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Abstract—Dynamic inference is a compression method that
adaptively prunes unimportant components according to the
input at the inference stage, which can achieve a better trade-
off between computational complexity and model accuracy than
static compression methods. However, there are two limitations
in previous works. The first one is that they usually need to
search the threshold on the evaluation dataset to achieve the
target compression ratio, but the search process is non-trivial. The
second one is that these methods are unstable. Their performance
will be significantly degraded on some datasets, especially when
the compression ratio is high. In this paper, we propose TBERT,
a simple yet stable dynamic inference method. TBERT utilizes
the top-k-based pruning strategy which allows accurate control
of the compression ratio. To enable stable end-to-end training
of the model, we carefully design the structure of the predictor.
Moreover, we propose adding auxiliary classifiers to help the
model’s training. Experimental results on the GLUE benchmark
demonstrate that our method achieves higher performance than
previous state-of-the-art methods.

Index Terms—Transformer, Dynamic Inference, Pruning

I. INTRODUCTION

In the past few years, large-scale transformer-based [1]
pretrained models have achieved great success in many fields,
such as BERT [2] for natural language understanding, DERT
[3] for object detection, and ViT [4] for image classification.
However, it is difficult to deploy these models to resource-
constrained devices (e.g., mobile phones and smart watches)
due to the tremendous computation overhead and memory
footprint. As a result, many compression methods have been
proposed to accelerate inference, including quantization [5],
static pruning [6], distillation [7], and dynamic inference (or
dynamic pruning) [8]–[10].

Dynamic inference is gaining increased attention due to
its flexibility and efficiency. Unlike static inference having
a constant number of computations for each input, dynamic
inference allows adaptively skipping the unimportant computa-
tions for a specific input instance with an appropriate skipping
criterion. Intuitively, dynamic inference samples different sub-
networks for different input instances at run-time to reduce
the actual amount of calculation. Recent research efforts have
demonstrated that dynamic inference can achieve a better trade-
off between computational complexity and model accuracy.

While dynamic inference is promising, there are still some
limitations in previous works. Firstly, these works are usually
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required to manually adjust a threshold to achieve the target
compression ratio. Sometimes it is difficult to find a suitable
threshold, since the compression ratio can be very sensitive
to the threshold. For example, DeeBERT [9] introduces the
entropy of the output probability as the early-exit criterion.
The inference will be early stopped if the entropy is less than
a preset threshold S. For RTE dataset, DeeBERT achieves a
compression ratio of 20.4% when S is 0.6931. However, the
compression ratio becomes 8.3% when S slightly increases to
0.6932. Secondly, the performance of the existing methods is
not stable. For example, when the compression ratio is 60%,
the accuracy drop of EBERT [11] is negligible if the datasets
are large (e.g., MNLI), but its accuracy drop is up to 21.8%
on those small datasets (e.g., RTE). On the contrary, DeeBERT
performs better than EBERT on the RTE but suffer from a more
significant accuracy drop on the MNLI.

To address the aforementioned limitations, we propose
TBERT, a simple yet stable dynamic inference method. Specif-
ically, we add a predictor in each layer to estimate the impor-
tance of different components, and the model will only retain
k components with the highest importance score to achieve the
expected compression ratio. As the k is computed according
to the target compression ratio, there is no gap between the
real and target compression ratios. However, the general design
of predictor in previous dynamic methods [11]–[13] are not
suitable for TBERT, which leads to an hard convergence of the
model. To ensure the model can be trained end-to-end stably,
We redesign the structure of the predictor from the perspective
of optimization and model characteristics: 1) instead of using
straight-through estimation (STE) [14] to solve the problem of
non-differentiable, we use the sigmoid function to reduce the
approximate gradient errors; 2) due to the computation graph
of different samples in a batch is different, batch normalization
(BN) [15] will collect wrong normalization statics. Therefore
we use layer normalization (LN) [16] in the predictors. With
the help of these two modifications, TBERT can be trained
efficiently. Moreover, we propose adding auxiliary classifiers
to help the model’s training, which can further improve the
performance, especially on those relatively small datasets.
Experimental results demonstrate that TBERT achieves better
performance than previous state-of-the-art methods on the eight
tasks of the GLUE benchmark.
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Fig. 1. (a) The overview of the dynamic pruning framework. It can be divided into BERT and predictors. We prune heads in MHA layers and intermediate
dimensions in FFN layers; (b) The architecture of predictors.

