shown in Fig. 2.(b), where each curved arrow pointing from one
job to another indicates two successive jobs in the job chain.

We use W(π) and B(π) to denote an upper bound and a
lower bound of the worst-case backward time (WCBT) and
the best-case backward time (BCBT) of π, respectively, i.e.,
W(π) ≥ max∀k len(

←−πk) and B(π) ≤ min∀k len(
←−πk).

III. ANALYSIS

Definition 2 (Time Disparity). The time disparity of a job
Jk
i , denoted by ∆(Jk

i ) is the maximum difference among
timestamps of all Jk

i ’s sources. The worst-case time disparity
of τi is the maximum time disparity among all jobs of τi.

The problem considered in this paper is to verify whether the
time disparity of a task is bounded by a pre-defined value. For
simplifying the presentation, in the following, we will drop the
indices and use J to denote an arbitrary job of the analyzed
task τ . We focus on bounding the time disparity of J , i.e,
∆(J). Obviously, each source of J can be traced through an
immediate backward job chain from J to a job released by a
source task. Let P denote the set of all chains where each starts
from a source task and ends at τ . By definition:

∆(J) = max
∀λ̸=ν∈P

|t(
←−
λ 1)− t(←−ν 1)|

In the following, we focus on bounding |t(
←−
λ 1) − t(←−ν 1)|,

i.e., the difference of timestamps between the two sources that
propagate to J through λ and ν. At this time, we assume that
W(π) and B(π) of each chain π in P are known, and later
we will introduce the computation for them. Without loss of
generality, we let the release time of J be 0, i.e., r(J) = 0.

To better present the analysis, we call time interval [a, b]
a sampling window of ←−π 1 if t(←−π 1) ∈ [a, b]. Intuitively, a
sampling window of a source presents the time range of its
timestamp. A straightforward result on the sampling window
of ←−π 1 can be obtained by using W(π) and B(π).

Lemma 1. −W(π) ≤ t(←−π 1) ≤ −B(π).

Proof. By definition we know:

t(←−π 1) = r(←−π 1) = r(←−π |π|)− len(←−π ) = −len(←−π )

Since −W(π) ≤ −len(←−π ) ≤ −B(π), the lemma holds.

Theorem 1. Let Oλ,ν = max{|W(λ)−B(ν)|, |W(ν)−B(λ)|},
then it satisfies that:

|t(
←−
λ 1)− t(←−ν 1)| ≤

{
Oλ,ν λ1 ̸= ν1

⌊ Oλ,ν

T (λ1)⌋T (λ
1) λ1 = ν1

Proof. When λ1 ̸= ν1, according to Lemma 1, |t(
←−
λ 1) −

t(←−ν 1)| ≤ Oλ,ν holds. When λ1 = ν1, we know the difference
of release times (timestamps) between two jobs of λ1 must be

multiple of its period T (λ1). Therefore, according to Lemma
1, the theorem is proved.

Analogously with the second case in Theorem 1, the above
result could be quite pessimistic if λ and ν have other common
tasks except the head and tail tasks in them.

Fig. 3. Pessimism in Theorem 1.

Consider two chains λ = {τ1, τ3, τ5, τ6} and ν =
{τ1, τ3, τ4, τ6} in Fig. 2. When analyzing the upper bound of
|t(
←−
λ 1)− t(←−ν 1)| for τ6, the immediate backward job chains of

J resulting in WCBT on λ and BCBT on ν are indicated by the
curved arrows in Fig. 3 by considering these two chains to be
independent of each other. However, this case never happens
since the difference of release times between two jobs of τ3
must be multiple of its period. This deviation will be magnified
at each common task of these two chains when constructing
immediate backward job chains on them to trace the sources
of an output in the worst-case scenarios. Inspired by these
observations, in the following, we derive a tighter bound by
taking the fork-join structure into consideration.

Before going deep, we first introduce some results which
will be useful in the following. Let J ′ be the kth job released
after/before J and it satisfies that x ≤ k ≤ y, where x and y

are both integers (J ′ is released before J if k is negative).
←−
ν′

denotes the immediate backward job chain of J ′ on ν.

Lemma 2. xT (ν|ν|)−W(ν) ≤ t(
←−
ν′ 1) ≤ yT (ν|ν|)− B(ν).