II. RELATED WORKS

Dynamic inference (or pruning) is a compression method
that can reduce the amount of actual calculation by removing
different redundant computation components according to var-
ious inputs. Like static pruning methods, it can be divided into
structured and unstructured inference.

A. Structured Dynamic Inference

Structured dynamic inference for Transformer models mainly
tries to drop entire blocks, such as a layer or a head. These
methods generally can be well supported by general-purpose
hardware. However, the performance degrades a lot when the
sparsity is too high. FastBERT [8], DeeBERT [9], and PABEE
[10] dynamically adjust the number of layers to be executed.
By adding additional classifiers in intermediate layers, the
model can generate prediction results without passing through
all layers. The main difference between these methods is the
early-exit criterion. What’s more, these works need to adjust
a threshold to achieve different compression ratios. EBERT
[11] dynamically skip unimportant heads in multi-head self-
attention (MHA) and intermediate dimensions in point-wise
feed-forward (FFN) with the help of predictors in each layer. It
adds a sparsity loss function to ensure the trained model reaches
the target compression ratio. Different from prior works, our
method can accurately achieve the target compression ratio
without adding a sparsity loss or adjusting a threshold.

B. Unstructured Dynamic Inference

Unstructured dynamic inference aims to remove individual
activations or weights. For Transformer, these works mainly
focus on the native sparsity of the attention matrices caused by
the softmax operation. By designing effective prediction meth-
ods, they ignore those attention values that do not contribute
to the final results to reduce the amount of computation. A3

[17] presents an approximate candidate selection mechanism to
remove the computation of unimportant attention scores. ELSA
[18] proposes a hash-based method to find those pruned scores.
Leopard [19] introduces a bit-level early-compute termination.
The main problem with these methods is that special hardware

is required to convert the theoretical acceleration ratio to the
actual acceleration ratio.

III. METHODS

A. Overall Framework

The overall architecture of the proposed method is shown
in Figure 1(a). It consists of the original BERT and the extra
predictors.

The BERT is mainly composed of L Transformer encoder
blocks. Each encoder block consists of a MHA layer and a
FFN layer. Suppose the length of an input sequence is n and
the hidden-state size is d, the input and output of the l-th MHA
layer that has Nh heads is:

MHA(Xl) =

Nh∑
i=1

mh
l,iAtt(Xl,W

Q
l,i,W

K
l,i ,W

V
l,i,W

O⊤
l,i ), (1)

where WQ
l,i,W

K
l,i ,W

V
l,i,W

O
l,i ∈ Rd×dh are parameters matrices

and dh = d/Nh denotes the output dimension of each head.
mh

l,i ∈ {0, 1} is a mask variable that indicates whether the head
has been pruned. For the original model, mh

l,i = 1. Att(·) is the
attention function.

Similarly, the input and output of the FFN layer that follows
the l-th MHA layer is:

FFN(XM
l ) = GeLU(XM

l WF1
l )diag(mf

l )W
F2
l , (2)

where WF1
l ∈ Rd×dI and WF2

l ∈ RdI×d. mf
l ∈ {0, 1} also is

a mask variable. If mf
l,i = 0, diag(mf

l ) ∈ RdI×dI will prune
i-th intermediate dimension of GeLU(XM

l WF1
l ).

Figure 1(b) presents the architecture of the predictor. It
contains two FFN layers with a ReLU activation in between.
The predictor determines the component to be pruned according
to the current input instances. In other words, it generates mh

and mf for each layer:

z = ReLU(Norm(xWP
1 ))WP

2 , (3)

m = f(z), (4)
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(a) Binary function and its approximate gradient with STE

(b) Sigmoid function and its gradient

Fig. 2. The curve of functions and corresponding gradients. Assuming z =
{−4.0,−1.5, 1.3, 2.5} and k=2, then ztopk = 1.3. z0, z1 will be transformed
to 0, and z2, z3 will be transformed to 1.

where Norm(·) is a normalization layer, and f(·) is a function
that transform each z to a 0-1 mask. x ∈ Rd is features of
the [CLS] token. This choice is based on the assumption that
[CLS] representation encodes most of the useful information
of the sentence [11].