Proof. By definition we know:

t(
←−
ν′ 1) = r(

←−
ν′ 1) = r(J ′)− len(

←−
ν′ ) = k × T (ν|ν|)− len(

←−
ν′ )

Since x ≤ k ≤ y, we know xT (ν|ν|)− len(
←−
ν′ ) ≤ t(

←−
ν′ 1) ≤

yT (ν|ν|)− len(
←−
ν′ ). Moreover, since B(ν) ≤ len(

←−
ν′ ) ≤ W(ν),

it satisfies that: xT (ν|ν|)−W(ν) ≤ t(
←−
ν′ 1) ≤ yT (ν|ν|)−B(ν).

The lemma is proved.

Lemma 3. It satisfies that:

|t(
←−
λ 1)− t(

←−
ν′ 1)| ≤

{
Ox,y

λ,ν λ1 ̸= ν1

⌊ Ox,y
λ,ν

T (λ1)⌋T (λ
1) λ1 = ν1

where Ox,y
λ,ν = max{|W(ν) − B(λ) − xT (ν|ν|)|, |B(ν) −

W(λ)− yT (ν|ν|)|}.

Proof. When λ1 ̸= ν1, |t(
←−
λ 1) − t(

←−
ν′ 1)| ≤ Ox,y

λ,ν holds by
combining Lemma 1 and Lemma 2. When λ1 = ν1, the
difference of release times (timestamps) between two jobs of λ1

must be multiple of its period T (λ1). Therefore, by combining
Lemma 1 and Lemma 2, the lemma is proved.
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Now we are ready to derive a tighter bound of |t(
←−
λ 1) −

t(←−ν 1)| when λ and ν have multiple common tasks. Let λ
and ν have c tasks in common except the source tasks in
them, denoted by {o1, o2, · · · , oc}, where oi represents the
ith common task in λ and ν. Obviously, oc is the analyzed
task τ . We divide λ and ν into c sub-chains α1, α2, · · · , αc

and β1, β2, · · · , βc, by following: 1) ∀i ∈ [1, c], oi is the tail
task of both αi and βi, and 2) ∀i ∈ [2, c], oi−1 is the head
task of both αi and βi. For example, the chains {τ1, τ3, τ4, τ6}
and {τ2, τ3, τ5, τ6} in Fig. 2 have two common tasks τ3 and
τ6. When analyzing the maximum difference of timestamps
between sources of τ6’s jobs on these two chains, we can
divide them into sub-chains {τ1, τ3}, {τ3, τ4, τ6} and {τ2, τ3},
{τ3, τ5, τ6}, respectively. Intuitively, each pair of αi and βi

can be combined into a sub-graph with fork-join structure. By
separating λ and ν into different pairs of sub-chains, we can
derive a tighter bound of |t(

←−
λ 1)− t(←−ν 1)|.

Theorem 2. It satisfies that:

|t(
←−
λ 1)− t(←−ν 1)| ≤

{
Ox1,y1

α1,β1
λ1 ̸= ν1

⌊
Ox1,y1

α1,β1

T (λ1) ⌋T (λ
1) λ1 = ν1

(1)

where x1 and y1 are computed recursively as follows:

j = c : xj = 0, yj = 0

j ∈ [1, c− 1] : xj = ⌈
B(αj+1)−W(βj+1) + xj+1T (oj+1)

T (oj)
⌉

yj = ⌊
W(αj+1)− B(βj+1) + yj+1T (oj+1)

T (oj)
⌋

Proof. It is sufficient to prove the theorem by proving that the
difference of release times between the jobs of o1 in

←−
λ and←−ν

is in the range [x1T (o1), y1T (o1)]. If it is true, then according
to Lemma 3, we know inequality (1) holds. In the next, we
prove this by induction.

Suppose that the difference of release times between the
jobs of oj in

←−
λ and ←−ν is in the range [xjT (oj), yjT (oj)].

Clearly, it is true when j = c since J is the job of oj
in both

←−
λ and ←−ν . By considering the release time of the

job of oj in αj as 0, according to Lemma 2, we know the
release times of the jobs of oj−1 in

←−
λ and ←−ν are in the

ranges [−W(αj),−B(αj)] and [xjT (oj)−W(βj), yjT (oj)−
B(βj)], respectively. Therefore the difference of release times
between the jobs of oj−1 in

←−
λ and ←−ν is in the range

T (oj−1)[⌈B(αj)−W(βj)+xjT (oj)
T (oj−1)

⌉, ⌊W(αj)−B(βj)+yjT (oj)
T (oj−1)

⌋], i.e.,
[xj−1T (oj−1), yj−1T (oj−1)]. By induction, we know the dif-
ference of release times between the jobs of o1 in

←−
λ and ←−ν is

in the range [x1T (o1), y1T (o1)], and the theorem is proved.