In order to make the model reach the target compression
ratio C (C = FLOPs of the compressed model / FLOPs of the
original model) without adding any extra loss or designing a
skip-criterion, a simple way is to use the top-k function as:

m = f(z) =

{
1, if z >= ztopk,

0, otherwise.
(5)

where ztopk is the k-th largest value, and the k is computed
according to the target compression ratio.

B. Reduce Approximate Gradient Errors

In order to train the entire model described above, we need
to solve the problem that f(·) is not differentiable. A common
practice is to use STE to compute the approximate gradient:

∂m

∂z
= 1. (6)

However, this approximation method introduces a significant
gradient error because it does not consider that the contribution
of different inputs to the gradients is different. As a result, the
training process of the model becomes very unstable, which is
shown in Figure 5. Similar phenomena also exist in quantization
works [20].

Adding a differential function that approximates f(·) can
reduce the gradient error, because it makes the backward
propagation more consistent with the forward pass. We choose
to use the sigmoid function due to the output of f(·) is 0 or 1:

z′ = σ(z− ztopk), (7)
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Fig. 3. Adding internal classifiers after several intermediate layers. The input
of each internal classifier is hidden states of the connected layer, and the output
is used to generate auxiliary losses. The dotted line represents these internal
classifiers share the same architecture and parameters with the final classifier.

where σ(x) = 1
1+e−x is the sigmoid function. The input is

z− ztopk because the value needs to compare with ztopk, not
zero. As z′ is continuous, we need to transform it to 0-1 mask:

m = g(z′) =

{
1, if z′ >= 0.5,

0, otherwise.
(8)

Now we can obtain the approximate gradient of each z
following (9). Figure 2 presents the gradient curve under
different approximation methods.

∂m

∂z
=

∂m

∂z′
∂z′

∂z
= z′(1− z′). (9)

C. Normalization

Batch Normalization is widely used in deep neural networks,
especially in computer vision (CV) tasks. It is commonly
believed that BN solves the internal covariate shift issue [21]
and improves the training efficiency by stabilizing activations
with channel-wise mean and variance statistics estimated from
samples in a mini-batch. Most of the previous predictor-based
dynamic models for CV tasks add BN layers in their predictors
[12], [13] to achieve stable training. However, as the empirical
observation of previous works that BN is unsuitable for natural
language processing (NLP) tasks, which leads to a significant
performance drop, we found that using BN layers in predictors
also makes the dynamic NLP model’s training unstable, thus
damaging the performance. Instead, layer normalization, which
normalizes the inputs by computing the mean and variance of
each feature and does not rely on the batch dimension, is helpful
for the model’s training. The detailed discussion is provided in
Section IV-C.
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Fig. 4. Results on the development set of GLUE benchmark. The performance of DeeBERT on the STS-B dataset is not shown here because we do not find a
threshold that can make the model reach the target compression ratio. We ignore the FLOPs of predictors due to the proportion is less than 0.1%.

D. Training with Auxiliary Classifiers

The well-trained predictors can predict the importance of
different components for various input instances, and the qual-
ity of importance prediction significantly impacts the model’s
performance. Although we do not have any labels to supervise
train the predictors, we can end-to-end train the top-k-based
dynamic inference model with the help of sigmoid that reduces
the approximate gradient error and LN that stable the training
process. However, different from the BERT that has been
pretrained on large datasets, the predictors are trained from
scratch, so it requires more training steps to converge. When the
training dataset is small, the number of training steps is often
insufficient for the predictors to be fully trained. To solve this
problem without increasing the number of training steps, we
propose to add auxiliary losses, which is similar to inception
networks [22]. Specifically, in addition to computing loss in
the last classification layer, we add internal classifiers after
several intermediate layers to get auxiliary loss, as shown in
Figure 3. These internal classifiers share the same architecture
and parameters as the last classifier to reduce the amount of
trained parameters. The final loss is:

l = lpred +
∑
i∈I

lauxi
(10)

where I is a set of the index of internal layers that add auxiliary
classifiers. Note that these auxiliary classifiers will be removed
at the inference stage.