At last, by enumerating all combinations of chains in P and
using Theorem 1 or 2, we can finally obtain the worst-case
time disparity of the analyzed task τ . In particular, since the
immediate backward job chain of a job on the same chain is
unique, for each pair of chains in P , we can consider the last
joint task of them as the analyzed task for simplicity.

The end-to-end delay analysis in cause-effect chains has

been extensively studied in literature, e.g., [1]–[4]. In the most
recent work, Dürr .el [5] presented techniques for bounding the
maximum data age of sporadic cause-effect chains, which can
be directly applied to compute B(π) and W(π) for a chain
π with a slight modification. However, they aimed to present
a safe bound regardless of the applied scheduling algorithm.
In the following, we focus on non-preemptive scheduling and
present an upper bound of the backward time, which is more
precise than the results presented in [5].

Lemma 4. An upper bound of WCBT of π is given by Wπ =∑|π|−1
i=1 θi, where θi = T (πi) + R(πi) if πi and πi+1 are

executed on different ECUs. Otherwise,

θi =

{
T (πi) πi ∈ hp(πi+1)

T (πi)+R(πi)−(W (πi)+B(πi+1)) πi /∈ hp(πi+1)

Proof. Considering an arbitrary job J of the last task in π, we
construct the immediate backward chain←−π of J . By definition,
←−π i−1 is the last job of πi−1 that finishes its execution no later
than the start time of ←−π i. When πi and πi+1 are executed on
different ECUs, we know r(←−π i+1)− r(←−π i) ≤ T (πi)+R(πi).
Otherwise, ←−π i+1 cannot read the data token produced by ←−π i,
which must be overwritten by jobs of πi released after←−π i when
←−π i+1 is released. In the next, we consider the case when πi

and πi+1 are executed on the same ECU. We prove the lemma
by contradiction for each case.

• Suppose that r(←−π i+1) − r(←−π i) > T (πi) and πi ∈
hp(πi+1). Then we know the job of πi released after ←−π i

must have finished its execution before←−π i+1 since πi has
a higher priority than πi+1. Reaching a contradiction.

• Suppose that r(←−π i+1) − r(←−π i) > T (πi) + R(πi) −
(W (πi) + B(πi+1)) and πi /∈ hp(πi+1). Let ts de-
note the start time of the job of πi released after ←−π i.
Under non-preemptive scheduling, it must satisfy that
ts ≤ r(←−π i) + T (πi) + R(πi) − W (πi). On the other
hand, ts > r(←−π i+1) must hold, otherwise it must have
finished its execution before ←−π i+1 starts to execute due
to the non-preemption. Since πi+1 has a higher priority
than πi, then we know ts > r(←−π i+1) + B(πi+1) >
r(←−π i)+T (πi)+R(πi)−W (πi). Reaching a contradiction.

In summary, we know r(←−π i+1)−r(←−π i) ≤ θi holds in all cases.
Therefore, we know len(←−π ) =

∑|π|−1
i=1 (r(←−π i+1)− r(←−π i)) ≤∑|π|−1

i=1 θi. The lemma is proved.

In the next, we derive a lower bound of the BCBT of π.

Lemma 5. A lower bound of the BCBT of π is given by Bπ =∑|π|
i=1 B(πi)−R(π|π|).

Proof. Considering an arbitrary job J of the last task in π, we
construct the immediate backward chain ←−π of J . By defini-
tion, ←−π i−1 is the last job of πi−1 that finishes its execution
no later than the start time of ←−π i, so we know, for each
i = 2, 3, · · · , |π|, it is satisfied that:

s(←−π i)− s(←−π i−1) ≥ f(←−π i−1)− s(←−π i−1) ≥ B(πi−1)

Then we know s(←−π |π|)− s(←−π 1) ≥
∑|π|−1

i=1 B(πi). Moreover,
since f(←−π |π|) − s(←−π |π|) ≥ B(π|π|), therefore f(←−π π) −
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s(←−π 1) ≥
∑|π|

i=1 B(πi) holds. Furthermore, since f(←−π π) ≤
R(π|π|) + r(←−π π) and s(←−π 1) ≥ r(←−π 1), we know

len(←−π ) = r(←−π π)− r(←−π 1) ≥
|π|∑
i=1

B(πi)−R(π|π|)

The lemma is proved.