IV. EXPERIMENTS

A. Experimental Setup

a) Datasets and Metrics.: To verify the effectiveness of
our method, we conduct comprehensive experiments on eight
GLUE tasks [23]: Multi-Genre Natural Language Inference
Matched/Mismatched (MNLI-m/mm), Quora Question Pairs
(QQP), Question Natural Language Inference (QNLI), Stanford

Sentiment Treebank (SST-2), Recognizing Textual Entailment
(RTE), Corpus of Linguistic Acceptability (CoLA), Microsoft
Research Paraphrase Matching (MRPC), and Semantic Textual
Similarity Benchmark (STS-B). We use accuracy as metrics
for all tasks, except for Spearman Correlation for STS-B, and
Matthews Correlation for CoLA.

b) Implementation details.: We implement TBERT with
the HuggingFace Transformers Library v3.3.1 [24] and Pytorch
v1.4.0 [25]. The model is BERT-base, and the hidden-state size
of predictors is 64, which is the same as [11]. The training
process is divided into two stages. In the first stage, we finetune
the original model from the pretrained checkpoints downloaded
from the HuggingFace Transformers. The hyperparameters,
such as learning rate, epochs, and batch size are kept unchanged
from the library for all downstream tasks. In the second stage,
we add predictors in each layer and train the entire model. The
initial learning rate for predictors is 1e-3, and we use a cosine
learning scheduler to adjust the predictor’s learning rate. Other
hyperparameters are still unchanged.

Because the performance on small datasets (RTE, CoLA,
STS-B, and MRPC) usually has large variance, we report the
average performance over five runs with different random seeds
for all experiments. All experiments are completed on a single
Nvidia GeForce RTX2080Ti GPU.

B. Comparison with the Prior Methods

We compare our method with three dynamic inference
methods designed for BERT, including DeeBERT [9], PABEE
[10], and EBERT [11]. We reproduce these works using their
released code, and the results reported are also the average of
five runs. Because the baseline accuracy (accuracy of the model
without pruning any components) of different methods has
slight differences, we mainly report the accuracy drop instead
of absolute accuracy.

Figure 4 shows the comparison of performance. We can
see that other methods can not accurately achieve the target
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TABLE I
ABLATION STUDY OF OUR PROPOSED THREE TECHNOLOGIES. ACT:

WHETHER TO USE THE SIGMOID FUNCTION; NORM: THE TYPE OF
NORMALIZATION LAYER IN THE PREDICTOR; AUX: WHETHER TO USE
AUXILIARY CLASSIFIERS. THE RATIO OF RELATIVE FLOPS IS 20%.

Act. Norm. Aux. MNLI SST-2 RTE MRPC
None None No 44.24 77.41 57.76 68.38
None BN No 34.74 79.7 54.87 68.38
None LN No 60.59 82.57 56.32 69.36

Sigmoid None No 66.85 86.93 59.21 76.72
Sigmoid BN No 69.86 84.06 55.96 68.38
Sigmoid LN No 77.76 88.07 61.01 77.21
Sigmoid LN Yes 78.09 88.42 62.45 77.94

compression ratio. For example, it is impractical for PABEE
to achieve a 20% relative FLOPs ratio due to the limitation
of its early-exit strategy. On the contrary, our method can
easily achieve any given compression ratio with the help of
the top-k-based pruning scheme. In terms of accuracy, our
method consistently delivers similar or higher performance than
baseline methods at each ratio of remaining FLOPs, especially
on small datasets.

Specifically, for large datasets (MNLI, QQP, QNLI, and SST-
2), the performance of EBERT is much better than DeeBERT
and PABEE, and our method achieves comparable results with
EBERT. However, EBERT’s performance on small datasets is
very poor. The main reason is that the number of training
steps is insufficient to train predictors from scratch. DeeBERT
performs well on CoLA, MRPC, and RTE, but its performance
on STS-B is so bad that we can’t draw its FLOPs-performance
curve on the figure. Our method achieves a large performance
improvement on four small datasets. For example, it achieves
a 10.25% higher accuracy than EBERT on the RTE task when
remaining 20% FLOPs.