Note that it is possible for the BCBT to be negative,
indicating that the first job is released after the last job in an
immediate backward job chain.

IV. OPTIMIZATION

It can be observed from Lemma 3 that an output data token
may originate from two sources produced by the same task.
Apparently, this counter-intuitive result must be avoided. In this
section, we discuss some possible solutions to cut down the
worst-case time disparity of a task.

Some designing tricks are also widely used in many realistic
implementations. For example, there are two typical choices
for designating the period of τ3 in the graph shown in Fig. 4:
30ms or 10ms. Intuitively, when T (τ3) = 10ms, two-thirds of
input data tokens of τ3 may not propagate to the next task
since τ5’s period is 30ms. As a consequence, computation
resources could be potentially wasted. However, one may raise
the frequency of τ3 to speed up the sampling for the data
produced by τ1, so that a smaller time disparity of τ5 could
be achieved. Counter-intuitively, this could be ineffective. As
shown in Fig. 4, the execution pattern leading to the worst-case
time disparity remains unchanged after τ3’s frequency is raised.
This is because, the worst-case time disparity is largely decided
by WCBT on one chain and BCBT on another, which may not
change even when the sampling frequency is raised. This result
can also be observed from Theorem 2. This frequency design
is not artificial but extracted from the problem proposed by
PerceptIn in the RTSS 2021 Industry challenge [6].

Fig. 4. An example of the frequency design.

In fact, it can be observed from Theorem 2 that the time
disparity of a task with regard to two chains largely depends on
the relative offset between the sampling windows of its sources,
which should be as small as possible.

For this purpose, we propose to design a proper buffer size of
the output channel of a source task so that its sampling window
may be properly shifted to overlap with another one as much as
possible. In the following, we first extend the result in Lemma
3 to the case where the buffer size of the input channel of a task
is greater than 1, and then introduce how to decide a proper
buffer size to cut down the worse-case time disparity.

A channel with a buffer size greater than 1 is organized in a
FIFO manner. More specifically, each job always reads the first
element in its input channel. When a new data token arrives,
it is enqueued into the buffer, and the oldest data token, i.e.,
the first element, is removed from the buffer if the buffer is
full. When a task has multiple successors, each output token
produced by it is simultaneously written into the input channel
of all its successors.

Algorithm 1: Design of the buffer size.

1 Given two chains λ and ν ending at the same task;
2 for each i ∈ [1, c− 1] do
3 Compute xi and yi using Theorem 2;

4 Aν ← x1T (o1)−W(β1); Bν ← y1T (o1)− B(β1);
5 Aλ ← −W(α1); Bλ ← −B(α1);
6 Mλ = (Aλ +Bλ)/2; Mν = (Aν +Bν)/2;
7 if (Mλ ≥Mν) then
8 Set the input buffer size of λ2 to be ⌊Mλ−Mν

T (λ1) ⌋+ 1;
9 L = ⌊Mλ−Mν

T (λ1) ⌋T (λ
1);

10 else
11 Set the input buffer size of ν2 to be ⌊Mν−Mλ

T (ν1) ⌋+ 1;
12 L = ⌊Mν−Mλ

T (ν1) ⌋T (ν
1);

13 return L;

Lemma 6. When the buffer size of the input channel of π2 is n
(n ≥ 1), in the long term3, an upper bound W(π)n of WCBT
and a lower bound B(π)n of BCBT of π are given by:W(π)n =
W(π) + (n− 1)T (π1) and B(π)n = B(π) + (n− 1)T (π1).

Proof. Due to space limitation, we omit the proof here. The
intuition is that a task always reads the first element in the
buffer whose timestamp is (n−1)T (π1) earlier than the newest
arrived data.

Inspired by the result in Lemma 6, we present an algorithm
to decide proper buffer sizes referring to two chains, as shown
in Algorithm 1. According to Lemma 2 and Theorem 2, we
can obtain the sampling windows of the sources of J in two
chains

←−
λ and ←−ν , respectively, i.e., it satisfies that t(

←−
λ 1) ∈

[Aλ, Bλ] and t(←−ν 1) ∈ [Aν , Bν ] (line 4-6). Then the buffer
size is decided by the relative offset between the midpoints of
these two sampling windows (line 7-12). The intuition behind
is to shift the sampling window on the right side to the left so
that the offset between them is reduced.

Fig. 5. Design principle of Algorithm 1.

Theorem 3. It satisfies that:

|t(
←−
λ 1)− t(←−ν 1)| ≤

{
Ox1,y1

α1,β1
− L λ1 ̸= ν1

⌊
Ox1,y1

α1,β1

T (λ1) ⌋T (λ
1)− L λ1 = ν1

(2)

3Assume that the system has started for a while, and all buffers are full.
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where Ox1,y1

α1,β1
is defined in Theorem 2, and L is computed by

Algorithm 1.

Proof. The theorem is proved by combining Lemma 2 and
Lemma 6. Due to space limitations, we omit the details here.
The intuition is that the sampling window on the right side is
shifted to the left since the buffer has a size greater than 1. So
it becomes closer to the other one, as shown in Fig. 5.

V. EVALUATION

In this section, we evaluate the effectiveness of our anal-
ysis techniques, as well as the optimization. Tasks are gen-
erated by using the synthesized automotive task sets pre-
sented by Kramer et.al [14] in WATERS challenge 2015.
More specifically, tasks are generated in the following man-
ner: 1) the periods of tasks are selected from the sub-
set {1ms, 2ms, 5ms, 10ms, 20ms, 50ms, 100ms, 200ms} ac-
cording to their distributions in TABLE III of [14], and 2) the
BCET and WCET of each task are computed by multiplying
the ACET in TABLE IV of [14] with a related factor, which is
uniformly picked from the range shown in TABLE V of [14].

(a) Absolute value. (b) Incremental ratio to Sim.

(c) Absolute value. (d) Incremental ratio to Sim.

Fig. 6. Evaluation of our methods.

In Fig. 6.(a) and (b), we compare the results obtained by
Theorem 1 and Theorem 2, denoted as P-diff and S-diff, with
the actual maximum time disparity obtained by simulation,
denoted by Sim, which is a lower bound of the worst-case
time disparity instead of a safe upper-bound. The cause-effect
graph is generated by using the Python NetworkX function
dense_gnm_random_graph [15]. Moreover, each graph is
generated with a single sink task. The number of tasks in
a graph is picked in the range [5, 35] (X-axis). The release
offset of each task τi is randomly picked from the range of
[1, Ti]. Each graph is simulated for 10 times with different
randomly generated offsets. For each configuration, we simulate
for 10 minutes. At each point on X-axis, we generate 10
graphs and compute the average value of each result among all
graphs. Fig. 6.(a) shows the absolute value of the time disparity
under different methods, and Fig. 6.(b) shows the incremental
ratio of different methods in comparison with Sim. It can be
observed from Fig. 6.(a) that our analysis techniques are safe
to bound the time disparity, and close to the lower bound.

Moreover, S-diff performs much better than P-diff in the sense
of estimation accuracy. From Fig. 6.(b), we can observe that the
incremental ratio of S-diff is in general below 50%, indicating
that our method can efficiently estimate the upper bound of
time disparity in comparison with simulation results, which is
not only unsafe but also time consuming.

In Fig. 6.(c) and (d), we compare the results obtained by
Theorem 2 and the results obtained by simulation with their
correspondences following Algorithm 1, denoted by S-diff-B
and Sim-B, respectively. Since we only consider two chains
in this case, the graph is generated by simply merging two
independent chains at the same sink task, where the number of
tasks on each chain is picked in the range [5, 30] (X-axis). It can
be observed that S-diff-B is much lower than S-diff, indicating
that our design is effective for cutting down the worst-case
time disparity. Most importantly, it can be observed that Sim-
B is lower than Sim, indicating that our design could be quite
useful in real implementation for cutting down the actual time
disparity, not only the theoretical upper-bounds. Furthermore,
our analysis results are quite close to the simulation results,
and the incremental ratios are below 25% in most settings.

VI. CONCLUSION

In this paper, we present analysis techniques to bound the
worst-case time disparity of a task in cause-effect chains.
Moreover, we present an optimization to cut down the worst-
case time disparity by designing buffers with proper sizes.
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