C. Diccussion

We conduct an ablation study to investigate the effect of our
proposed methods on the model performance, and the results
are shown in Table I. We also show the loss curve of the
model during training under different settings in Figure 5. The
observation is that the model has the best performance when
sigmoid, LN, and auxiliary classifiers are used simultaneously,
especially for small datasets.

a) Sigmoid: Using the sigmoid function to reduce approx-
imate gradient errors is essential for the training of the model.
From Figure 5 we can see that the model without using the
sigmoid function can not converge, even if we have added
BN or LN. It means that the model cannot find the correct
optimization direction due to the large gradient errors. When
the sigmoid function is used, the model can be trained to
converge whether normalization layers in predictors are used
or not. There is also an interesting phenomenon. When the
sigmoid function is used, z will gradually increase with the
increase of training steps, as shown in Figure 6. It results in
that σ(z − ztopk) is gradually closer to 0 or 1, which further
reducing the approximat errors.

b) Normalization: The normalization layer is crucial for
the stable training of models, but different models appreci-

Fig. 5. Convergence curves of BERT with different settings on the SST-2
dataset. Lower is better. The ratio of relative FLOPs is 20%.

Fig. 6. The curve of training steps and the average value of z. The model is
trained on the SST-2 dataset and the ratio of relative FLOPs is 20%.

ate different types of normalization layers. Previous dynamic
models generally use BN layers in predictors. However, the
experimental results show that BN is unsuitable for our models.
Sometimes it even causes performance degradation. For exam-
ple, the performance of dynamic BERT without using BN and
LN on SST-2 is 86.93%, which is higher than that of using BN.
The main reason is that BN needs to compute the channel-wise
mean and variance across the batch dimension. However, the
dynamic inference model will prune different components for
various inputs, which makes the BN collect inaccurate batch
normalization statistics. This observation also exists in [26].
On the contrary, LN does not rely on the batch dimension to
compute mean and variance, so it can correctly normalize the
input.

c) Auxiliary Classifiers: Table I shows that adding aux-
iliary classifiers can improve performance, especially for rel-
atively small datasets. The main reason for the improvement
of performance is that the intermediate classifiers can help the
training process of the predictor so that it can more accurately
predict the importance of different components. To demonstrate
this, we visualize the mask distribution of different layers in
Figure 7, like in [11], [27]. The mask m for each head or
intermediate dimension can be divided into three classes: 1)
on: be one for all inputs; 2) off: be zero for all inputs; 3) dep:
be one or zero for different inputs. The higher the proportion of
masks that belongs to the dep class, the stronger the dynamic
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Fig. 7. Influence of auxiliary classifiers on dynamic characteristics. The task
is RTE, and the target compression ratio is 20%. We do not add predictors in
the first layer, so all masks belong to the on class.

adjustment ability of the model. We can see that model trained
with auxiliary classifiers has a higher proportion of the dep
class masks.

Similar to the view in [14], auxiliary classifiers are helpful
for the model’s training for two reasons. First, the existence
of these intermediate predictors shortens the path of back
propagation, so the gradients are increased. The second is these
classifiers strengthen the discrimination ability of the interme-
diate layers. In other words, to maintain the discrimination
ability, the predictors must accurately find those unimportant
components to reduce the loss of information. It is equivalent
to providing some supervision information for the training of
the predictors, which accelerates the model’s convergence.

V. CONCLUSION

In this paper, we propose TBERT, a simple but effective and
stable dynamic inference method. Specifically, to achieve the
target compression ratio accurately without tuning any thresh-
old or hyperparameters, we design a top-k-based predictor.
Compared with the predictors that previous works used, the
key modifications are using the sigmoid function instead of
STE and LN instead BN. The model that utilizes the newly
designed predictors can be trained end-to-end. Moreover, we
propose adding auxiliary classifiers to help the training further.
Experimental results demonstrate that our method achieves
a better performance on all tasks of the GLUE benchmark

than previous state-of-the-art methods with similar compression
ratios.
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